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Abstract We study power control in optimization and game
frameworks. In the optimization framework there is a sin-
gle decision maker who assigns network resources and in
the game framework users share the network resources ac-
cording to Nash equilibrium. The solution of these problems
is based on so-called water-filling technique, which in turn
uses bisection method for solution of non-linear equations
for Lagrange multipliers. Here we provide a closed form
solution to the water-filling problem, which allows us to
solve it in a finite number of operations. Also, we produce
a closed form solution for the Nash equilibrium in symmet-
ric Gaussian interference game with an arbitrary number of
users. Even though the game is symmetric, there is an intrin-
sic hierarchical structure induced by the quantity of the re-
sources available to the users. We use this hierarchical struc-
ture to perform a successive reduction of the game. In addi-
tion to its mathematical beauty, the explicit solution allows
one to study limiting cases when the crosstalk coefficient is
either small or large. We provide an alternative simple proof
of the convergence of the Iterative Water Filling Algorithm.
Furthermore, it turns out that the convergence of Iterative
Water Filling Algorithm slows down when the crosstalk co-
efficient is large. Using the closed form solution, we can
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avoid this problem. Finally, we compare the non-cooperative
approach with the cooperative approach and show that the
non-cooperative approach results in a more fair resource dis-
tribution.

Keywords Wireless networks · Power control · Water
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1 Introduction

In wireless networks and DSL access networks the total
available power for signal transmission has to be distrib-
uted among several resources. In the context of wireless
networks, the resources may correspond to frequency bands
(e.g. as in OFDM), or they may correspond to capacity avail-
able at different time slots. In the context of DSL access
networks, the resources correspond to available frequency
tones. This spectrum of problems can be considered in ei-
ther optimization scenario or game scenario. The optimiza-
tion scenario leads to “Water Filling Optimization Prob-
lem” [3, 6, 14] and the game scenario leads to “Water Filling
Game” or “Gaussian Interference Game” [8, 11, 12, 15]. In
the optimization scenario, one needs to maximize a concave
function (Shannon capacity) subject to power constraints.
The Lagrange multiplier corresponding to the power con-
straint is determined by a non-linear equation. In the previ-
ous works [3, 6, 14], it was suggested to find the Lagrange
multiplier by means of a bisection algorithm, where comes
the name “Water Filling Problem”. Here we show that the
Lagrange multiplier and hence the optimal solution of the
water filling problem can be found in explicit form with a fi-
nite number of operations. In the multiuser context, one can
view the problem in either cooperative or non-cooperative
setting. If a centralized controller wants to maximize the
sum of all users’ rates, the controller will face a non-convex
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optimization problem with many local maxima [13]. On
the other hand, in the non-cooperative setting, the power
allocation problem becomes a game problem where each
user perceives the signals of the other users as interference
and maximizes a concave function of the noise to interfer-
ence ratio. A natural approach in the non-cooperative setting
is the application of the Iterative Water Filling Algorithm
(IWFA) [16]. Recently, the authors of [10] proved the con-
vergence of IWFA under fairly general conditions. In the
present work we study the case of symmetric water filling
game. There is an intrinsic hierarchical structure induced by
the quantity of the resources available to the users. We use
this hierarchical structure to perform a successive reduction
of the game, which allows us to find Nash equilibrium in ex-
plicit form. In addition, to its mathematical beauty, the ex-
plicit solution allows one to find the Nash equilibrium in wa-
ter filling game in a finite number of operations and to study
limiting cases when the crosstalk coefficient is either small
or large. As a by-product, we obtain an alternative simple
proof of the convergence of the Iterative Water Filling Al-
gorithm. Furthermore, it turns out that the convergence of
IWFA slows down when the crosstalk coefficient is large.
Using the closed form solution, we can avoid this problem.
Finally, we compare the non-cooperative approach with the
cooperative approach and conclude that the cost of anarchy
is small in the case of small crosstalk coefficients and that
the decentralized solution is better than the centralized one
with respect to fairness. Applications that can mostly ben-
efit from decentralized non-cooperative power control are
ad-hoc and sensor networks with no predefined base sta-
tions [4, 7, 9]. An interested reader can find more references
on non-cooperative power control in [2, 8]. We would like to
mention that the water filling problem and jamming games
with transmission costs have been analyzed in [1].

The paper is organized as follows: in Sect. 2 we recall the
single decision maker setup of the water filling optimization
problem and provide its explicit solution. Then in Sects. 3–7
we formulate multiuser symmetric water filling game and
characterize its Nash equilibrium, also we give an alterna-
tive simple proof of the convergence of the iterative water
filling algorithm and suggest the explicit form of the users’
strategy in the Nash equilibrium. In Sect. 8 we confirm our
finding with the help of numerical examples and compare
the decentralized approach with the centralized one.

2 Single decision maker

First let us consider the power allocation problem in the
case of a single decision maker. The single decision maker
(also called “user” or “transmitter”) wants to send informa-
tion using n independent resources so that to maximize the
Shannon capacity. We further assume that resource i has a
“weight” of πi .

Possible interpretations:

(i) The resources may correspond to capacity available at
different time slots; we assume that there is a varying
environment whose state changes among a finite set of
states i ∈ [1, n], according to some ergodic stochastic
process with stationary distribution {πi}ni=1. We assume
that the user has perfect knowledge of the environment
state at the beginning of each time slot.

(ii) The resources may correspond to frequency bands (e.g.
as in OFDM) where one should assign different power
levels for different sub-carriers [14]. In that case we may
take πi = 1/n for all i.

