Customer Lifetime Value: Stochastic

Optimisation Approach *

Wai-Ki Ching  Michael K. Ng  Ka-Kuen Wong
Department of Mathematics
University of Hong Kong
Pokfulam Road, Hong Kong, China,
Email: wke,mng@maths.hku.hk.
and
Eitan Altman
INRIA B.P.93
2004 Route des Lucioles
06902 Sophia-Antipolis Cedex, France

Email: Eitan.Altman@sophia.inria.fr.

15 September 2003 (Revised)

Abstract

Since the early 1980’s, the concept of relationship marketing has been
becoming important in general marketing, especially in the area of direct and
interactive marketing. The core of relationship marketing is the maintenance
of the long-term relationships with the customers. However, the relationship
marketing is costly and therefore the determination of the Customer Lifetime
Value (CLV) is an important element in making strategic decisions in both

advertising and promotion. In this paper we propose a stochastic dynamic
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programming model with a Markov chain for the optimisation of CLV. Both
cases of infinite horizon and finite horizon are discussed. The model is then

applied to practical data of a computer service company.

Key Words: Customer Lifetime Value, Relationship Marketing, Stochastic Dy-

namic Programming, Markov Process.

1 Introduction

We are in the age of relationship marketing, an age in which a sale starts a customer-
company relationship [1]. Relationship marketing is a process of making and main-
taining value-laden relationships with the customers. Corporations such as banks,
computers and telecommunication companies realised that they are facing stiffer
competition in the mature markets, the development of relationships with the prof-
itable customers is a crucial factor in staying in the market. The core of the rela-
tionship marketing is the development and maintenance of long-term relationship
with the customers. In principle, marketing is the art of attracting and keeping
customers [2]. A company should strive to identify the “profitable” customers and
keep them with an “acceptable effort”. Kotler and Armstrong [3] define a profitable
customer as “a person, household, or company whose revenues over time exceeds, by
an acceptable amount, the company costs consist of attracting, selling, and servicing
that customer.” This excess is called the Customer Lifetime Value (CLV). In some
literatures, CLV is also referred to “customer equity” [4]. In fact, some researchers
define CLV as the customer equity less the acquisition cost. Nevertheless, in this
paper we define CLV as the present value of the projected net cash flows that a
firm expects to receive from the customer over time [5]. Here we use both terms
interchangeably, a common practice by researchers [6]. Recognising the importance
in decision making, CLV has been successfully applied in the problems of pricing
strategy [7], media selection [8] and setting optimal promotion budgets [6].

To calculate the CLV, we first project the net cash flows that a company expects
to receive from the customer over time. We then calculate the present value of that
stream of cash flows. However, it is a difficult task to estimate the net cash flows
to be received from the customer. In fact, one needs to answer, for example, the

following questions: How many customers you can attract given a specific advertising



budget? What is the probability that the customer will stay with your company?
How does this probability change with respect to your budget? To answer the first
question, there are a number of advertising models, one can find in the book by
Lilien, Kotler and Moorthy [2]. The second and the third questions give rise to an
important concept, the retention rate. The retention rate [9] is defined as “ the
chance that the account will remain with the vendor for the next purchase, provided
that the customer has bought from the vendor on each previous purchase”. Jackson
[9] proposed an estimation method for the retention rate based on historical data.
Other retention models can be found in [2, 10]

Blattberg and Deighton [6] proposed a formula for the calculation of CLV (cus-
tomer equity). The model is simple and deterministic. Using their notations (see
also [4, 7]), the CLV is the sum of two net present values: the return from acquisition

spending and the return from retention spending. In their model

CLV = amv—’,_.t.AJrz::la " [r trd _am_AJra(m_?) g qujﬂTr)'
acquisition -

~~

retention
(1)
Here a is the acquisition rate, A is the level of acquisition spending, m is the margin
on a transaction, R is the retention spending per customer per year, r is the yearly
retention rate (a proportion) and d is the yearly discount rate appropriate for mar-
keting investment. Moreover, they also assume that the acquisition rate a and the

