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Abstract—We study in this paper the problem of sharing the
cost of a multicast service in a wireless network. In a wireless
network, multiple users can decode the same signal of the base
station provided the received power exceeds a certain minimum
threshold. In this work, the cost for broadcasting is taken to be
the transmission power. We begin by proposing various schemes
to share the cost, and study their properties. We then study
the association problem where an user has options of either
joining the multicast group or opting for a unicast connection
at a given cost. Next, we extend the association problem to the
scenarios with partial information - a user knows his own power
requirement, but has to make decision without knowledge of the
number of other users in the network and their requirements.
The unicast alternative that each mobile has, results in limitations
on the coverage (area covered by the multicast service) and the
capacity (number of users connected to the multicast service).
We derive the expected capacity and coverage as a function of
the cost sharing mechanism. We finally extend the model to the
case where users have the option of joining any one from a given
set of multicast service providers. A user’s power requirement
depends on its association, but its cost share depends on the
association profile of all the users. We study the joint problem
of the cost allocation and the equilibrium association.

I. INTRODUCTION

A. The Multicast Problem

During the last few years, there has been a growing interest
in wireless networks. Many emerging applications such as
mobile TV and group oriented mobile commerce aim to
deliver the same large volume of data to multiple users in the
network. Such applications are naturally amenable to multicast
transmission, and largely benefit from the broadcast nature
of radio channels. More precisely, in wireless networks a
base station (BS) can deliver the multicast data to multiple
users only through a single transmission. However, satisfactory
reception of applications, measured in term of the quality
of service (QoS), is contingent on the BS’s transmission
power. Each user, depending on its location (with respect
to the BS), channel condition and QoS requirement, puts a
requirement on the transmission power of the BS. The BS’s
minimum transmission power depends on the requirements of
all the users availing the multicast service. In particular, it
corresponds to the largest requirement from among all the
users in the group.
The multicast transmission incurs a cost to the service

provider that crucially depends on the BS’s transmission
power. Multicasting data to a large population is likely to incur
significant costs that should naturally be shared among all the
users. However, a user’s cost share should be commensurate
to its requirement in terms of the BS’s transmission power.
We consider the problem of sharing the cost of multicast in a
wireless network that consists of selfish users.
Often, users can also use dedicated (unicast) connections for
the desired service. While the cost share in the multicast group
depends on other users’ requirements and decisions (whether
they join the multicast group or not) and the cost sharing
mechanism, the dedicated option incurs a fixed cost. Clearly,
the former cost may not be known a-priori. However, users
need to make subscription decisions based on their expected
cost shares. We study the users’ association problem under
each of our proposed cost sharing mechanisms. We consider
several setups with different information structures.
Evidently, multicast economizes the usage of the re-
sources (e.g., bandwidth, power) in scenarios where multiple
users are interested in the same content. Thus, the size of
the multicast group can be viewed as a social performance
measure of the cost sharing mechanism. We discuss the notions
of capacity and coverage in this context.

B. Related Work

The problem of sharing the cost of multicast transmission in
wired networks is well studied (e.g., see [1], [2], [3]). Penna
and Ventre [4] and Bilo et al. [5] study the problem in the
context of wireless networks. They consider the possibility
that users can misreport their utilities. They obtain strategy-
proof cost allocations which are either efficient or budget-
balanced. In another paper, Bilo et al. [6] consider multicast
in a multihop wireless network and model the selfish nature
of users as a noncooperative game. They investigate Nash
equilibria (NEs) for several cost allocation methods and also
study price of anarchy bounds in a few cases. In all these
works, the service provider, and not the users, determine which
users will be served.
The cost structure in our problem is identical to that
proposed by Littlechild and Owen [7], [8] in the context of
Aircraft landing fees. Thomson [9] provides a survey on cost
allocation for the airport problem.
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Myerson [10] developed the theory of large Poisson games,
and in particular, proved the existence of equilibria in such
games. Under the setup there, utility of a player depends on
the aggregate action profile of the whole population, and not
on the type-wise action profile. In our setup the cost of a
user depends on the type-wise action profile of the population
where the type of a user can be identified as its location.

C. Our Contribution

In Section II we briefly describe the concept of cooperative
cost games and also discuss a few cost allocations belonging to
the core of the game. We present our network and communica-
tion model in Section III. We address the problem of splitting
the cost of establishing the multicast session among the users.
We assume that a user or a set of users that are not satisfied
with the way the cost is split, can form an alternative multicast
group that would incur less cost to all of these users. Thus we
look for the cost sharing rules that make it advantageous for
all users to be in one grand multicast group. We formulate the
problem as a cooperative cost game and propose a number of
cost sharing rules belonging to the core of the game.
We next consider that each user can avail the same service
via an alternative unicast connection at a constant cost. Then,
depending on the eventual cost share, users may or may not
join the multicast session. One may view this problem as a
hierarchical non-cooperative association problem - given the
service provider’s rule for splitting the cost among the users in
the multicast group, each user has to decide whether to join the
multicast group or opt for the dedicated unicast connection. In
Sections IV we study the user association problem under each
of the proposed cost sharing mechanisms. We extend our study
to scenarios with incomplete or no information in Sections V
and VI. We discover a paradoxical behavior in which the
multicast user-base improves by providing less information to
the users.
In Section VII we study the impact of the cost sharing
rule on the number of users in the multicast group (which
we call capacity), and on the geographical size of the multi-
cast group (which we call coverage).1 Finally, we study the
association problem in presence of several multicast service
providers. The proofs of a few of the results are omitted for
brevity.

II. COOPERATIVE GAME PRELIMINARIES

We begin by defining a cooperative cost game [12]. A co-
operative cost game is a pair (M, c) whereM := {1, . . . , M}
denotes the set of players and c : 2M → R is the cost function.
For any nonempty coalition S ⊆ M, c(S) is the minimum cost
incurred if players in S work together to serve their purposes;
c(∅) := 0. The cost function, c(·), is called submodular if

c(S1 ∪ S2) + c(S1 ∩ S2) ≤ c(S1) + c(S2),

for all S1,S2 ⊆ M. A cooperative game is called concave if
the cost function is submodular.

1One can formulate this problem as one with multiple coalition structures,
as defined in [11, p. 44, section 3.8].

A cost allocation q ∈ R
M charges cost qi to a player i ∈

M. An allocation q is called efficient if
∑

i∈M qi = c(M).
An efficient allocation q is called an imputation if qi ≤ c({i})
for all i ∈ M.
The core: The core, C, of the game is defined as follows

C = {q ∈ R
M :

∑
i∈M

qi = c(M),

∑
i∈S

qi ≤ c(S), ∀ S ⊂ M} (1)

The core of a concave cooperative game is nonempty [13].
Next we state a number of appealing rules for cost allo-
cation. Each of these results in a cost vector that lies in the
core.
• Shapley value: For any i, and S ⊆ M such that i �∈ S, let
Δi(S) = c(S ∪ {i}) − c(S). The Shapley value is the cost
allocation q for which

qi =
1

M !

∑
U∈U

Δi(Si(U)), (2)

where U is the set of all orderings ofM, and Si(U) is the set
of players preceding i in ordering U . The Shapley value of a
concave cooperative game lies in the core [14, Chapter 14].
• Nucleolus: The excess of a coalition S under an imputation
q is eS(q) =

∑
i∈S qi − c(S); this is a measure of dissat-

isfaction of S under q. Let E(q) = (eS(q), S ∈ 2M) be
the vector of excesses arranged in monotonically increasing
order. The nucleolus is the set of imputations q for which
the vector E(q) is lexicographically minimal. The nucleolus
is a singleton and belongs to the core whenever the latter is
nonempty.
• Egalitarian Allocation: The egalitarian allocation for co-
operative games was introduced by Dutta and Ray [15]. They
showed that the egalitarian allocation is unique whenever
it exists. The following characterization of the egalitarian
allocation for concave cost games is due to Jain and Vazi-
rani [16]. It is based on the notion of Lorentz ordering.
Definition 2.1: Let q1,q1 ∈ R

M be such that q1
1 ≤ · · · ≤

q1
M , q

2
1 ≤ · · · ≤ q2

M and
∑

i∈M q1
i =

∑
i∈M q2

i . We say that
q1 Lorentz dominates q2 if for all 1 ≤ k ≤ M ,

k∑
i=1

q1
i =

k∑
i=1

q2
i ,

and the inequality is strict for at least one k.
Now, for q ∈ R

M define I(q) to be the vector obtained
by arranging the components of q in increasing order. Then,
q ∈ C is the egalitarian allocation if I(q) Lorentz dominates
I(r) for all other cost allocations r ∈ C. For concave cost
games, the egalitarian allocation always exists and lies in the
core [15].

Remark 2.1: Max-min (or, min-max) fairness has been used
in the networking community in the context of bandwidth
allocation and routing. Jain and Vazirani [16] show that for
concave cost games, the unique egalitarian allocation is also
max-min fair and min-max fair allocation in C.
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III. SYSTEM MODEL

A. Network and Communication Model

We consider a wireless network with a multicast trans-
mission source (say, a BS) and a random number (say, N )
of users. We assume that N is a Poisson random variable
with mean λ. Users’ locations are also random, and both the
channel conditions as well as the required QoS levels vary
from one user to another. User i requires transmission at power
pi in order to meet its QoS needs. The power requirements,
pis, are independently identically distributed (i.i.d.) random
variables with distribution G(p). For simplicity of exposition,
we assume that this distribution has an associated well defined
density function g(·) (g(p) := G′(p)) that has no mass at
isolated points. 2

Any subsetM of users can subscribe for a multicast session.
The BS then broadcasts information with the minimum power
p that guarantees that all users in M receive the satisfactory
levels of QoS. Evidently p = max{pi : i ∈ M}. The BS
incurs a cost f(p) per unit of time when it transmits at power
p; f(·) is a continuous increasing function of power. The cost
f(p) has to be shared by all the users in the multicast group.
Every user has an alternative option of using a dedicated
connection based on some other technology. We assume that
the alternative option incurs an identical cost V to every user.
Our analysis can be easily extended to more general power
requirement distributions, or to the scenario where different
users pay different costs for using the alternative option.

B. Cost Sharing Mechanisms

The cost sharing mechanisms discussed in this section apply
to any given realization of the network. Thus, we assume a
known set N = {1, . . . , N} of users with power requirements
p := (p1, . . . , pN ). We also use notation pM := (pi, i ∈ M)
for allM ⊆ N .
A cost sharing mechanism, h = (h(M),M ⊆ N ),
specifies the cost shares of users in any setM that constitutes
the multicast group. More precisely, h(M, ·) : R

M → R
M,

maps the vector of power requirements to the vector of cost
shares of users in M, i.e., hj(M,pM) gives the cost share
of user j ∈ M. We study the cost sharing mechanisms that
satisfy the following economical constraints.
budget-balancedness: A cost sharing mechanism h is

called budget-balanced if users pay exactly the total cost of
the service, i.e.,∑

j∈M

hj(M,pM) = max{f(pi) : i ∈ M}

for allM ⊆ N .
cross-monotonicity: A cost sharing mechanism is called

cross-monotonic if each user’s cost decreases as the service set
expands. To be precise, consider a cost sharing rule h. If a sub-
setM ⊂ N of users avail the multicast service, the resulting

2Consequently, in almost all the network realizations, the power require-
ments are different for different users, i.e., pi �= pj if i �= j. We consider
only such realizations in Sections III-B and IV.

cost share vector is h(M,pM) ∈ R
M. However, if another

user k ∈ N\M joins the multicast group, the resulting cost
vector becomes h(M∪{k},pM∪{k}) ∈ R

M∪{k}. The rule h

is cross-monotonic if hi(M ∪ {k},pM∪{k}) ≤ hi(M,pM)
for all i ∈ M, k ∈ N\M andM ⊂ N .
Remark 3.1: A cost sharing mechanism is called strategy-
proof if revealing true utilities is a dominant strategy for each
user. For any cost allocation scheme strategy-proofness is a
desirable feature (e.g., see [5]). However, in the cost sharing
problem studied here, an user’s utility can be assumed to be
equal to the dedicated connection’s cost which is known.
Now, suppose that a subsetM = {1, . . . , M} of users join
the multicast session. Without loss of generality, we assume
that users are indexed such that p1 < · · · < pM . Thus, the
BS transmits with power pM and incurs a cost f(pM ). The
cost sharing problem can be formulated as a cooperative cost
game (M, c). Here, c : 2M → R, for a coalition S ⊆ M,
gives the cost to support communication to all the users in S,
i.e., c(S) = max{f(pi) : i ∈ S}.
Now consider two coalitions S1, S2 ⊆ M. Observe that

c(S1 ∪ S2) = max{c(S1), c(S2)}

and c(S1 ∩ S2) ≤ min{c(S1), c(S2)}.

Hence,

c(S1 ∪ S2) + c(S1 ∩ S2) ≤ c(S1) + c(S2), (3)

i.e., the cost function is submodular. This implies the follow-
ing results.
Theorem 3.1: (i) The core of the cost allocation game is
nonempty.
(ii) The Shapley value lies in the core.
(iii) The egalitarian allocation lies in the core and is min-
max (also max-min) fair.
The core of the multicast game can be expressed as{

q ∈ R
M :

∑
i∈M

qi = f(pM ),
∑
i∈S

qi ≤ f(pS̄),S ⊂ M
}

where S̄ := max{i : i ∈ S}. We make the following
observations.
1) All the cost allocations in the core are nonnegative; if

qi < 0, q can not satisfy the constraint corresponding
to the subset N\{i}.

2) The constraint
∑j

i=1 qi ≤ f(pj) makes the constraints
corresponding to the subsets S ⊂ {1, . . . , j} redundant.

In view of these, the core can be rewritten as

{
q ∈ R

M
+ :

M∑
i=1

qi = f(pM ),

j∑
i=1

qi ≤ f(pj), 1 ≤ j < M
}
.

A budget-balanced cost sharing mechanism is cross-
monotonic only if it belongs to the core of the associated
cooperative cost game. Hence we focus on cost allocations
from the core. Following criteria can be used.
• Highest cost allocation (HCA): The user requiring the
highest power (in our case, user M ) pays the whole cost.
Of course (0, . . . , 0, f(pM )) is in the core.
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• Incremental cost allocation (ICA): A more fair cost allo-
cation is where user 1 pays f(p1) and for i ≥ 2, user i pays
f(pi) − f(pi−1). We call it incremental cost allocation.
• Shapley value (SV): Following [7], the Shapley value is
given as follows

hi(M,pM) =
i∑

j=1

f(pj) − f(pj−1)

M + 1 − j
, 1 ≤ i ≤ M.

• Nucleolus (NS): The following algorithm for calculating
the nucleolus was given by Littlechild [8] in the context of
the airport cost game.
Define i0 = r0 = 0. For k ≥ 1, iteratively define

rk = min
i∈{ik−1+1,...,M−1}

f(pi) − f(pik−1
) + rk−1

i − ik−1 + 1
,

and ik as the largest value of i for which the minimum is
attained in the above expression. Continue this until k = k′

where ik′ = M − 1. The nucleolus of the multicast game is
given as

hi(M,pM) = rk, ik−1 < i ≤ ik, k = 1, . . . , k′

hM (M,pM) = f(pM ) − f(pM−1) + rk′

• Egalitarian allocation (EA): The egalitarian allocation for
the multicast cost game can be computed by applying the
following algorithm [17].
Define i0 = r0 = 0. For k ≥ 1, iteratively define

rk = min
i∈{ik−1+1,...,M}

f(pi) − f(pik−1
)

i − ik−1
,

and ik as the largest value of i for which the minimum is
attained in the above expression. Continue this until k = k′

where ik′ = M . The egalitarian allocation is given as

hi(M,pM) = rk, ik−1 < i ≤ ik, k = 1, . . . , k′

All the proposed cost sharing mechanisms are budget-
balanced by their definitions.
Cross-monotonicity of the proposed cost allocations:

Evidently HCA and ICA are cross-monotonic. The Shapley
value is well known to be cross-monotonic (see Moulin [18]).
Dutta [19] showed that the egalitarian allocation is also cross-
monotonic in concave games. Sonmez [20] showed that the
nucleolus of a generic concave cost game need not be cross-
monotonic. However, he also proved the cross-monotonicity of
nucleolus for the airport game which has identical formulation
as ours.
In the rest of this section, we present a few monotonicity
properties of the proposed cost sharing mechanisms.
Lemma 3.1: Under cost sharing mechanisms HCA, SV, NS
and EA, for any two users i, j such that pj > pi, qj ≥ qi.
Next, we investigate how, under the proposed cost sharing
mechanisms, an user’s cost share varies with its power require-
ment if all other users’ requirements are kept fixed. Towards
this, let us consider a tagged user i. Assuming other users’
power requirements constant, we define a function q̂i : pi → qi

as follows
q̂i(pi) = hi(M,pM).

Lemma 3.2: Under cost sharing mechanisms HCA, SV, NS
and EA, q̂i is a monotone increasing function.
Proof:

• HCA: Clearly the claim is true for HCA.
• SV: Let us consider user i with required power pi. Assume
that its power requirement is increased to p′i. If p′i ≤ pi+1

then the cost share increases by

q̂(p′i) − ĥ(pi) =
f(p′i) − f(pi)

M + 1 − i
.

Let us consider the case when pi+1 < p′i < pi+2. Other cases
can be analyzed with a repeated application of this procedure.
Now, the new cost share of player i is

q̂(p′i) =
i−1∑
j=1

f(pj) − f(pj−1)

M + 1 − j

+
f(pi+1) − f(pi−1)

M + 1 − i
+

f(p′i) − f(pi+1)

M − i

≥
i∑

j=1

f(pj) − f(pj−1)

M + 1 − j

= q̂(pi)

• EA: Let us revisit the algorithm used to obtain EA and
assume i = ik for some k. Suppose user i increases its power
requirement to p′i. As before, first consider the case when
p′i ≤ pi+1. Clearly, q̂(p′i) ≥ q̂(pi) in this case. The same
holds true if pi+1 < p′i < pi+2. Similar arguments can be
made in the case when i �= ik for any k.
• NS: The proof is similar to that for EA.

The expression for the nucleolus has the similar form as
that for the egalitarian allocation. Hence, in the following
we analyze the egalitarian allocation but do not discuss the
nucleolus.

IV. NON-COOPERATIVE SUBSCRIPTION GAME: COMPLETE
INFORMATION

Each user independently decides whether to join the mul-
ticast group or not. Recall that a player bears a cost V if it
does not use the multicast service and chooses the alternative
dedicated option. We formulate the decision problem as a
noncooperative game with users as players.
In this section, we assume that each user knows the total
number of users in the network, N , and their power require-
ments, p = (p1, . . . , pN). An equilibrium is a multicast group
M ⊆ N of users such that the cost share of each user inM
is less than or equal to V , and the cost share of each user in
N\M would be larger than V if it joined the multicast group
M. Following is the precise definition.
Definition 4.1: An equilibrium is a multicast group M ⊆

N of users such that hi(M, pM) ≤ V for all i ∈ M, and
hi(M∪{i}, pM∪{i}) > V for all i ∈ N\M.
We next provide the characterization of equilibria (NEs)
corresponding to the proposed cost sharing policies. These are
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in fact strong equilibria - these are robust not only to unilateral
deviations but also to deviations by subsets of users.

• HCA: The unique NE isM = {i : f(pi) ≤ V }.
• ICA: The unique NE is

M =

{
∅ if p1 > V,
{1, . . . , j − 1} otherwise,

(4)

where j = min{i : f(pi) − f(pi−1) > V }.
• SV: Let us define

bj =

j∑
i=1

f(pi) − f(pi−1)

j + 1 − i
,

Then the unique NE isM = {1, . . . , j} where j is the largest
index such that bj ≤ V .
• EA: Define i0 = r0 = 0. For k ≥ 1, iteratively define

rk = min
i∈{ik−1+1,...,N}

f(pi) − f(pik−1
)

i − ik−1
,

and ik as the largest value of i for which the minimum is
attained in the above expression. Continue this until rk > V .
The unique NE isM = {1, . . . , ik−1}.

Efficiency of the proposed cost allocations: An efficient
cost sharing mechanism is one that maximizes the net social
utility, i.e., minimizes the social disutility. We define the social
disutility to be the aggregate cost paid by all the users in the
network. Assume that, under a cost sharing mechanism, users
M = {1, . . . , M} opt for the multicast service (out of the
total N users). Then, the total cost paid by the users in the
multicast group is f(pM ), and the total cost of all the users
is f(pM ) + (N − M)V . The most efficient rule is the one
that minimizes this quantity. Also recall that a user joins the
multicast group only if its cost share is less than or equal to
V . Thus, in our model, an efficient cost sharing mechanism is
the one that maximizes the size of the multicast group. It is
an straight-forward observation that HCA is the least efficient
among all the proposed rules.

V. NON-COOPERATIVE SUBSCRIPTION GAME:
INCOMPLETE INFORMATION

Here, we assume that any user does not know the number
of other users in the network and their power requirements. In
other words, all the users know only their own requirements.
However, they know the distribution of the number of users
in the network (Poisson(λ)) and also the distribution of users’
power requirements (G(p)). Under this setup, we investigate
the equilibrium strategies of the users.
We restrict ourselves to symmetric action profiles - players’
actions depend on their identities only through their power
requirements.3 Since the number of players is Poisson dis-
tributed, we have an environmental equivalence property [10]
- from the perspective of any player also, the number of other

3In the multicast game with population uncertainty, players with same
requirements have no commonly known attributes by which others can
distinguish them. Also, all players with the same requirement must have the
same predicted behavior. See Myerson [10] for a detailed discussion.

players in the game is a Poisson random variable with the
same mean λ.
The above arguments imply that a pure strategy equilibrium
is characterized by a set such that users with power require-
ments in that set join the multicast group and others do not.
Let P ⊂ R+ be such that users with power requirements
in P have joined the multicast group. Consider user i with
power requirement pi. Let ω−i denote a realization of user i’s
environment which consists of other users in the networks and
their power requirements. Adding i and its power requirement
to ω−i yields a realization of the whole network; we call it
ω. We express the cost share of user i (assuming it joins the
multicast group) as a function of its power requirement, P (the
strategy of other users) and the realization of its environment.
More precisely, we define

q̄i(pi, P, ω−i) = hi

(
MP (ω) ∪ {i}, pMP∪{i}(ω)

)
where MP (ω) = {i ∈ N (ω) : pi(ω) ∈ P}. Then,
the expected cost share of user i is Eq̄i(pi, P ) where the
expectation is taken over all possible ω−is.4

Definition 5.1: In the multicast game with population un-
certainty, an NE is characterized by a set P ⊂ R+ such that
any user i with power requirement pi ∈ P joins the multicast
group and others do not . More precisely, Eq̄i(pi, P ) ≤ V if
pi ∈ P , and Eq̄i(pi, P ) > V if pi /∈ P .
Following Lemma 3.2, q̄i(pi, P, ω−i) is increasing in pi for
fixed P and ω−i. Averaging over all possible ω−i, we find
that Eq̄i(pi, P ) is increasing in pi for any fixed P whence we
obtain the following corollary.
Corollary 5.1: Under cost sharing mechanisms HCA, SV
and EA, for any symmetric strategy P , there exists a threshold
p∗ such that Eq̄i(pi, P ) ≤ V if and only if pi ≤ p∗.
Evidently, any best response strategy is of the form [0, p∗] or
[0,∞). Thus, we also conclude the following.
Corollary 5.2: Under cost sharing mechanisms HCA, SV
and EA, the only candidates for NEs are the sets of the form
[0, p∗] or [0,∞).
The following proposition asserts that under the cost sharing
mechanism ICA also, NEs exhibit identical property.
Proposition 5.1: Under the cost sharing mechanism ICA,
the only candidates for NEs are the sets of the form [0, p∗] or
[0,∞).
Proof:We prove the claim via contradiction. Assume that

P = ∪K
k=1[ak, bk] is an NE where bk−1 < ak for all k (b0 :=

0). For 0 ≤ pi ≤ a1, user i’s expected cost f(pi) will be
increasing in pi. For b1 ≤ pi ≤ a2, user i’s expected cost
Eq̄i(pi, P ) is

f(pi) −

∫ b1

a1

λf(p)g(p) exp
(
− λ

∫ b1

p

g(s) ds
)

dp.

In writing the above expression we have used the decomposi-
tion property of Poisson distribution - the number of users with
power requirements in the range [p, b1] is a Poisson random
variable with rate λ

∫ b1
p g(s) ds. Finally, it is seen that the

4For brevity, we omit the third argument ω
−i of q̄i(pi, P, ω

−i).
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above expression is increasing in pi. Similarly, it can be shown
that Eq̄i(pi, P ), bk−1 ≤ pi ≤ ak, is increasing in pi for all
1 ≤ k ≤ K . Hence if all other users are using the strategy P ,
user i’s best response can not be P . Thus, the only candidates
for symmetric NEs are the threshold strategies [0, p∗].
On the other hand, if Eq̄i(pi, [0,∞)) ≤ V for all pi then

[0,∞) is also an NE.

A. Expressions for the NEs

We have shown that under each of the proposed cost sharing
mechanisms the NEs are characterized by certain thresholds.
In this section we derive expressions for the thresholds.
Theorem 5.1: Under cost sharing mechanisms HCA, SV
and EA, a symmetric multi-strategy [0, p∗] is an NE if and
only if Eq̄i(p

∗, [0, p∗]) = V . If Eq̄i(pi, [0,∞)) ≤ V for all pi,
[0,∞) is also an NE.
Proof: Suppose Eq̄i(p

∗, [0, p∗]) = V . Then, from Corol-
lary 5.2, Eq̄i(pi, [0, p∗]) ≤ V for all pi ≤ p∗. Also,
Eq̄i(pi, [0, p∗]) > V for all pi > p∗. Thus [0, p∗] is indeed
an NE.
Now, assume the Eq̄i(p

∗, [0, p∗]) > V . Consider user i with
pi = p∗. Then [0, p∗] can not be an equilibrium strategy of
user i. Finally, assume that Eq̄i(p

∗, [0, p∗]) < V and denote
ε := V − Eq̄i(p

∗, [0, p∗]). Since Eq̄i(pi, [0, p∗]) is continuous
and increasing in pi for pi ≥ p∗, there exists a δ > 0 such
that Eq̄i(pi, [0, p∗]) ≤ V for pi = p∗ + δ. Thus [0, p∗] can not
be an equilibrium strategy of user i.
If Eq̄i(pi, [0,∞)) ≤ V , user i’s best response is to join the
multicast group given that all others have joined. Hence [0,∞)
is also an NE.
Corollary 5.3: Under the cost sharing mechanism HCA

[0, f−1(V )] is an NE. [0,∞) is also an NE provided f(pi) ≤
V for all pi.
Proof: Under HCA Eq̄i(pi, [0, pi]) = f(pi). Since f(·) is

strictly increasing, the unique solution to Eq̄i(p
∗, [0, p∗]) = V

is pi = f−1(V ). The claim follows from Theorem 5.1.
We next discuss the cost sharing mechanism ICA. Consider
user i with power requirement pi. Let us assume that all other
users join the multicast group. Again using the decomposition
property of Poisson distribution, the expected cost of user i,
Eq̄i(pi, [0,∞)), is

f(pi) −

∫ pi

0

λf(p)g(p) exp
(
− λ

∫ pi

p

g(s)ds
)
dp.

Lemma 5.1: Under cost sharing mechanism ICA, [0, p∗] is
an NE if and only if Eq̄i(pi, [0,∞)) ≤ V for all pi ≤ p∗ and
Eq̄i(p

∗, [0,∞)) = V . If Eq̄i(pi, [0,∞)) ≤ V for all pi, [0,∞)
is also an NE.
Proof: if part: Recall that, under ICA, user i’s cost share

depends on only those users that have power requirements
less than pi. Hence Eq̄i(pi, [0, p]) are same for all p ≥ pi.
Now, from the conditions on p∗, Eq̄i(pi, [0, p∗]) ≤ V for all
0 ≤ pi ≤ p∗. Also, following the proof of Proposition 5.1,
Eq̄i(pi, [0, p∗]) > V for all pi > p∗. Hence [0, p∗] is indeed
an NE.

only if part: Consider a symmetric strategy [0, p′], and as-
sume that there exists a 0 < p ≤ p′ such that Eq̄i(p, [0, p′]) >
V . Clearly [0, p′] can not be an equilibrium strategy of user
i. Finally consider the case when [0, p′] is a symmetric
strategy of all the users while Eq̄i(p

′, [0,∞)) < V . Denote
ε := V − Eq̄i(p

′, [0,∞)). Since f(p) is continuous and
increasing, there exists a δ > 0 such that f(p′+δ)−f(p′) ≤ ε
implying Eq̄i(pi, [0,∞)) ≤ V for pi = p′+δ. Thus [0, p′] can
not be an equilibrium strategy of user i.
Numerical examples: To illustrate our findings, we con-

sider a linear network topology. The BS is a origin, 0. The
number of users is a Poisson random variable with mean 50.
Users are uniformly and independently deployed on the line
segment [0, 100]. Let xi be the location of user i. We assume
that the transmission power requirement of a user is equal to
the square of its distance from the BS, i.e., pi = x2

i for all i.
Furthermore, we assume f(p) := p for all p ∈ R+.
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Fig. 1. Thresholds determining the multicast group as a function of the cost
of the dedicated connection for various cost allocation schemes

In the figure, x∗ is the threshold location for the multicast
group: users in [0, x∗] join the multicast service while the users
out side this set opt for dedicated connections. We plot x∗ as
a function of V , the cost of the dedicated connection. The
four curves are for the four different cost allocation schemes:
HCA, ICA, SV and EA. As expected, thresholds increase as
the cost of the dedicated connection increases. Moreover, the
most number of users join the multicast group if ICA is in
place, while the least number of users join if HCA is the
underlying cost allocation scheme.

VI. NON-COOPERATIVE SUBSCRIPTION GAME: NO
INFORMATION

As in Section V, we assume that any user does not know
the number of other users in the network and their power
requirements. To start with, we also assume that a user does
not know even its own power requirement. To motivate the
setup, consider mobile users that need to decide in advance
whether to join the multicast session or not. Users do not know
their exact future locations and channel conditions. However,
all the users have the probability distributions of the number
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N of users (Poisson(λ)). They also know the distribution of
users’ distances (from the BS) that are assumed to be i.i.d. and
yield distribution G(p) on the users’ power requirements. As
before, we formulate the multicast group subscription problem
as a noncooperative game among users, and seek to obtain
users’ equilibrium strategies.
Let us focus on any one of the proposed cost sharing
mechanisms (say, EA). Consider a tagged user, say i. If n
other users join the multicast session, the expected cost share
of user i is

q′i(n) = E

[
hi(M(ω), pM(ω))

∣∣∣|M(ω)| = n + 1
]
.

Here, we have averaged over all the network realizations,
ω, that consist of n + 1 users including i. Using the cross-
monotonicity of the cost sharing mechanism and a coupling
argument, it can be shown that q′i(n) is decreasing in n. Now,
consider a symmetric multi-strategy where each user joins the
multicast session with probability s. From user i’s perspective,
the number of other users in the multicast group will be
Poisson distributed with mean sλ. Hence, unconditioning over
the size of the multicast group, the expected cost share of user
i will be

q̃i(s) =
∞∑

n=0

(sλ)n exp(−sλ)q′i(n)

n!

Since the family of Poisson distributions, Poisson(sλ),
parametrized by s ∈ [0, 1] is stochastically increasing, q̃i(s)
will be decreasing in s.
Lemma 6.1: 1. If q̃i(0) > V then 0 is an NE, a pure strategy
equilibrium where none of the users joins the multicast group.
2. If q̃i(1) ≤ V then 1 is an NE, a pure strategy equilibrium
where all the users join the multicast group.
3. If q̃i(0) ≥ V > q̃i(1) the the symmetric multi-strategy s∗

such that q̃i(s
∗) = V is the unique mixed strategy NE.

In the rest of this section we restrict to HCA and discuss
few more information structures.

A. Information on the Number of Users

Assume that the multicast service provider broadcasts, N ,
the number of users in the network. Consider a tagged user, say
i. Let U be the random variable for i’s cost, and F (·) be the
distribution of the random cost. Since i’s power requirement
has distribution G(·), and the cost associated with power p is
f(p),

F (u) = G(f−1(u)).

If n other users join the multicast session, the expected cost
share of user i is

q′i(n) =

∫ ∞

0
(1 − Fn+1(u))du

n + 1
.

Consider a symmetric multi-strategy where each user joins the
multicast session with probability s. Then, the unconditional
expected cost share of user i will be

q̃i(s) =

N−1∑
n=0

(
N − 1

n

)
sn(1 − s)N−1−nq′i(n).

As in Lemma 6.1, the equilibrium strategy s is characterized
by the solution of q̃i(s) = V .

B. Some More Information on Power Requirements

We assume a little more information - the multicast source
tells each user whether its required power is below or above
V . It further broadcasts, N , the number of users having power
requirements above f−1(V ). Note that for the users with
requirements below f−1(V ) joining the multicast group is the
dominant strategy. They also do not affect the costs of other
N users. Hence we consider a noncooperative game with N
users only. Consider one of these users, say i. The conditional
distribution i’s cost is

F̃ (u) =
F (u) − F (V )

1 − F (V )
.

If n other users join the multicast session, the expected cost
share of user i is

q′i(n) =

∫ ∞

V (1 − F̃n+1(u))du

n + 1
.

Also consider a symmetric multi-strategy where each user
joins with probability s. As before, the unconditional expected
cost share of user i will be

q̃i(s) =

N−1∑
n=0

(
N − 1

n

)
sn(1 − s)N−1−nq′i(n).

Again, the equilibrium policy s is characterized by the solution
of q̃i(s) = V . In particular, a symmetric multi-strategy s∗ such
that q̃i(s

∗) = V is an NE.
Remark 6.1: 1. As expected s∗ = 0 is an NE.
2. Observe that q̃i(1) = q′i(N − 1). Thus, if q′i(N − 1) ≤ V ,
s∗ = 1 is also an NE. Therefore, providing less information
may potentially improve the multicast user base.

VII. EXPECTED CAPACITY AND COVERAGE

We consider the system model as described in Section III-A.
We focus on the scenario in which all the users have complete
information about the network. We also assume that all the
users have identical QoS requirements, and thus their power
requirements are entirely governed by their locations (more
precisely, their distances from the BS). Recall that, every user
has an alternative option of using a dedicated connection that
incurs a fixed cost V . Let us fix the cost sharing mechanism.
Let S ⊆ N be such that assuming all the users in S join
the multicast group none of them can benefit from leaving
the multicast group,.i.e., the cost share for every user in S is
less than or equal to V . We call such a set a ”V -stable set”.
Assume that S is a maximal V -stable set, i.e., if we add to S
any other user i ∈ N\S, the new set S ∪ {i} is not V -stable
anymore5.
We define the capacity associated with a cost sharing
mechanism to be the size of the maximal V -stable set.
We define the coverage of a cost sharing mechanism to be
the set of locations where if we place another user and add

5It can be easily shown that there will be a unique maximal V -stable set
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this user to the maximal V -stable set then the new set will
still be V -stable.
In the following, we compute the capacity and coverage
of the cost sharing mechanisms HCA and ICA. We restrict
ourselves to a linear network topology. More precisely, we
assume that the BS is located at the origin and the users
are located along a straight line according to a stationary
Poisson point process with intensity λ. We also assume linear
transmission cost for the BS, i.e., f(p) = p.

A. HCA: Capacity and Coverage

We enumerate the users according to the increasing distance
from the BS. Define x0 := 0 and let xi be the location of the
ith user. Now, consider a user at location x. If the BS transmits
at power pt then the received signal power at the tagged user
will be βptx

−α. If the user needs a minimum received power
p in order to meet the desired OoS, the BS’s transmission
power needs to be pt = pxα

β which is also the cost incurred
by the BS. Now, recall the equilibrium analysis in Section IV.
Evidently, the tagged user joins the multicast group if

pxα

β
≤ V

or, x ≤ C
1/α
0

where C0 := βV
p . Thus, the capacity is a Poisson random

variable with parameter 2λC
1/α
0 . In particular, the expected ca-

pacity is 2λC
1/α
0 . The coverage is the interval [−C

1/α
0 , C

1/α
0 ].

B. ICA: Capacity and Coverage

Recall the NE characterization with complete information
under ICA (see (4)). Assume that there is a user at location
x, and it participates in the multicast session. Now, consider
another users at location y > x. The latter user will participate
in the multicast session if

pyα

β
−

pxα

β
≤ V

or,
pyα

β
≤

pxα

β
+ V

or, y ≤ (C0 + xα)1/α (5)

where C0 := βV
p . Evidently, the capacity for ICA is given by

M = sup{j : xi
α − xα

i−1 ≤ C0 for all i = 1, . . . , j}

where sup ∅ := 0. The coverage is given by

C = (C0 + xα
M )1/α

Now, we derive the expected capacity and the expected cov-
erage. