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Abstract—Relay stations are an important component of het-
erogeneous networks (HetNets) introduced in the LTE-Advaned
technology as a means to provide very high capacity and QoSlal
over the cell area. This paper develops a self-organizing heork
(SON) feature to optimally allocate resources between batiaul
and station to mobile links. Static and dynamic resource shang
mechanisms are investigated. In the static case we providegaeu-
ing model to calculate the optimal resource sharing strateg and
the maximal capacity of the network analytically. The influence of
relay planning and number of deployed relays is investigate, and
the gains resulting from good planning are evaluated analytally.
Self-optimizing dynamic resource allocation is tackled uisg a
Markov Decision Process (MDP) model. Both stability in the
infinite buffer case and blocking rate and file transfer time in
the finite buffer case are considered. To achieve a scalablelstion
with a large number of relays, a well-chosen parametrized fenily
of policies is considered, to be used as expert knowledge n&ily,
a model-free approach is shown in which the network can derie
the optimal parametrized policy, and the convergence to a Il
optimum is proven. !

Index Terms—Relay, Queuing Theory, Stability, OFDMA,
Load Balancing, Self configuration, Self Optimization

|I. INTRODUCTION

solution, stability and robustness to noise. Previous work
on-line network optimization include the popular utilihagsed
approach used in [3], [4] and [5]. Reinforcement learning ha
been investigated for example in [6].

LTE-Advanced introduces the concept of Heterogeneous
Network (HetNet) as a mean to increase network capacity.
HetNets comprise low power nodes deployed in high traffic
areas to increase capacity, namely picocells, femtocels a
Relay Stations (RSs). Autonomous resource management in
HetNets is among the important and challenging research
avenues in SON for next generation radio access networks,
encompassing load balancing, Inter-Cell Interferencerdioo
nation (ICIC), mobility management, and other self-opzimg
resource allocation mechanisms.

This paper focuses on self-optimizing RSs. RSs are linked
to the macrocell by a wireless link which replaces the wired
backhaul. We will use the term “station” to refer to a Base
Station (BS) or a RS indifferently. Radio resources have to
be shared between the BS to RSs links and the stations
to users links. The resource allocation which maximizes the
system capacity depends on system parameters such as traffic

_ Self-organizing networks (SON) mechanisms have beghy pgg placement. Both static and dynamic mechanisms are
introduced in the Long Term Evolution (LTE) standard 'r?nvestigated in this work.

order to empower the network by embedding autonomic\ye first derive the static resource allocation which maxi-

mechanisms, namely self-configuration, self-optimizatmd
self-healing ([1], [2]). These mechanisms aim at simptifyi

mizes the system capacity. We then show a dynamic resource

.allocation as an optimal control problem. We give a syst@mat

the network management, at reducing its cost of operatifibinod for the controller design, in three steps:
and at increasing its performance. Within release 10 of 3GPP1) The problem is modelled as a Markov Decision Process

enhancement of SON features have been introduced into
the LTE-Advanced technology, such as the enhancement of

mobility robustness and load balancing self-optimization

Dynamic self-optimization targets on-line network imple-
mentation of SON mechanisms with short time resolution. (e.g
seconds to minutes) for adapting the network to new operatio

conditions such as traffic variations. The requirementSfoN

solutions to be adopted in radio access networks are theiclas

cal goodness criteria in optimization and control: existenf
optimal solutions, convergence to an optimal solutionesief

convergence, monotonic improvement of the goodness of the

1This work has been partially carried out in the framework loé FP7
UniverSelf project under EC Grant agreement 257513

(MDP), and the optimal controller is found. This optimal
controller is to be used as expert knowledge during the
next phase.

2) Based on the previous controller and a queuing the-
ory result, we introduce a set of parametrized policies
(the expert knowledge). A method to find the optimal
parametrized controller is derived and its performance is
compared with the optimal controller.

3) Finally, we show a model-free (reinforcement learning)

approach to derive the optimal parametrized policy by

observation and interaction with the network. We use the

policy-gradient method featured in [7], [8], [9].

The contributions of the present paper are:



1) A gqueuing analysis to derive the optimal static resour@ System capacity

allocation in closed form, and the impact of the major gqor 5 givenz € [0, 1] we now calculate the capacity of the
system parameters such as RS placement, numbers@§tem, and the optimal resource sharing strategyvhich
deployed RS and RS size on the system performanceensyres stability whenever it is possible. Namely, we denot
2) A systematic step-by-step framework for controller dasy ¢ the capacity of the system defined as the maximal value
sign, with rigorous proofs of convergence and optimalityt \E[o] that keeps the system stable i.e the number of users
of the methods used. in the system does not grow to infinity. We write,.; ,
3) A model-free approach with monotonic improvement of < s < Ny the data rate of the link between BS and RS
the solution during the learning phase. This is fundameg-wnhen it is the only active link, and®,(r) , r € A, the
tal for on-line implementation in an operational networkgata rate between stationand a user located at when he

The paper is organized as follows: Section Il states the syg-alone in the system. The effect of inter-cell interfereie
tem model and the optimal static resource allocation gyateincorporated in,..; s and R,(r), hence the results given here
is derived in closed form based on a queuing ana|ysis_ Th@ld regardless of the amount of inter-cell interference.
impact of RS placement, number of deployed RS and R$eorem 1. The capacityC' of the system is:
size is analysed. Section Ill models the problem as a MDP,
and a parametrized set of policies is derived based on the C(z) = min (Crel(x)v min (Cs(x))) 1)
optimal policy. Section IV presents a model-free approach 0<ssNr
to derive the optimal parametrized policy by interactiorthwi With:

the network, without degradation during the learning phase Nr oy -1
Section V concludes the paper. Crei(z) =2 (Z 2 ) (2)
s—1 R’rel,s
1 —1
[I. OPTIMAL STATIC RESOURCE ALLOCATION Ci(x)=(1—2x) (/ R0 dr) 3)
Ag S
A. System model Furthermore, there exists a uniqu&® € [0,1] which max-

imizes the capacity, withC* the corresponding maximal
We consider the downlink scenario of a wireless netwodgpacity:

where users arrive randomly according to a spatial Poisson

—1

process of intensity\, to receive a file of random size, < max fA Rl('r) dr)
with E[o] < +oo. We assume independence between the ,» _ OSssNp ™™ 7% (4)
arrival process and file sizes. We assume that there is no 1 - Ne Ao \ 7!
user mobility and that users leave the network upon service <0§1{}§3§R Ja, T(r)dr> + (Zs=1 Rr:z,s)
completion. We denote bi c R? the network area which we . -1
assume to be bounded.contains a BS (alternatively called (Zi\[ﬁ Ri‘j ) ( max fAS ﬁmdr)
macro-cell) and several RSs. We denote My the number — C* = : Oee= e : (5)
of RSs, and we use the convention that statiois the BS 1 Ne Ao \7*
and station [ - < 25 f/‘\s Ra(r) dr> + (25:1 vaelvs)

s, 1 < s < Ngis the s-th RS. LetA, C A 0<s<Ng
denote the area covered by statignA, = |, A, dr its size Proof: See appendix. m

and A = ijo A, the network size. As mentioned earlier, Itis noted that this result applies regardless of the ugderl
RSs have no direct link to the backhaul, and are connecigg packet dynamics. More precisely, consider two scesario
to the BS by a wireless link. This wireless link uses thel) Small files: When a user served by a RS arrives in the
same radio resources as the station to users links and we are network, the file he wants to receive enters the BS to
interested in finding an appropriate resource sharing ndetho  RSs link and once the whole file has gone through that
This mechanism is often called in-band relaying. Depending link, it enters the corresponding RS to user link and is
on the multi-access radio technology, the radio resouraas ¢ transmitted. This model is reasonable for small files.
refer to codes in Code Division Multiple Access (CDMA), 2) Larger Files: In a more realistic setting, when a user
to time slots in Time Division Multiple Access (TDMA) or served by a RS arrives in the network, the file he wants to
to time-frequency blocks in Orthogonal Frequency-Divisio receive arrives as small packets which enter the BS to RSs
Multiple Access (OFDMA). We ignore the granularity of link, possibly with delays between packets. Once a packet
resources and we denote hy € [0,1] the proportion of has gone through the BS to RSs link it immediately enters
resources allocated to the link between the BS and RSs. We the RS to user link. Here the file can be “split” between
further assume that Round Robin (RR) scheduling applies in the two successive links.

all links: the link between the BS and RSs is shared in la both scenarios the input process is stationary ergodit, a
Processor Sharing (PS) way among the RSs, and that etiwhvalue ofAEY 0] is the same. Namely and EY o] are

link between a station and the users it serves is shared idifierent but their product remains the same. Hence thesyst
PS way among those users. capacity does not depend on the scenario chosen.



C. Relay gain

We now introduce the concept of RS placement gain, and
give a method to evaluate the resulting capacity improvemen

We assume that the signal attenuation per distance unit is W
smaller for the useful signal between the BS and RSs than A Relay 1
Relay 6

for interfering signals. This can be achieved by placing RSs
high enough so that the propagation between the BS and RSs
is close to the line-of-sight case, while taking advantafie o

buildings to increase the attenuation of interfering signa eNB
Assume that the propagation loss at distajhdeis with

2 < ﬂr < g for the useful signal between the %g and RSs,

and =+ T ” for all other signals. The casg = 2 corresponds to /_\
line-of-sight propagation between BS and RSs. We wgall, Relay 4

the relaying gain, ang,. = 2 gives gives an upper bound on
the achievable capacity by intelligent relay placement.

D. Numerical experiments

We now evaluate the influence of the system parameters Fig. 1. Relay placement
on the performance using a classical model. The model
parameters are given in Table I, and Figure 1 represents thi "~ bad planning
network layout. Interference from neighbouring cells iketa - - ~good planning -
into account. We now state the ergodic throughput(r) 38r o
calculation method in the OFDMA case. Assuming that the '
fast-fading is a multiplicative random variable of megnwe
have that:

40,

w
)]
T

Rs(r) = Ngp . d(SINR,(r)x)p(x)dx (6)

with N p the number of resource blocks; a link-level curve
mapping instantaneous Signal to Interference plus Nois® Ra P
(SINR) into data rate on a resource blodkINR(r) - the b ———

mean SINR at € A, andp(z) the probability density function I
(p.d.f) of the fast-fading. In the Rayleigh cag€yr) = e *.
Similar models apply in the TDMA and CDMA case (see for 28 2 4 6 8 10 12 14
example [10], [11]). It is noted that we choose a large cell Number of relays

radius since [12] had shown that relays are only beneficial rgb 2. System capacity as a function of the number of relfyscifferent

System capacity (Mbps)
w w
. s

such a setting. planning strategies
Model parameters

gﬁ{'elr?g'; lf;pe gﬁﬁ%ﬁg?ﬁonal “good planning”. It is noted that the value of the optimakbrel
Cell Radius 2km transmit power in the “bad planning” case (s for all
é;gﬁ?;dti?h:%'gg?’ gZDIE':{'Ah number of relays (below the x-axis). It demonstrates that th
Nrg 9 wy 9 impact of relaying gain is fundamental since without refayi
Resource block size 180k H z gain it is actually detrimental to deploy relays. With retay
22 t;q?xsimrm‘r"gsmit sowe ggzgz gain however, the system capacity increases sharply.
Thermal noise —174dBm/Hz Figure 4 shows the impact of the relaying gain on the
Path loss model 128 + 37.6logo(d) dB, d in km system capacity for a fixed number of relay$ (n this case),
File size 10Mbytes and we can see that the capacity increases almost linearly

TABLE | in the relaying gain. This can be explained by the fact that

MODEL PARAMETERS logy (1 + S||r[|"~"") is close tology(S) — (1 — n,) logy ([I7[])
when S||r||”"" is large. It shows that if one is able to
evaluate the relaying gain prior to deployment (by meagurin

Figure 2 and 3 show the capacity of the system and thiee value of the path loss exponent in candidate sites fayrel
optimal relay transmit power respectively as the number pfacement), one can actually determine if relay deployment
relays grows, with and without relaying gain. The case withois beneficial and the expected benefit. Furthermore the point
relaying gain is denoted “bad planning” and with relayingnga where the two curves intersect represents the minimalirejay



. s > 1 the number of users (packets respectively) of class
. served by the BS to RS link. We write R, ; the data rate of
25 IR a user of clasg served by statios.

' We first assume infinite buffer lengths and we want to
find the policy that keeps the system stable whenever that
is possible. The problem is in fact a particular case of the
constrained queuing systems considered by [13]. It has been

N
o
T

Relay power (dBm)
[
a1

K . proven that such a policy exists and that it is a max-weight
,,,,,, —— bad planning l We defi th ights:
1ol / ~ good planning policy. We define the weights:
Ds; = max (S5,iRs:),0<s<Ngr (7)
5l 1<i<N© 7
D et = max ((Srersi — Ssi)Rrets), 1 <s< N 8
s,rel 1§i§N(( rel,s,i 5,1) 7el,5); >~ 9o X 1IVR ( )
O I I I I I I I
0 2 4 6 8 10 12 14 - i i i .
Number of relays The max-weight policy is then:
' . . . o I3 coany Dsrel =2 0<s<ny, Ds @ activate the BS to
Fig. 3. Optimal relay transmit power as a function of the namaf relays, RS s* link with s* = arg max Dy .,
for different planning strategies 1<s<Rs
« Else: activate the stations to users links, and in each
401 stations serve the class of usei$ = argmaxn, ;R ;
—15 relays i
- - -norelays

B. Finite buffer case: MDP formulation

We now assume that the system st8tds restrained to
S ¢ NENrtOHN with S finite due to admission control
mechanisms. We formulate the problem as a Continuous Time
Markov Decision Process (CTMDP) and optimize Quality of
Service (QoS) metrics such as blocking rate or file transfer
time. We formulate the problem in the small files framework
since we want to solve the MDP iteratively, in order to keep
the state space relatively small. The learning approachef t
next section however can handle large state spaces as will be
demonstrated.

1) State and action spacedVe assume that each link has
a maximal number of simultaneous active users.

System capacity (Mbps)

Path loss exponent

Fig. 4. Impact of the relaying gain on the system capacity __ )
S = {S|Srel,s,i § Srel,s,iv 1 <s< NRv 1 <1 § N

andS,; < S,;,0<s<Ng,1<i<N}
gain needed for any benefit from relay deployment to appear.

We defineA = {0, 1} the action space, with the convention:
I1l. OPTIMAL DYNAMIC RESOURCE ALLOCATION

STRATEGY » a =0 : activate BS to RSs links and share them in a PS
sharing manner

a =1 : activate stations to users links and share them in
a PS sharing manner

We now turn to the dynamic case. The BS observes the.
current state of the network and decides whether to activate
the BS to RSs links or the stations to users links. - o ) o )

o o _ 2) Transition probabilities: Assuming that file sizer is
A. Infinite buffer case: stabilizing policy exponentially distributed, the system is a CTMDP. Transii

We partition eachh, into N regionsA,,; , 1 < i < N, each from S to S’ given actiona have the following intensities:
associated with a different radio condition. We cath traffic « Arrival of a user from class in the BS:1s(s’) [, Adr
class in statiors the users who arrive i ;. The state of the , Arrival of a user from class in the BS to RS link:
system can then be described by a ve@og NZNr+DN, 15(s') [, Adr
S = ((Ss.i)o<s<np1<i<n (Sretsi)i<s<npi<i<n). In the | peparturé of a user from class in station s:
smalll files framework we count the number of users present g, . (q)14(s)——teidei
) ; : {1} SWIEL SN, S..
in the links, otherwise we count the number of packets. Hence, il ot
Ss,i is the number of users (packets respectively) of class

Movement of a user of clagsfrom BS to RS link to
i o X RSs to users link:1y(a)ls(s’) Sret,s,iflret.s
served by the station to user link in statien and Sy¢; s,i »

N
Elo] 32051 3008 Srets i




3) Average reward:We call policy a mapping — D(A), policies: the optimal policy, the max-weight policy and the
with D(A) the set of probability distributions otd. We timal deterministic weighted policy. The optimal deteriatit
write (S(t), a(t),r(t)):cr+ @ realisation of the CTMDP with weighted policy is well defined since the set of deterministi
S(t) the statea(t) the action, and-(¢) the reward at time¢ policies is finite.
respectively. We are interested in the average rewardiorite
of a policy P: 3l optimal
- - —~max weight

T . |
JSU(P) = lim llEPysO [/ r(t)] 9) —o— best linear ///
0

T—4o00 T

with Epg, the expectation with respect to the probability
generated byP, starting atS,, which does not depend on
Sy if the system is ergodic under polidy.

4) Performance criteria: We consider two performance
criteria: mean file transfer time and blocking rate (consiue
admission control). For each performance criteria we can
define a corresponding instantaneous reward for each state 1 o
action pair, and finding the optimal policy for the resulting -

MDP will yield the best policy with respect to the considered
performance criteria. ' 10 15 20 25 30
To optimize the mean file transfer time, we define the Served traffic (Mbps)

rewarde stateS fif the number of users divided by the arrlVallig. 5. File transfer time as a function of the traffic for difént control
rate Zizl(SO,i+Z§:1(Ss,i+s7‘el,s,i

T3dr ) , and for any policyP that strategies
renders the system ergodids, (P) is the mean file transfer
time in the system using Little's law ([14]).

We define the blocking rate as the ratio between the mear 4|/ —optimal
number of blocked users and the mean number of user: -~ ~max weight
accessing the system, once again assuming ergodicitynGive ~ 8- Pestlinear
action «a, let 3(S,a) the sum of transition intensities out 7L
of stateS and b(S,a) the sum of the intensities of arrival
or movements which would be blocked, then the reward is
defined asf%.

5) Optimal control and parametrizationGiven the pre-
vious description, we associate a Discrete Time Markov
Decision Process (DTMDP) by uniformization and we de- 3¢
rive the optimal policy using an iterative method, by the
method described in [15]. It is noted that the complexity
of finding the optimal policy is exponential in the number  1f

File transfer time (s)

T
N

6

of relays, limiting the approach to small problems. In order s ‘ .

to preserve scalability, we introduce a well-chosen family 10 15Serve g trazfgc (Mbps) 25 30

of policies. For commodity of notation we will use the

following indexing of S : (Si,---,Sk, - ,S@Ng+1)N) = Fig. 6. Block call rate as a function of the traffic for diffetecontrol

((Ss,i)o<s<Ngp,i<i<N; (Srel,s,i)1<s<Ng,1<i<N). FOr @ € strategies
RENrHDN e write < S,0 >= Z,@{RHTN 0xSk. To 6 we

associate the deterministic weighted poli€y ,: Figure 5 and 6 show t_h_e file transfer time and th(_a block
’ call rate for the three policies, for one relay, one traffiassl
1, <S,0> >0 and a maximum ofl0 users for all links. We can see that
Fao(S,1) = {0 <S> <0 (10) the max-weight policy is very close to the optimal policy
’ ’ when we are concerned with the block call rate, which is
Pig(S,0) =1— Py4(S,1) (11) natural since it attempts to ensure stability. In the fileisfer