The strategy of user is T = (T1, . . . , Tn) with∑n
i=1 πiTi = T̄ , Ti ≥ 0,πi > 0 for i ∈ [1, n] and T̄ > 0.

As the payoff to user we take the Shannon capacity

v(T ) =
n∑

i=1

πi ln(1 + Ti/N
0
i ),

where N0
i > 0 is the noise level in the sub-carrier i.

We would like to emphasize that this generalized de-
scription of the water-filling problem can be used for power
allocation in time as well as power allocation in space-
frequency. Following the standard water-filling approach [3,
6, 14] we have the following result.

Theorem 1 Let Ti(ω) = [1/ω − N0
i ]+ for i ∈ [1, n] and

H(ω) = ∑n
i=1 πiTi(ω). Then T (ω∗) = (T1(ω

∗), . . . ,
Tn(ω

∗)) is the unique optimal strategy and its payoff is
v(T (ω∗)) where ω∗ is the unique root of the equation

H(ω) = T̄ . (1)

In the previous studies of the water-filling problems it
was suggested to use numerical (e.g., bisection) method to
solve (1). Here we propose an explicit form approach for its
solution.

Without loss of generality we can assume that by the
noise levels the sub-carriers are arranged in decreasing or-
der:

N0
n ≥ N0

n−1 ≥ · · · ≥ N0
1 . (2)

Then, since H(·) is decreasing, we have the following result:

Theorem 2 The solution of the water-filling optimization
problem is given by

T ∗
i =

{
(T̄ + ∑k

t=1 πt (N
0
t − N0

i ))/(
∑k

t=1 πt ), i ≤ k,

0, i > k,

where k can be found from the following condition:

ϕk < T̄ ≤ ϕk+1,
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where

ϕt =
t∑

i=1

πi(N
0
t − N0

i ) for t ∈ [1, n] and ϕn+1 = ∞.

Thus, contrary to the numerical (bisection) approach, in
order to find an optimal resource allocation we need to exe-
cute only a finite number of operations.

3 Symmetric water filling game

Let us now consider a multi-user scenario. Specifically, we
consider L users who try to send information through n re-
sources so that to maximize their transmission rates. The
strategy of user j is T j = (T

j

1 , . . . , T
j
n ) subject to

n∑

i=1

πiT
j
i = T̄ j , (3)

where T̄ j > 0 for j ∈ [1,L]. The element T
j
i is the power

level used by transmitter j when the environment is in
state i. The payoff to user j is given as follows:

vj (T 1, . . . , T L) =
n∑

i=1

πi ln

(

1 + α
j
i T

j
i

N0
i + gi

∑
k �=j αk

i T
k
i

)

,

where N0
i is the noise level and gi ∈ (0,1) and α

j
i are fad-

ing channel gains of user j when the environment is in
state i. These payoffs correspond to Shannon capacities. The
constraint (3) corresponds to the average power consump-
tion constraint. This is an instance of the Water Filling or
Gaussian Interference Game [8, 11, 12, 15, 16]. In the im-
portant particular cases of OFDM wireless network and DSL
access network, πi = 1/n, i = 1, . . . , n.

We will look for a Nash equilibrium (NE) of this prob-
lem. The strategies T 1∗, . . . , T L∗ constitute a NE, if for any
strategies T 1, . . . , T L the following inequalities hold:

v1(T 1, T 2∗, . . . , T L∗) ≤ v1(T 1∗, T 2∗ . . . , T L∗),

...

vL(T 1∗, . . . , T (L−1)∗, T L) ≤ vL(T 1∗, . . . , T (L−1)∗, T L∗).

To find NE of such game usually the following numerical
algorithm is applied. First, a strategy of L−1 users (say, user
2, . . . ,L) are fixed. Then, the best reply of user 1 is found
solving the Water Filling optimization problem. Then, the
best reply of user 2 on these strategies of the users is found
solving the optimization problem and so on. It is possible to
prove that under some assumption on fading channel gains
this sequence of the strategies converge to a NE [10].

In this work we restrict ourselves to the case of sym-
metric game with equal crosstalk coefficients. This situation
can for example correspond to the scenario when the users
are situated at about the same distance from the base sta-
tion. Namely, we assume that α1

i = · · · = αL
i and gi = g for

i ∈ (0,1). So, in our case the payoffs to users are given as
follows

vj (T 1, . . . , T L) =
n∑

i=1

πi ln

(

1 + T
j
i

N0
i + g

∑
k �=j T k

i

)

,

where N0
i := N0

i /αi , i ∈ [1, n] and without loss of general-
ity we can assume that the sub-carriers are arranged by the
noise-levels are arranged in decreasing order (2). We would
like to emphasize that the dependence of N0

i on i allows us
to model an environment with varying transmission condi-
tions.

For this problem we propose a new algorithm of find-
ing the NE. The algorithm is based on closed form expres-
sions and hence it requires only a finite number of opera-
tions. Also, explaining this algorithm we will prove that the
game has the unique NE under assumption that g ∈ (0,1).

Since vj is concave on T j , the Kuhn-Tucker theorem im-
plies the following theorem.

Theorem 3 (T 1∗, . . . , T L∗) is a Nash equilibrium if and
only if there are non-negative ωj , j ∈ [1,L] (Lagrange mul-
tipliers) such that

∂

∂T
j
i

vj (T 1∗, . . . , T L∗)

= 1

T
j∗
i + N0

i + g
∑

k �=j T k∗
i

{
= ωj for T

j∗
i > 0,

≤ ωj for T
j∗
i = 0.

(4)

It is clear that all ωj are positive.
The assumption that g < 1 is crucial for uniqueness of

equilibrium as it is shown in the following proposition.

Proposition 1 For g = 1 the symmetric water filling game
has infinite number (continuum) of Nash equilibria.

Proof Suppose that (T 1∗, . . . , T L∗) is a Nash equilibrium.
Then, by Theorem 3, there are non-negative ωj , j ∈ [1,L]
such that

1
/

(

N0
i +

L∑

k=1

T k∗
i

){
= ωj for T

j∗
i > 0,

≤ ωj for T
j∗
i = 0.

Thus, ω1 = · · · = ωL = ω. So, T 1∗
i , . . . , T L∗

i , i ∈ [1, n] have
to be any non-negative such that

L∑

k=1

T k∗
i = [1/ω − N0

i ]+,
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and

n∑

i=1

πiT
k∗
i = T̄ k for k ∈ [1,L],

where ω is the unique positive root of the equation

n∑

i=1

πi[1/ω − N0
i ]+ =

L∑

k=1

T̄ k.

It is clear that there are infinite number of such strategies.
For example, if T a∗

i and T b∗
i , i ∈ [1, n] (a �= b) is the one

of them and T a∗
k > 0 and T b∗

m > for some k �= m. Then, it
is clear that the following strategies for any small enough
positive ε are also optimal:

T̃ a∗
i =

⎧
⎪⎨

⎪⎩

T a∗
i , for i �= k,m,

T a∗
i + ε, for i = k,

T a∗
i − επk/πm, for i = m,

T̃ b∗
i =

⎧
⎪⎨

⎪⎩

T b∗
i , for i �= k,m,

T b∗
i − ε, for i = k,

T b∗
i + επk/πm, for i = m.

This completes the proof of Proposition 1. �

4 A recursive approach to the symmetric water filling
game

Let ω1, . . . ,ωL be some parameters which in the future will
act as Lagrangian multipliers. Using these parameters we in-
troduce some auxiliary notations. Assume for now that these
parameters are arranged as follows (later in Lemma 3 we
show that there is a natural relation between the order of the
Lagrange multipliers and the maximal power levels):

ω1 ≤ · · · ≤ ωL. (5)

Also denote

ω̄ = (ω1, . . . ,ωL).

Introduce the following auxiliary sequence:

t r = 1

1 − g

(
1 + (r − 1)g

ωr
− g

r∑

j=1

1

ωj

)

for r ∈ [1,L]. (6)

It is clear that by (5)

t r+1 = 1 + (r − 1)g

1 − g

(
1

ωr+1
− 1

ωr

)

+ t r ≤ t r .

Thus,

tL ≤ tL−1 ≤ · · · ≤ t1,

and

1

ωr+1
− 1

ωr
= 1 − g

1 + (r − 1)g
(tr+1 − t r ). (7)

Hence, for j ∈ [k + 1,L] we have:

1

ωk
− 1

ωj
=

j−1∑

r=k

1 − g

1 + (r − 1)g
(tr − t r+1). (8)

Then, sequences {ωr} and {t r} has the following recur-
rent relations:

1

ω1
= t1,

1

ω2
= (1 − g)t2 + gt1,

1

ωr+1
= 1 − g

1 + (r − 1)g
tr+1

+
r∑

j=2

(1 − g)g

(1 + (j − 1)g)(1 + (j − 2)g)
tj + gt1,

(9)

where r ≥ 1. If we know the sequence {t r} we can restore the
sequence {ωr}. Thus, these two sequences are equivalent.

Introduce one more auxiliary sequence as follows:

τ k
r = 1

1 − g

⎛

⎝1 + (L − 1 − r + k)g

ωk
− g

L−r+k∑

j=1

1

ωj

⎞

⎠ , (10)

where r ∈ [k,L], k ∈ [1,L]. There is a simple relation be-
tween sequences {ωk}, {tk} and {τ k

r }:
τ k
L = tk, (11)

and

τ k
r = 1 + (L − 1 − r + k)g

1 − g

(
1

ωk
− 1

ωL−r+k

)

+ tL−r+k. (12)

So, by (8), collecting terms which depend on tk we obtain

τ k
r = bk,r tk + Ak,r , (13)

where

bk,r = 1 + (L − 1 − r + k)g

1 + (k − 1)g
,

and

Ak,r = −g

L−r+k−1∑

j=k+1

1 + (L − 1 − r + k)g

(1 + (j − 1)g)(1 + (j − 2)g)
tj

− g

(1 + (L − 2 − r + k)g
tL−r+k.
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Thus, Ak,r depends only on {tj } with j > k.
Finally introduce the following notation:

T k
i (ω̄) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τk
k −N0

i

1+(L−1)g
, N0

i < tL,

τk
r −N0

i

1+(L−1−r+k)g
, tL+k+1−r ≤ N0

i < tL+k−r ,

r ∈ [k + 1,L],
0, tk ≤ N0

i .

(14)

For other combinations of relations between ωj , j ∈
[1,L], T k

i are defined by symmetry. By Theorem 3 we have
the following result.

Theorem 4 Each Nash equilibrium is of the form
(T 1(ω̄), . . . , T L(ω̄)).

The sketch of the proof To find the form of the Nash equi-
librium we have to solve (4). A key step in the solution is
the introduction of the following sets defining channels with
a given number of active users:

IL =
{

i ∈ [1, n] :

N0
i <

1

1 − g

(
1 + (L − 1)g

ωL
− g

L∑

k=1

(1/ωk)

)}

,

IL−1 =
{

i ∈ [1, n] :

1

1 − g

(
1 + (L − 1)g

ωL
− g

L∑

k=1

(1/ωk)

)

≤ N0
i

<
1

1 − g

(
1 + (L − 2)g

ωL−1
− g

L−1∑

k=1

(1/ωk)

)}

,

...

I2 =
{

i ∈ [1, n] :

1

1 − g

(
1 + 2g

ω3
− g

3∑

k=1

(1/ωk)

)

≤ N0
i <

1/ω2 − g/ω1

1 − g

}

,

I1 =
{

i ∈ [1, n] : 1/ω2 − g/ω1

1 − g
≤ N0

i <
1

ω1

}

,

I0 =
{

i ∈ [1, n] : 1

ω1
≤ N0

i

}

.

Then it is straightforward to show that the solution of (4) is
given as follows:

T 1
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1+(L−1)g

( 1+(L−1)g
ω1

−g
∑L

k=1(1/ωk)

1−g
− N0

i

)
,

if i ∈ IL

1
1+(L−2)g

( 1+(L−2)g
ω1

−g
∑L−1

k=1 (1/ωk)

1−g
− N0

i

)
,

if i ∈ IL−1
...

1
1+g

(
1/ω1−g/ω2

1−g
− N0

i ), if i ∈ I2
1
ω1 − N0

i , if i ∈ I1

0, if i ∈ I0,

T 2
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1+(L−1)g

(

1+(L−1)g

ω2 −g
∑L

k=1(1/ωk)

1−g
− N0

i ),

if i ∈ IL

1
1+(L−2)g

(

1+(L−2)g

ω2 −g
∑L−1

k=1 (1/ωk)

1−g
− N0

i ),

if i ∈ IL−1

...

1
1+g

(
1/ω2−g/ω1

1−g
− N0

i ), if i ∈ I 2

0, if i ∈ I 0 ∪ I 1,

...

T L
i =

⎧
⎪⎪⎨

⎪⎪⎩

1
1+(L−1)g

(

1+(L−1)g

ωL −g
∑L

k=1(1/ωk)

1−g
− N0

i ),

if i ∈ IL,

0, if i ∈ I 0 ∪ · · · ∪ IL−1.

Finally, to obtain the compact representation (14) of these
equilibrium strategies we use the notations (6) and (10). �

The next lemma provides a nice relation between L and
L − 1 person games which shows that the introduction of a
new user into the game leads to a bigger competition for the
better quality channels meanwhile users prefer to keep the
old structure of their strategies for worse quality channels.

Lemma 1 Let (T 1,L(ω1, . . . ,ωL), . . . , T L,L(ω1, . . . ,ωL))

given by Theorem 4 (here we added the second super-script
index in the notation of the strategies in order to emphasize
that the strategies depend on the number of users). Then, we
have

T
k,L
i (ω1, . . . ,ωL)

=
⎧
⎨

⎩

τk
k −N0

i

1+(L−1)g
, for N0

i < tL,

T
k,L−1
i (ω1, . . . ,ωL−1), for tL ≤ N0

i ,
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where k ∈ [1,L − 1] and

T
L,L
i (ω1, . . . ,ωL) =

{
tL−N0

i

1+(L−1)g
, for N0

i < tL,

0, for tL ≤ N0
i .

5 A water-filling algorithm

In this section we describe a version of the water-filling al-
gorithm for finding the NE and supply a simple proof of its
convergence based on some monotonicity properties.

Let

Hk(ω̄) =
n∑

i=1

πiT
k
i (ω̄) for k ∈ [1,L].

To find a NE we have to find ω̄ such that

Hk(ω̄) = T̄ k for k ∈ [1,L]. (15)

It is clear that Hk(ω̄) has the following properties, col-
lected in the next lemma, which follow directly from the
explicit formulas of the NE.

Lemma 2

(i) Hk(ω̄) is nonnegative and continuous,
(ii) Hk(ω̄) is decreasing on ωk ,

(iii) Hk(ω̄) → ∞ for ωk → 0,
(iv) Hk(ω̄) = 0 for enough big ωk , say for ωk ≥ 1/N0

1 ,
(v) Hk(ω̄) is non-decreasing by ωj where j �= k.

This properties give a simple proof of the convergence of
the following iterative water filling algorithm for finding the
NE.

Let ωk
0 for all k ∈ [1,L] be such that Hk(ω̄0) = 0, for ex-

ample ωk
0 = 1/N0

1 . Let ωk
1 = ωk

0 for all k ∈ [2,L] and define

ω1
1 such that H 1(ω̄1) = T̄ 1. Such ω1

1 exists by Lemma 2(i)–

(iii). Then, by Lemma 2(i), (v) Hk(ω̄0) = 0 for k ∈ [2,L].
Let ωk

2 = ωk
1 for all k �= 2 and define ω2

2 such that H 2(ω̄2) =
T̄ 2. Then, by Lemma 2(i), (v) Hk(ω̄0) = 0 for k > 2 and
Hk(ω̄0) ≤ T̄ k for k = 1 and so on. Let ωk

L = ωk
L−1 for all

k �= L and define ωL
L such that HL(ω̄L) = T̄ L. Then, by

Lemma 2(i), (v) Hk(ω̄L) ≤ T̄ k for k �= L and so on. So
we have non-increasing positive sequence ωk . Thus, it con-
verges to an ω̄∗ which produces a NE.

6 Existence and uniqueness of the Nash equilibrium

In this section we will prove existence and uniqueness of
the Nash equilibrium for L person symmetric water-filling
game. Our proof will have constructive character which al-
lows us to produce an effective algorithm for finding the
equilibrium strategies.

First note that there is a monotonous dependence between
the resources the users can apply and Lagrange multipliers.

Lemma 3 Let (T 1(ω̄), . . . , T L(ω̄)) be a Nash equilibrium.
If

T̄ 1 ≥ · · · ≥ T̄ L (16)

then the Lagrange multipliers are ordered in the reverse or-
der, namely,

ω1 ≤ · · · ≤ ωL.

Note that the assumption (16) does not collude with (2)
since (16) arranges the maximal power levels available to
the users and (2) arranges the noise levels present in the sub-
carriers.

Proof The result immediately follows from the following
monotonicity property implied by explicit formulas of the
Nash equilibrium, namely, if ωi < ωj then Hi(ω̄) > Hj (ω̄).

Without loss of generality we can assume that (16) holds.
Thus, by Lemma 3, (5) also holds.

Let ω̄ be the positive solution of (15). Then, by Lemma 3,
the relation (5) holds. To find ω̄ we have to solve the system
of non-linear equations (15). It is quite bulky system and
it looks hard to solve. We will not solve it directly. What
we will do we express ω1, . . . ,ωL by t1, . . . , tL, substitute
these expression into (15). The transformed system will have
a triangular form, namely

H̃L(tL) = T̄ L,

H̃L−1(tL−1, tL) = T̄ L−1,

...

H̃ 1(t1, . . . , tL−1, tL) = T̄ 1.

(17)

The last system, because of monotonicity properties of H̃ k

on tk , can be easily solved. Now we can move on to con-
struction of H̃L(tL), . . . , H̃ 1(t1, . . . , tL−1, tL). First we will
construct H̃L(tL) and find the optimal tL. Note that,

HL(ω̄) =
∑

N0
i <tL

πiT
L
i (ω̄)

= 1

1 + (L − 1)g

∑

N0
i <tL

πi(τ
L
L − N0

i )

= 1

1 + (L − 1)g

∑

N0
i <tL

πi(t
L − N0

i ) = H̃L(tL).

It is clear that H̃L(·) is continuous in (0,∞), H̃L(τ ) = 0 for
τ ≤ N0

1 , H̃L(+∞) = +∞ and H̃L(·) is strictly increasing
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in (N0
1 ,∞). Then, there is the unique positive tL∗ such that

H̃L(tL∗ ) = T̄ L. (18)

Now we move on to construction of H̃L−1(tL−1, tL) and
finding the optimal tL−1. Note that τL−1

L = tL−1 and by (8)
and (12), we have

τL−1
L−1 = τL−1

L + g

1 − g

(
1

ωL−1
− 1

ωL

)

= tL−1 + g

1 + (L − 2)g
(tL−1 − tL)

= 1 + (L − 1)g

1 + (L − 2)g
tL−1 − g

1 + (L − 2)g
tL.

Thus,

HL−1(ω̄)

=
∑

N0
i <tL

πiT
L−1
i (ω̄) +

∑

tL≤N0
i <tL−1

πiT
L−1
i (ω̄)

= 1

1 + (L − 1)g

∑

N0
i <tL

πi(τ
L−1
L−1 − N0

i )

+ 1

1 + (L − 2)g

∑

tL≤N0
i <tL−1

πi(τ
L−1
L − N0

i )

= 1

1 + (L − 1)g

∑

N0
i <tL

πi

(1 + (L − 1)g

1 + (L − 2)g
tL−1

− g

1 + (L − 2)g
tL − N0

i

)

+ 1

1 + (L − 2)g

∑

tL≤N0
i <tL−1

πi(t
L−1 − N0

i )

= H̃L−1(tL−1, tL).

It is clear that H̃L−1(·, tL∗ ) is continuous and increas-
ing in (tL∗ ,∞), H̃L−1(∞, tL∗ ) = +∞ and H̃L−1(tL∗ , tL∗ ) =
H̃L(tL∗ ) = T̄ L ≤ T̄ L−1. So, there is the unique positive tL−1∗
such that

H̃L−1(tL−1∗ , tL∗ ) = T̄ L. (19)

Next we construct H̃ k(tk, . . . , tL−1, tL) and find the optimal
tk where k ∈ [1,L − 2]. By (11) and (12), we have

Hk(ω̄)

=
∑

N0
i <tL

πiT
k
i +

L∑

r=k+1

∑

tL+k+1−r≤N0
i <tL+k−r

πiT
k
i

= 1

1 + (L − 1)g

∑

N0
i <tL

πi(τ
k
L − N0

i )

+
L∑

r=k+1

∑

tL+k+1−r≤N0
i <tL+k−r

πi(τ
k
r − N0

i )

1 + (L − 1 − r + k)g

= 1

1 + (L − 1)g

∑

N0
i <tL

πi(b
k,ktk + Ak,k − N0

i )

+
L∑

r=k+1

∑

tL+k+1−r≤N0
i <tL+k−r

πi(b
k,r tk + Ak,r − N0

i )

1 + (L − 1 − r + k)g

= H̃ k(tk, tk+1, . . . , tL).

It is clear that H̃ k(·, tk+1∗ , . . . , tL∗ ) is continuous and in-
creasing in (tk+1∗ ,∞), H̃ k(∞, tk+1∗ , . . . , tL∗ ) = +∞ and by
Lemma 1

H̃ k(tk+1∗ , tk+1∗ , . . . , tL∗ ) = H̃ k+1(tk+1∗ , . . . , tL∗ )

= T̄ k+1 ≤ T̄ k.

So, there is the unique positive tk∗ such that

H̃ k(tk∗ , tk+1∗ , . . . , tL∗ ) = T̄ k. (20)

Thus, we have proved that the problem of finding the op-
timal Lagrangian multipliers is equivalent to the problem
of finding {t r} which is the solution of the triangular sys-
tem (17). Moreover, the last system has the unique solution
and the equations its composing can be solved one by one
applying the approach (the bisection method or the explicit
scheme) developed for the optimization problem. Thus, we
have proved the following result. �

Theorem 5 The symmetric water filling game has the
unique Nash equilibrium (T 1(ω̄∗), . . . , T L(ω̄∗)), where the
optimal Lagrangian multipliers ω̄∗ can be reconstructed
from {t r} by (9) and {t r} is the solution of the triangular
system (17). This system has the unique solution which can
be found sequentially from tL down to t1, applying either
the bisection method or the explicit scheme.

Note that although the payoffs have symmetric form, the
equilibrium strategies, because of triangular form of sys-
tem (17), have hierarchical structure induced by difference
in power levels available to the users. Namely, the user who
has to transmit with smaller average power consumption, in
our case it is user L, acts first. He assigns his optimal strate-
gies as if there is no other users at all but taking into account
the total number of users and fading channels gains. Then,
the turn to act is given to user L − 1. He takes into account
only the behavior of the user L with smaller average power
consumption than he has, the total number of users and fad-
ing channels gains and so on. The last user who constructs
the equilibrium strategy is user 1 with the largest available
power resource.
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7 Closed form solution for L person game

In this section for the case of L users we show how Theo-
rem 5 and Lemma 3 can be used to construct NE in closed
form.

Assume that T̄ 1 > · · · > T̄ L. We will construct the equi-
librium strategies T L∗, . . . , T 1∗ sequentially.

Step for construction of T L∗ Since H̃L(·) is strictly in-
creasing we can find an integer kL such that

H̃L(N0
kL) < T̄ L ≤ H̃L(N0

kL+1)

or from the following equivalent conditions:

ϕL
kL < T̄ L ≤ ϕL

kL+1,

where

ϕL
k = 1

1 + (L − 1)g

k∑

i=1

πi(N
0
k − N0

i ),

for k ≤ n, and ϕL
n+1 = ∞. Then, since H̃L(tL∗ ) = T̄ L, we

have that

tL∗ = (1 + (L − 1)g)T̄ L + ∑kL

i=1 πiN
0
i

∑kL

i=1 πi

.

Thus, the equilibrium strategy of user L is given as follows

T L∗
i =

{
1

1+(L−1)g
(tL∗ − N0

i ), if i ∈ [1, kL],
0, if i ∈ [kL + 1, n].

Step for construction of T (L−1)∗ Since tL−1∗ is the root of
the equation H̃L−1(·, tL∗ ) = T̄ L−1 there is kL−1 such that
kL−1 ≥ kL and N0

kL−1+1
≥ tL−1∗ > N0

kL−1 . Thus,

tL−1∗ =
(

T̄ L−1 + 1

1 + (L − 2)g

kL−1
∑

i=kL+1

πiN
0
i

+ 1

1 + (L − 1)g

kL
∑

i=1

πi

(
gt∗L

1 + (L − 2)g
+ N0

i

))

/
(

1

1 + (L − 2)g

kL−1
∑

i=1

πi

)

.

Here and bellow we assume that
∑y

x 1 = 0 for y < x. So,
kL−1 ≥ kL can be found as follows:

(i) kL−1 = kL if T̄ L−1 ≤ ϕL−1
kL+1

,

(ii) otherwise kL−1 is given by the condition:

ϕL−1
kL−1 < T̄ L−1 ≤ ϕL−1

kL−1+1
,

where

ϕL−1
k

=
k∑

i=kL+1

πi

1 + (L − 2)g
(N0

k − N0
i )

+
kL
∑

i=1

πi

1 + (L − 1)g

×
(

1 + (L − 1)g

1 + (L − 2)g
N0

k − N0
i − g

1 + (L − 2)g
tL−1∗

)

,

for k ∈ [kL + 1, n] and ϕL−1
n+1 = ∞.

Thus, the equilibrium strategy T (L−1)∗ of user L − 1 is
given by

T
(L−1)∗
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tL−1∗
1+(L−2)g

−
g

1+(L−2)g
tL∗ +N0

i

1+(L−1)g
, i ∈ [1, kL],

1
1+(L−2)g

(tL−1∗ − N0
i ),

i ∈ [kL + 1, kL−1],
0, i ∈ [kL−1 + 1, n].

Step for construction of T M∗ where M < L We have al-
ready constructed T L∗, . . . , T (M+1)∗ and now we are go-
ing to construct T M∗. Since tM∗ is the root of the equa-
tion H̃M(·, tM+1∗ , . . . , tL∗ ) = T̄ M there is kM such that kM ≥
kM+1 and N0

kM+1
≥ tM∗ > N0

kM . Thus,

tM∗ =
(

T̄ M + 1

1 + (L − 1)g

kM∑

i=1

πi(A
k,k − N0

i )

+
L∑

r=M+1

kp−1
∑

i=kp+1

πi(A
p,r − N0

i )

1 + (L − 1 − r + p)g

)

/
(

1

1 + (M − 1)g

kM
∑

i=1

πi

)

.