retention rate r are functions of A and R respectively, and are given by
a(A) = ag(1 —e M%) and r(R) = ro(1 — e *2F)

where ay and 7y are the estimated ceiling rates, K; and K, are two positive con-
stants. By using the above relationships, Berger and Nasr [4] proposed different
models for maximising the CLV under a fixed promotion budget. Other determinis-
tic promotion budget allocation models are proposed in [4, 5, 6, 7]. However very few
researchers have studied the promotion budget allocation (the number of promotions
is fixed) under competitive and stochastic situations.

In this paper we propose to use a stochastic dynamic programming model with
the Markov chain to capture the customer behaviour. The advantage of using the
Markov chain is that the model can take into the account of the switch of the cus-

tomers between the company and its competitors. Therefore customer relationships



can be described in a probabilistic way, see for instance Pfeifer and Carraway [11].
Stochastic dynamic programming is then applied to solve the optimal allocation of
promotion budget for maximising the CLV. To illustrate our model, we apply our
model to practical data in a computer services company.

The rest of the paper is organised as follows. In Section 2, we present the Markov
chain model for modeling the behavior of the customers. In Section 3, stochastic
dynamic programming is then used to calculate the CLV of the customers for three
different scenarios: (i) infinite horizon without constraint (without limit in the num-
ber of promotions), (ii) finite horizon (with limited number of promotions), and (iii)
infinite horizon with constraints (with limited number of promotions). Finally a

summary is given to conclude the paper in Section 4.

2 Markov chain models for customers’ behavior

In this section, we introduce a Markov chain model for modeling the customers’
behavior in a market. According to the usage of the customer, a company customer
can be classified into N possible states {0,1,2,..., N — 1}. Take for example, a
customer can be classified into four states (N = 4): low volume user (State 1),
medium volume user (State 2) and high volume user (State 3) and in order to
classify all customers in the market, we introduce State 0. A customer is said to be
in State 0, if he/she is either a customer of the competitor company or he/she did
not purchase the service during the period of observation. Therefore at any time a
customer in the market belongs to exactly one of the states in {0,1,2,..., N — 1}.
With these notations, a Markov chain is a good approach to model the transitions
of customers among the states in the market. For an introduction to Markov chain,
we refer readers to the book by Ross [12].

A Markov chain model is characterised by an N x N transition matrix P. Here
P;(i,j =0,1,2,...,N — 1) is the transition probability that a customer will move
to State j in the next period given that currently he/she is in State i. Hence the
retention probability of a customer in State i(s = 0,1,..., N — 1) is given by P;.
If we assume that the underlying Markov chain is irreducible then the stationary

distribution p exists, see for instance [12]. This means that there is an unique



P = (po,p1, - --,Pn-1) such that

By making use of the stationary distribution p, one can compute the retention

probability of a company customer as follows:

N-1 o o N-1 (1= Py)
Z(ZN—l )(1 Py) =1 1 ;szZO—l —_—. (3)

i=1 j=1 Pj

This is the probability that a company customer will stay and purchase service in
the next period. Apart from the retention probability, the Markov model can also
help us in computing the CLV. In this case we define ¢; to be the revenue obtained

from a customer in State 7. Then the expected revenue is given by

N-1

> cpi (4)

i=0

We remark that the above retention probability and the expected revenue are com-
puted under the assumption that the company makes no promotion (in a non-
competitive environment) through out the period. We note that the transition
probability matrix P can be significantly different when there is promotion making
by the company. We will demonstrate this in the following subsection. Moreover,
when promotions are allowed, what is the best promotion strategy such that the
expected revenue is maximised ? Similarly, what is the best strategy when there
is a fixed budget for the promotions, e.g. the number of promotions is fixed ? We
are going to answer these questions by using the stochastic dynamic programming

model in the next section.

2.1 Estimation of the transition probabilities

In order to apply the Markov chain model, one has to estimate the transition prob-
abilities from the practical data. In this subsection, we demonstrate this by using
an example in the computer service company. In the captured database of the
customers, each customer has four important attributes (A, B,C, D). Here A is
the “Customer Number”, each customer has an unique identity number. B is the

“Week”, the time (week) when the data was captured. C' is the “Revenue” which



is the total amount of money the customer spent in the captured week. D is the
“Hour”, the number of hours the customer consumed in the captured week.

The total number of weeks of data available is 20. Among these 20 weeks, the
company has a promotion for 8 consecutive weeks. There is no promotion for other
12 consecutive weeks. We are interested in the behavior of customers in the period
of promotion and no-promotion. For each week, all the customers are classified into
four states (1,2,3,0) according to the amount of “hours” consumed, see Table 1
below. Here a customer is said to be in State 0, if he/she is a customer of competitor

company or he/she did not use the service for the whole week.

State 1 2 3 0
Minutes || 1 —20 | 21 —40 | > 40 | 0.00

Table 1: The Four Classes of Customers.

From the data one can estimate two transition probability matrices, one for the
promotion period (8 consecutive weeks) and the other one for the no-promotion
period (12 consecutive weeks). For each period, we record the number of customers
switching from State ¢ to State j. Then, divide it by the total number of customers in
the State i, we get the estimations for the one-step transition probabilities. Hence
the transition probability matrices under the promotion period P and the no-
promotion period P®) are given respectively below (the states are ordered as follows:
1,2,3,0):

0.4230 0.0992 0.0615 0.4163

0.3458 0.2109 0.2148 0.2285

P —
0.2147 0.2034 0.4447 0.1372
0.1489 0.0266 0.0191 0.8054
and
0.4146 0.0623 0.0267 0.4964
PO _ 0.3837 0.1744 0.1158 0.3261

0.2742 0.2069 0.2809 0.2380
0.1064 0.0121 0.0053 0.8762

We note that P is very different from P(®). We remark that in general there can
be more than one type of promotion and hence there can be more than two different

transition probability matrices for modeling the behavior of the customers.



2.2 Retention probability and CLV

The stationary distributions of the two Markov chains having transition probability

matrices PV and P are given respectively by
p = (0.2306,0.0691,0.0738,0.6265) and p? = (0.1692,0.0285,0.0167,0.7856).

The retention probabilities (cf. (3)) in the promotion period and no-promotion
period are given respectively by 0.6736 and 0.5461. It is clear that the retention
probability is higher when the promotion is carried out.

From the customer data in the database, we obtain the average revenue of a
customer in different states in both the promotion period and no-promotion period,
see Table 2 below. We remark that in the promotion period, a big discount was given
to the customers and therefore the revenue was significantly less than the revenue

in the no-promotion period.

State 1 2 3 0
Promotion 6.97 18.09 43.75 0.00
No-promotion | 14.03 51.72 139.20 0.00

Table 2: The Average Revenue of the Four Classes of Customers.

From (4), the expected revenue of a customer in the promotion period (assume that
the only promotion cost is the discount rate) and no-promotion period are given by
2.42 and 17.09 respectively.

Although one can obtain the CLVs of the customers in the promotion period
and the no-promotion period, one would expect to calculate the CLV in a mixture
of promotion and no-promotion periods. Especially when there is a limit in promo-
tion budget (the number of promotions is fixed) and one would like to obtain the
optimal promotion strategy. Stochastic dynamic programming with Markov process
provides a good approach for solving the above problems. Moreover, the optimal
stationary strategies for customers in different states can also be obtained by solving

the stochastic dynamic programming problem.

3 Stochastic dynamic programming models

The problem of solving the optimal promotion strategy can be fitted into the frame-

work of stochastic dynamic programming models. In this section, we present stochas-
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tic dynamic programming models for maximising the CLV under optimal promotion

strategy. In the following, we first give the notations for the model.

= the total number of states (indexed by i =0,1,..., N —1).
the total number of promotion plans (indexed by j =1,..., M).

N = =

number of months in the planning horizon (indexed by t =1,...,T).

the resources required for carrying out promotion plan j in each period.

S

- the revenue obtained from a customer in State ¢ with

O
.

the jth promotion plan in each period.
pgi) = the transition probability for customer to move from State ¢
to State k under the jth promotion plan in each period.

« = discount rate.

We define v;(t) to be the total expected revenue obtained in the stochastic dynamic
programming model with ¢ months remained for a customer in State ¢ at the begin-
ning of the (T" — t)th period for i = 0,1,...,N —1and t = 1,2,...,7. Then we
have the following recursive relation for maximising the revenue:

v;(t) = max {cz(-]) —dj + Z pgi)vk(t — 1)} ) (5)

7=1,..., =0

In the following subsections, we will consider three different CLV models based on

the above recursive relation for infinite horizon and finite horizon cases.

3.1 Infinite horizon without constraints

We first consider the problem as an infinite horizon stochastic dynamic program-
ming. From the standard results in stochastic dynamic programming [13], for each
1, the optimal values v; for the discounted infinite horizon Markov decision process

satisfy the relationship
(7) =0
J J
iz o A= da Y ).
Therefore we have

. Nil .
v; > cz(]) —d; +a Z pgi)vk.
k=0

for each 7 and j = 1,..., M. In fact, the optimal values v; are the smallest numbers

(the least upper bound over all possible policy values) that satisfy these inequalities.
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This suggests that the problem of determining the v;’s can be transformed into the

following linear programming problem [13]:

( N-1

{ subject to

. Nil .
vi>d —dj+a S pPu, for i=0,.. N-1; j=1,...,M
k=0
{ v; >0 for 1=0,...,N—1.

The above linear programming problem can be solved easily by using spreadsheet
EXCEL. A demonstration EXCEL file is available at “http://hkumath.hku.hk/~wkc/clv1.zip”,
see also Figure 1. Return to our model for the computer service company, we have
M = 2 (either (1) promotion or (2) no-promotion) and N = 4 (possible states of a

customer are 1,2,3,0).

| _
Al isJ :-'ﬂ-T ﬁl'e'ﬁ;vfun‘:-rgalving the Optimal Policy

a8 | e | o | & | ® | @
The LP for Solving the Optimal Policy

Figure 1: EXCEL File for Solving Infinite Horizon Problem Without Constraint.



Table 3 presents the optimal stationary policies (i.e., to have promotion D; = 1
or no promotion D; = 2 depends on State i of the customer) and the corresponding
revenues for different discount factors oo and fixed promotion costs d. For instance,
when the promotion cost is 0 and the discount factor is 0.99 , then the optimal
strategy is that when the current state is 1 or 4, the promotion should be done i.e.
Dy = Dy, = 1, and when the current state is 2 or 3, no promotion is required, i.e.
Dy = D3 = 2, (see the first column of the upper left hand box of Table 3). The
other values can be interpreted similarly. From the numerical examples, we have

the following findings.

e When the fixed promotion cost d is large, the optimal strategies are that we
should not conduct any promotion on our active customers and we should only
conduct promotion scheme to both inactive (purchase no service) customers
and customers of the competitor company. However, when d is small, we
should take care of the low-volume customers to avoid this group of customers

being churned to the competitor companies.

e It is also clear that the CLV of a high-volume user is larger than the CLV of

other groups.

e The CLVs of each group of customers depend on the discount rate « signifi-
cantly. Here the discount rate can be viewed as the technology depreciation
of the computer services in the company. Therefore, in order to generate the

revenue of the company, new technology and services should be provided.
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d=20 d=1 d=2
a=099 a=09 a=09 [ a=099 a=095 a=09 | =099 a=095 a=0.90
o 4791 1149 687 4437 1080 654 4083 1012 621
v1 1144 234 119 1054 216 110 965 198 101
) 1206 295 179 1118 278 171 1030 261 163
v3 1328 415 296 1240 399 289 1153 382 281
Vo 1112 204 92 1023 186 83 934 168 74
Dy 1 1 1 1 1 1 1 1 1
Do 2 2 2 2 2 2 2 2 2
D3 2 2 2 2 2 2 2 2 2
Do 1 1 1 1 1 1 1 1 1
d=3 d= d=5
a=099 a=095 a=09 [ a=099 a=095 a=09 | =099 a=095 a=0.90
o 3729 943 590 3375 879 566 3056 827 541
v1 877 181 94 788 164 88 707 151 82
v 942 245 156 854 230 151 775 217 145
v3 1066 366 275 978 351 269 899 339 264
V0 845 151 65 755 134 58 675 119 51
Dy 1 1 2 1 2 2 2 2 2
D»> 2 2 2 2 2 2 2 2 2
D3 2 2 2 2 2 2 2 2 2
Do 1 1 1 1 1 1 1 1 1

Table 3: The Optimal Stationary Policies and Their CLVs.

3.2 Finite horizon with hard constraints

In the computer service and telecommunication industry, the product life cycle is
short, e.g., it is usually one year. Therefore, we consider the case of finite horizon
with limited budget constraint, the problem can also be solved efficiently by using
stochastic dynamic programming. For this problem, we used the optimal revenues

obtained in Section 3.1 as the boundary conditions. We define

= Number of weeks remaining;

w
p = Number of possible promotions remaining.

The recursive relation for the problem is given as follows:

N-1 N—1

vi(w,p) =max{ct) —d; +a Y pilu(w—1,p—1),d” —dy + Y plf vi(w — 1,p)
k=0 k=0

forw=1,...,Wner and p=1,..., Ppmas and

N-1
vi(w,0) = cgz) —ds + « Z pgz)vk(w -1,0)
k—0

11



forw =1,..., Wnae. The above dynamic programming problem can be solved easily
by using spreadsheet EXCEL. A demonstration EXCEL file can be found at the
following site: “http://hkumath.hku.hk/~wke/clv2.zip”, see also Figure 2. In our
numerical experiment we assume that the length of planning period is wy,.; = 52
and the maximum number of promotions is p,. = 4. By solving the dynamic
programming problem we obtain Table 4 for the optimal values and promotion

strategies. In Table 4 we present the optimal solution

(tla t?a t3a t4a T*)a

where r* is the optimal expected revenue, and ¢; is the promotion week of the optimal
promotion strategy and “-” means no promotion. We summarise our findings as

follows:

e For different values of the fixed promotion cost d, the optimal strategy for the

customers in States 2 and 3 is to conduct no promotion.

e While for those in State 0, the optimal strategy is to conduct all the four

promotions to them as early as possible.

e In State 1, the optimal strategy depends on the value of d. If d is large, then

there is no promotion. However, when d is small, the promotion is carried out

and the strategy is put the promotion as late as possible.

« State 1 State 2 State 3 State 0
0.9 (1, 45,50, 52,95) (-y-y-,-,158) (-y-y-,-,276) (1,2,3,4,67)
d=0 | 0.95 | (45,48,50,51,169) (-)-y--,234) (-,---,335) (1,2,3,4,138)
0.99 | (47,49,50,51,963)  (-,-,-,-,1031) - - 1155) (1, 2,3,4,929)
0.9 (47,49, 51, 52,92) (-)-y--,155) -mymymy274) (1,2,3,4,64)
d=1 | 0.95 | (47,49,51,52,164) (----,230) (-y---,351) (1,2,3,4,133)
0.99 | (47,49,51,52,906) (-y--y-,974) (---,1098)  (1,2,3,4,872)
0.9 (49,50, 51, 52, 89) (-y-y--,152) (-y=y-y,271) (1,2,3,4,60)
d=2 | 095 | (48,50,51,52,160) (-y-y-4-,225) (-y=y-y-,347) (1,2,3,4,128)
0.99 | (48,49,51,52,849) - 917) ----,1041) (1, 2,3,4,815)
0.9 (=y=5-,87) (-y-4--,150) -msmym,269) (1,2,3,4,60)
d=3 | 0.95 | (49,50,51,52,155) -y 221) (=y-y--,342) (1,2,3,4,123)
0.99 | (48,50,51,52,792) (-y--,-,860) (-y-y-,-,984) (1,2,3,4,758)
0.9 (-5-y=y-,84) (-y-y-,-,147) (-y-y-,-,266) (1,2,3,4,54)
d=4 1] 0.95 (-, 151) (-y=y=y-,217) (-y-4--,338) (1,2,3,4,119)
0.99 | (49,50,51,52,736) - -ymsm,804) (-y-4--,928) (1,2,3,4,701)
0.9 (=y-5-,81) (-y-y-y-,144) (=y-y--,264) (1,2,3,4,50)
d=5 1] 0.95 (==, 147) -y 212) -msmymy334) (1,2,3,4,114)
0.99 (-y-y-,-,684) (-y-y-4-,752) (-y-y-,-,876) (1,2,3,4,650)

Table 4: The Optimal Promotion Strategies and Their CLVs.
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| 4 |[Promation 5074400035 18.001354 43 75314058 ]
| 5 |Ho Promotion 14.0327348 | 5171727748 1382049217 0

&

7 |Transition matrix (Promotion)

i oy B C i) | .Tmspose
ERn 0.42304713 0.099212808 0.06143504] 0416245021 042304713 0345787141 0214721697 0148860601
10 B 0.345787 141 0210922381 0.214518328]  0.22847214) 0090212009 0.210822351| 0203372485 0026640065
1 c 0.244721697| 0.203372495 0.444736856]  0.137160234] 006143504 0.214818328| 0444736585 0019077087
12 D 0.143560801 0.026640068 0.019077087| 0.505422247 0416245021 022847214 0137169234 0805422247
13 =
| 14 | Transition matrix (o promotion)

15 A =] C o] Transpose

16 |& 044460088 0.062302519 0.026662139]  0.496414462 041460088 0283677104 0274104063) 0106374021
17 B 0.323677 194 0174326755 0.115238456|  0.326007535 0062302519| 0174386755 0206881578 0012100243
18 |C 0.274194863 0.206851578 0.280590917|  0.238032592 0026682139) 0.115538406| 0.230390917| 0005323744
E D 0106374024 0.012100243 0.005322744|  0.876202002 0406414462) 0.226007585| 0.238033543| 0876202002
20
21 fc- 2 —1
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35 |

24 |Boundary Conditions
25 | V1 v 2 ] W4
(25 [C=0 Alpha=09 119 465254 179.126724| 396862793 92313937

7 095 234.242403 205204285 41543311 204023950
75 009 1144135365 1906 192505 1323528687 1112077856
(29 |C=1 s 110.545357 171568729 2B9.366873 §3.190086
30| 0as 216.414551 278.555115 3000073364 186872428

31 0.99 1054974121 1118251689 1240871338 1023535330
32 |C=2 0g 101.622459 163610733 281870687 T4 066254

33 095 192.586609 261905945 382708649 168822083 i
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Figure 2: EXCEL File for Solving Finite Horizon Problem Without Constraint.

3.3 Infinite horizon with constraints

For comparisons, we extend the model in 3.2 to the infinite horizon case. In this
model we have a finite budget for promotions p,a... Then the value function v;(p),
which represents the optimal discounted utility when starting at State ¢+ and there

are p number of promotions remaining, is the unique fixed point of the equations:

v;(p) = max c<) d; +a2pzkv 1),052) ds —I—Ozszkvk D)o, (6)
k=0 k=0

forp=1,..., Pmax, and

N-1
vi(0) =& —dy+a 3 pun(0). (7)

k=0
We note that since {pg?} is a probability matrix, the set of linear equations (7)

with four unknowns has a unique solution. Now, (6) can be computed by the value

13



iteration algorithm, i.e. as the limit of v;(w, p) (computed in Section 3.2) as w tends

to infinity. Alternatively, it can be solved by linear programming ([14]):

N—1 Pmax
min xg = Z Z v

=0 p=1
subject to

v,-(p)zcgl) d-{-ozZplkvk —-1), for i=0,...,N—=1,p=1,..., Pmax;
=0

vi(p)ZCl@) d—i—aszkvk p), for i=0,...,N—1,p=1,... Pmax-
\ k=0

Note that we do not have to include in the linear programming constraints that
correspond to v;(0) nor do we have to include it in the objective function; v;(0)
is solved beforehand using (7). A demonstration EXCEL file can be found at the
following site: “http://hkumath.hku.hk/~wke/clv3.zip”, see also Figure 3.

_| BRO KEBE BRO BAD B350 IBD TR0 BE 5O IR
ID2EagRY | imRd o -« @z atlill@apr -0,

| sramoaa vz 7B rol=E==EH% %, & -
al2 - =|
A | E [ C [ D [ E F [ G [ H [ i [ 1 [ =
1 The DP for Solving the Optimal Policy in Infinite Horizon Case —
2 [a- 2
| 3 |Alpha= 035 | | C int -
b Transition Matrix (Promotion) Revenue : p=4 p=3 p=2 p=1
5] 0.4230471200] 00992122000  00614050400)  0.4462450210|  6.9744009350 154 9957765427 | 1522458799995 | 1402001592518 | 1461128782580
6 | 0.3457871410] 0.2108223810]  0.2148183280] 02284721400 18.0813540000 206.0308635335 | 203.3595097016 | 2004801748572 | 197 4016237469
7 0.2147216870]  0.2033724850| 0.4447365850) 0.1371692340) 437531405800 T ETS0977924 | 2722546231853 | 2604378243672 | 2664009813036
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Figure 3: EXCEL File for Solving Infinite Horizon Problem With Constraints.
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Table 5 gives the optimal values and promotion strategies. For instance, when
the promotion cost is 0 and the discount factor is 0.99 , then the optimal strategy is
that when the current state is 1, 2 or 3, the promotion should be done when there are
some available promotions, i.e. Dy(p) = Dy(p) = D3(p) = 1for 1 < p <4, and when
the current state is 0, no promotion is required, i.e. Dy(p) = 2 for 1 < p < 4. Their
corresponding CLVs v;(p) for different states and different numbers of remaining
promotion are also listed (see the first column in the left hand side of Table 5(a)).

From Table 5, we find that for different values of the fixed promotion cost d, the
optimal strategy for the customers in States 1, 2 and 3 is to conduct no promotion.
These results are slightly different from those for the finite horizon case. However,
the optimal strategy is to conduct all the four promotions to customer with State 0

as early as possible.
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d=0 d=1 d=2
=099 «=09 0=090 | =099 a=09 a=090 [a=099 a=095 a=0.90

o 11355 3378 2306 11320 3344 2277 11277 3310 2248
v1(1) 645 149 85 644 148 84 643 147 84
v2(1) 713 215 149 712 214 148 711 213 147
v3(1) 837 337 267 836 336 267 845 335 266
vo(1) 610 117 55 609 116 54 608 115 53
v1(2) 650 154 89 648 152 87 647 150 86
v2(2) 718 219 152 716 218 151 714 216 149
v3(2) 842 341 271 840 339 269 839 338 268
vo(2) 616 122 60 614 120 58 612 118 56
v1(3) 656 158 92 654 156 90 650 153 88
v2(3) 724 224 155 722 221 153 718 219 151
v3(3) 848 345 273 846 343 271 842 340 270
vo(3) 622 127 63 619 124 61 616 121 58
v1(4) 662 162 95 658 159 92 654 158 89
v2(4) 730 228 157 726 225 155 722 221 152
v3(4) 854 349 276 850 346 273 846 343 271
vo(4) 628 131 67 624 128 63 620 124 60
D1(1) 2 2 2 2 2 2 2 2 2
Da(1) 2 2 2 2 2 2 2 2 2
D3(1) 2 2 2 2 2 2 2 2 2
Do(1) 1 1 1 1 1 1 1 1 1
D1(2) 2 2 2 2 2 2 2 2 2
Dy(2) 2 2 2 2 2 2 2 2 2
D3(2) 2 2 2 2 2 2 2 2 2
Do(2) 1 1 1 1 1 1 1 1 1
D1(3) 2 2 2 2 2 2 2 2 2
Dy(3) 2 2 2 2 2 2 2 2 2
D3(3) 2 2 2 2 2 2 2 2 2
Do(3) 1 1 1 1 1 1 1 1 1
D1(4) 2 2 2 2 2 2 2 2 2
Da(4) 2 2 2 2 2 2 2 2 2
D3(4) 2 2 2 2 2 2 2 2 2
Do(4) 1 1 1 1 1 1 1 1 1

Table 5(a): The Optimal Promotion Strategies and Their CLVs.
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d=3 d=14 d=25
a=099 a=09 a=09 [ a=099 a=095 a=09 | =099 a=095 «o=0.90

zo 11239 3276 2218 11200 3242 2189 11161 3208 2163
v1(1) 641 146 83 641 146 82 640 145 81
va(1) 710 212 146 709 211 145 708 211 145
v3(1) 834 334 265 833 333 264 832 332 264
vo(1) 607 114 52 606 113 51 605 112 50
v1(2) 645 149 84 643 147 83 641 145 81
v2(2) 713 214 148 711 213 146 709 211 145
v3(2) 837 336 266 835 334 265 833 333 264
vo(2) 610 116 54 608 114 52 606 112 50
v1(3) 647 151 86 645 148 83 642 146 81
v2(3) 715 216 149 713 214 147 710 211 145
v3(3) 839 338 268 837 336 266 834 333 264
vo(3) 613 119 56 610 116 53 607 113 50
v1(4) 650 152 87 646 149 84 643 146 81
vo(4) 718 218 150 714 215 147 711 212 145
v3(4) 842 340 269 838 337 266 835 334 265
vo(4) 616 121 57 612 117 54 608 113 50
Dq(1) 2 2 2 2 2 2 2 2 2
D»(1) 2 2 2 2 2 2 2 2 2
D3(1) 2 2 2 2 2 2 2 2 2
Do(1) 1 1 1 1 1 1 1 1 1
D1(2) 2 2 2 2 2 2 2 2 2
D»(2) 2 2 2 2 2 2 2 2 2
D3(2) 2 2 2 2 2 2 2 2 2
Dy(2) 1 1 1 1 1 1 1 1 1
D1(3) 2 2 2 2 2 2 2 2 2
D»(3) 2 2 2 2 2 2 2 2 2
D3(3) 2 2 2 2 2 2 2 2 2
Do(3) 1 1 1 1 1 1 1 1 1
Dy(4) 2 2 2 2 2 2 2 2 2
Dy (4) 2 2 2 2 2 2 2 2 2
D3(4) 2 2 2 2 2 2 2 2 2
Do(4) 1 1 1 1 1 1 1 1 1

Table 5(b): The Optimal Promotion Strategies and Their CLVs.

4 Summary

In this paper we propose a stochastic dynamic programming model for the optimi-
sation of CLV. Both cases of infinite horizon and finite horizon with budget con-
straints are discussed. The former case can be solved by using linear programming
techniques, the later problem can be solved by using dynamic programming ap-

proach. For both cases, they can be implemented easily in an EXCEL spreadsheet.
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The models are then applied to practical data of a computer service company. The
company makes use of the proposed CLV model to make and maintain value-laden

relationships with the customers.
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