time case however, the optimal deterministic weightedayoli
It is noted that a deterministic weighted policy is essdiytia is noticeably closer to the optimal policy than the max-
an hyperplane separating the state space in two regionis, eaeight. The fact the max-weight scheduling possibly incurs
half-space corresponding to an action.4f long delays has been reported in the literature. Hence lmased
Itis also noted that the max-weight policy is a deterministithose two results we can conclude that the set of deternginist
weighted policy. We then compare the performance of threeighted policies is rich enough to restrain the searchi® th



set, since with a high number of relays and/or traffic classeSiven 5 € (0,1), and a realization of the POMDP
finding the optimal policy becomes prohibitively expensive (S(t),a(t),r(t)):en ., We define the sequence of gradient
estimates and the eligibility trace@\(t), z(t)):en by the
IV. LEARNING following recursive equation:

We have demonstrated that the set of weighted policies is
rich enough to represent a good trade-off between perfoceman _ _
and search complexity. We now move on to a model-free 20)=0, A(0)=0 (17)
approach, and we assume no knowledge of the transitionZ(t +1) = B2(t) + Vglog(Ps(S(t), a(t))) (18)
intensities and rewards. We are interested in learning theA fe1) = A (Dot +1) — Alt 19
best weighted policy, simply by observing realisations of (t+1) )+ t+1[7( 1)zt +1) @] (9)

the Partially Observable Markov Decision Process (POMDP) pyrthermore [8][Theorem 4] states that(t) — As(d)
t—+oo

(S(2), a(t), 7(t))ren. The model can be partially observed focsllmost surely and that the dot product betwekg (6) and

Vo J(0) is positive. In other words, for a giveh the limit of

various reasons. For example if user arrivals are corictliate
ime, the evolution of th m n n th r : - :
time, the evolution of the system afterdepends on the use —A(t) is a descent direction. We consider c RNe+DN

arrivals beforet, and this information is not present B¢). L .
. A . ._a compact and convex sétl’ the projection or®, (e,)nen
The method presented here is valid without assuming Poisson D . o :

) . . — a sequence of positive step sizes (satisfying the Wolfe ieond
arrivals or exponentially distributed file sizes.

tions) and we defing,, by:
A. Policy gradient approach b, € O (20)

We use the gpproa}ch introduc_ed by [7] and extended to the Onir = [0n — enAoo(G)]g (21)
average cost criteria in [8], [9]. It is noted that such aitions
work with stochastic policies, for the cost to be differabte then we have that,, = 0 With 6, a local minimum of

with respect to the policy parameter. J in © by a simple Gescent argumefit, is not necessarily
We introduce stochastic weighted polié¢¥ o: unique if J or © are not convex.
Furthermore, since- A (#) is a descent direction, we have
P:p(8,0) =1-f(<8,0>) (12) that the performance of the system improves monotonically,
P(8,1) = f(<8S,0>) (13) which is a very interesting property for system implementa-
with f(z) = 1 (14) tion. This is in sharp contrast with the traditional “leargi
1—e® phase” of learning algorithms such as Q-learning ([16]) whe

we are interested in finding tiewhich minimizes the average the average reward changes rapidly. _ _
cost Js, (Ps0). The link with the policies introduced in the  The learning method converges to a locally optimum policy
previous section is that any deterministic weighted poligy  If 10} converges t. a local optimum of the cost. It is
can be approximated arbitrarily well by a stochastic weaght N°ted that convergence of the controller paramétenplies
policy P, o, with K € R* arbitrarily large. convergence of policies.

C. Implementation issues: assumptions on traffic and scala-
bility

We now show how to converge to a local optimum of the It is noted that the learning method is valid regardless of

average cost. We differentiate the action probabilities: the statistical assumptions on traffic. Namely the validify
0log(Ps,9(S,0)) the policy gradient approach was shown by [8] even in the

B. Convergence to a local optimum

= *f(< S,G >)Sk = 7P579(S, ].)Sk

00}, partially observable case.
(15) It is noted that the algorithm is fully scalable when the
dlog(Ps,0(S,1)) number of relays increase since all the components of the
— 0, (1—f(<8,0>))Sk = Ps0(S,0)Sk  descent direction . (¢) are estimated from the same realiza-

(16) tion of the POMDP, incurring no additional costs whai
or N increases. This is fundamental since some deployment

Using finiteness ofS, and the fact thad < P 4(S,a) < 1, gcenarios includ80 RSs per BS.

a € {0,1},S € S we have that:
» For everyd, the Markov chain generated by poli¢ ¢
is ergodic, implying that/s, (P ) is well-defined and  We now evaluate the performance of the learning algorithm

D. Numerical experiments

does not depend 08, in the same setting as Section lll. Figures 7 and 8 represent
e  max max %{{(SW < 400, 1 < k < (2Ng + the evolution of the mean fiI(_a transfe.r time and the cont_rolle

‘16]{\(}1} Ses parameter$t , 6>, 03) respectively during the learning period.

1) One update of corresponds ta0? iterations of the underlying

. aggﬁ}%lgg“fs’a) < +oo, with 7(S,a) the reward poypp. As stated above, the mean file transfer time decreases

given stateS and actiona in an almost monotonic fashion. The small variations are a



numerical artefact due to the fact that the average rewardwigh the system. Convergence to a local optimum has been
calculated on a finite number of iterations of the POMDP. demonstrated, and the fact that the performance of thersyste

File transfer time (s)

02 04 06 08 1 1.2 14 16 18 2
Iterations of the POMDP 4

Fig. 7. File transfer time during the learning process

0.25 /\/’
— 0 -
1 7/
77762/\/\/
0.2’+93
0.151
@
0.1+
0.05-
0¢—= - i i o o009 O—0—e—9 09
02 04 06 08 1 12 14 16 18 2
Iterations of the POMDP % 10*

Fig. 8. Controller parameter®, 62, 63) during the learning process

V. CONCLUSION

improves monotonically, which is a key property for system
implementation.

APPENDIXA
PROOF OF THEOREML

Proof: We first recall Loynes lemma for a G/G/1/First
Come First Served (FCFS) queue: (fd,,,0,)nez IS the
stationary ergodic marked point process of arrival timed an
service requirements at a single server with servicelrgteen
the stability condition is:

AEY [o0] < 1 (22)

with X the intensity ofA and £ the Palm expectation with
respect toA. The reader can refer to [17] for the proof.
Furthermore, this remains valid for a G/G/1/PS queue since
the workload process in the PS case is the same as in the
FCFS case.

This allows to write the capacity of the link between the
BS and users:

Co(x) = (1 —x)( Ldr)_l (23)

2o Ro(r)
and the capacity of the link between the BS and RSs:
Ny -1
Cra(r) = <Z Rl) (24)

Now assuming that the link between the BS and RSs is stable,
its output process is stationary ergodic, and using a flow
conservation argument it has the same intensity as the.input
The capacity of the link between R&and its users is then:

Co(z) = (1—2) ( //A S R:(r> dr) - (25)

The stability of the system is equivalent to the stability of

all queues, henc€(z) = min Crel(x),oSI;lSlIJIVR(CS(x))

Furthermorez — C.,..(x) is strictly increasing and: —

min (Cs(z)) is strictly decreasing, hence the unique op-
0<s<Ngr

We have considered the problem of self-organized relatigal pointz™* is:
in a cellular network. The optimal static resource sharing

-1
between BS to RSs links and stations to users links has ( max [, ﬁdT)
been derived in closed form using a queuing model. The, _ s e

0<s<Ng

(26)

influence of key system parameters has been investigated, Ly Ne A, \~
showing the importance of relaying gain. Dynamic resource 025N 1 Jo. mmdr)  + (2521 R,,.el,s)
sharing has been considered using two approaches: stabilit

for infinite buffers and blocking rate and file transfer tim ;
The optimal poIiCg,oncludes the demonstration. ]

in the presence of admission control.

has been derived using a MDP approach, which allowed us

eubstitution ofz* in the capacity formula yield€™ which
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