So, kM ≥ kM+1 can be found as follows:

(i) kM = kM+1 if T̄ M ≤ ϕM
kM+1+1

,

(ii) otherwise kM is given by the condition:

ϕM
kM < T̄ M ≤ ϕM

kM+1

where

ϕM
k = 1

1 + (L − 1)g

k∑

i=1

πi(b
k,kN0

k + Ak,k − N0
i )

+
L∑

r=M+1

kp−1
∑

i=kp+1

πi(b
p,rN0

k + Ap,r − N0
i )

1 + (L − 1 − r + p)g
.
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Thus, the equilibrium strategy of user M is given as follows

T M∗
i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τM
M −N0

i

1+(L−1)g
, i ∈ [1, kL],

τM
r −N0

i

1+(P−1)g
, i ∈ [kP+1 + 1, kP ],

P = L + M − r, r ∈ [M + 1,L]
0, i ∈ [kM + 1, n].

In particular for two and three person games (L = 2 and
L = 3) we have the following results.

Theorem 6 Let T̄1 > T̄2. Then, the Nash equilibrium strate-
gies are given by

T 1∗
i =

⎧
⎪⎪⎨

⎪⎪⎩

t1∗ − gt2∗+N0
i

1+g
, if i ∈ [1, k2],

t1∗ − N0
i , if i ∈ [k2 + 1, k1],

0, if i ∈ [k1 + 1, n],

T 2∗
i =

{
1

1+g
(t2∗ − N0

i ), if i ∈ [1, k2],
0, if i ∈ [k2 + 1, n],

where

(a) k2, t2∗ are given by

t2∗ = (1 + g)T̄ 2 + ∑k2
i=1 πiN

0
i

∑k2
i=1 πi

,

k2 can be found from the condition

ϕ2
k2 < T̄ 2 ≤ ϕ2

k2+1,

where

ϕ2
k = 1

1 + g

k∑

i=1

πi(N
0
k − N0

i ),

for k ≤ n, and ϕ2
n+1 = ∞,

(b) k1 and t1∗ are given by

t1∗ = T̄ 1 + ∑k1

i=k2+1 πiN
0
i + 1

1+g

∑k2

i=1 πi(gt∗2 + N0
i )

∑k1

i=1 πi

,

k1 ≥ k2 can be found as follows:
(i) k1 = k2 if T̄ 1 ≤ ϕ1

k2+1
,

(ii) otherwise k1 is given by the condition:

ϕ1
k1 < T̄ 1 ≤ ϕ1

k1+1,

where

ϕ1
k =

k∑

i=k2+1

πi(N
0
k − N0

i )

+ 1

1 + g

k2
∑

i=1

πi((1 + g)N0
k − N0

i − gt2∗ )

for k ∈ [k2 + 1, n], and ϕ1
n+1 = ∞.

Theorem 7 Let T̄1 > T̄2 > T̄3. Then, the Nash equilibrium
strategies are given by

T 1∗
i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t1∗ − gt2∗
1+g

−
gt3∗
1+g

+N0
i

1+2g
, if i ∈ [1, k3],

t1∗ − gt2∗+N0
i

1+g
, if i ∈ [k3 + 1, k2],

t1∗ − N0
i , if i ∈ [k2 + 1, k1],

0, if i ∈ [k1 + 1, n],

T 2∗
i =

⎧
⎪⎪⎨

⎪⎪⎩

t2∗
1+g

−
g

1+g
t3∗+N0

i

1+2g
, if i ∈ [1, k3],

1
1+g

(t2∗ − N0
i ), if i ∈ [k3 + 1, k2],

0, if i ∈ [k2 + 1, n],

T 3∗
i =

{
1

1+2g
(t3∗ − N0

i ), if i ∈ [1, k3],
0, if i ∈ [k3 + 1, n],

where

(a) k3, t3∗ are given by

t3∗ =
(

(1 + 2g)T̄ 3 +
k3∑

i=1

πiN
0
i

)
/

(
k3∑

i=1

πi

)

,

ϕ3
k3 < T̄ 3 ≤ ϕ3

k3+1,

and

ϕ3
k = 1

1 + 2g

k∑

i=1

πi(N
0
k − N0

i ),

for k ≤ n, and ϕ3
n+1 = ∞,

(b) k2, t2∗ are given by

t2∗ =
(

T̄ 2 + 1

1 + g

k2
∑

i=k3+1

πiN
0
i

+ 1

1 + 2g

k3
∑

i=1

πi

(
gt3∗

1 + g
+ N0

i

))

/
(

1

1 + g

k2
∑

i=1

πi

)

,
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(i) k2 = k3 if T̄ 2 ≤ ϕ2
k3+1

,

(ii) otherwise k2 is given by the condition:

ϕ2
k2 < T̄ 2 ≤ ϕ2

k2+1

and

ϕ2
k =

k∑

i=k3+1

πi

1 + g
(N0

k − N0
i )

+
k3

∑

i=1

πi

(
1

1 + g
N0

k − N0
i + gt3∗/(1 + g)

1 + 2g

)

for k ∈ [k3 + 1, n] and ϕ2
n+1 = ∞,

(c) k1, t1∗ are given by

t1∗ =
(

T̄ 1 +
k1

∑

i=k2+1

πiN
0
i +

k2
∑

i=k3+1

πi

gt2∗ + N0
i

1 + g

+
k3

∑

i=1

πi

(
gt2∗

1 + g
+

gt3∗
1+g

+ N0
i

1 + 2g

))
/ k1

∑

i=1

πi.

So, k1 ≥ k2 can be found as follows:
(i) k1 = k2 if T̄ 1 ≤ ϕ1

k2+1
,

(ii) otherwise k1 is given by the condition:

ϕ1
k1 < T̄ 1 ≤ ϕ1

k1+1

where

ϕ1
k =

k∑

i=k2+1

πi(N
0
k − N0

i ) +
k2

∑

i=k3+1

πi

(

N0
k − gt2∗ + N0

i

1 + g

)

+
k3

∑

i=1

πi

(

N0
k − gt2∗

1 + g
−

gt3∗
1+g

+ N0
i

1 + 2g

)

.

8 Numerical examples

Let us demonstrate the closed form approach by numerical
examples. Take n = 5, N0

i = κi−1, κ = 1.7, πi = 1/5 for i ∈
[1,5]. We consider scenarii with one, two and three users.

Single user scenario Let T̄ = 5. Then, by Theorem 2
as the first step we calculate ϕt for t ∈ [1,5]. In our
case we get (0, 0.14, 0.616, 1.830, 4.581). Thus, we
have k = 5 and the optimal water-filling strategy is T ∗ =
(7.771,7.071,5.881,3.858,0.419) with payoff 1.11.

Two users scenario Let g = 0.9, T̄ 1 = 5, T̄ 2 = 1. Then, by
Theorem 6 as the first step we calculate ϕ2

t for t ∈ [1,5]. In
this case we get (0, 0.074, 0.324, 0.963, 2.411). Thus, k2 = 4
and t2∗ = 5.001. Then we calculate ϕ1

t for t = 5. In our
case we get 6.994. Thus, k1 = 4 and t1∗ = 0.010. Therefore,
we have the following equilibrium strategies T 1∗ = (7.106,

6.737, 6.111, 5.046, 0) and T 2∗ = (2.106, 1.737, 1,111,
0.0462, 0) with payoffs 0.801 and 0.116, respectively.

Three users scenario Let us introduce the third player with
the average power constraint T̄ 3 = 0.5. Then, by Theorem 7
we can find that T 1∗ = (6.419, 6.169, 5.744, 4.900, 1.769),
T 2∗ = (1.861, 1.611, 1.186, 0.342, 0) and T 3∗ = (1.142,

0.892, 0.467, 0, 0) are equilibrium strategies with payoffs
0.728, 0.113 and 0.055, respectively.

The equilibrium strategies of all three cases are shown in
Fig. 1. When a new user comes into competition, it leads
to a bigger rivalry for using good quality channels and it
results in the situation when bad quality channels turn out to
become more attractive for users than they were when there
were smaller number of users.

We have run IWFA, which produced the same values for
the equilibrium strategies and payoffs. However, we have
observed that the convergence of IWFA is slow when g ≈ 1.
In Fig. 2, for the two users scenario, we have plotted the total
error in strategies ‖T 1

k −T 1∗‖2 +‖T 2
k −T 2∗‖2, where T i

k are
the strategies produced by IWFA on the kth iteration and T i∗
are the Nash equilibrium strategies. Our approach instanta-
neously finds the Nash equilibrium for all values of g. Also,
it is interesting to note that by Theorems 6 and 7 the quan-
tity of channels as well as the channels themselves used by
weaker user (with smaller resources) is independent from
the behavior of the stronger user (with larger resources).
Of course, each user allocates his/her resources among the
channels taking into account the opponent behavior.

Fig. 1 Optimal strategies for 1, 2 and 3 user games
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Fig. 2 Convergence of IWFA

Fig. 3 Centralized optimization vs. game

In Figs. 3 and 4, we compare the non-cooperative ap-
proach with the cooperative approach. Specifically, we com-
pare the transmission rates and their sum under Nash equi-
librium strategies and under strategies obtained from the
centralized optimization of the sum of users’ rates. The
main conclusions are: the cost of anarchy is nearly zero for
g ∈ [0,1/4] and then it grows up to 22% when g grows
from 1/4 to 1; the user with more resources gains signif-
icantly more from the centralized optimization. Hence, the
non-cooperative approach results in a more fair resource dis-
tribution. In Fig. 4 we plot the total transmission rate under
Nash equilibrium strategies and under strategies obtained
from the centralized optimization for the cases of 2 and 3
users. As expected the introduction of a new user increases
the cost of anarchy. Furthermore, in the case of the central-

Fig. 4 The effect of a new user

ized optimization with the introduction of a new user the
total rate increases, and on contrary in the game setting the
total rate decreases.

9 Conclusion

We have considered power control for wireless networks in
optimization and game frameworks. Closed form solutions
for the water filling optimization problem and L users sym-
metric water filling games have been provided. Namely, now
one can calculate equilibrium strategies with a finite num-
ber of arithmetic operations. This was possible due to the
intrinsic hierarchical structure induced by the quantity of
the resources available to the users. We have also provided
a simple alternative proof of convergence for a version of
iterative water filling algorithm. It had been known before
that the iterative water filling algorithm converges very slow
when the crosstalk coefficient is close to one. For our closed
form approach possible proximity of the crosstalk coeffi-
cient to one is not a problem. We have shown that when the
crosstalk coefficient is equal to one, there is a continuum of
NE. Finally, we have demonstrated that the price of anarchy
is small when the crosstalk coefficient is small and that the
decentralized solution is better than the centralized one with
respect to fairness.
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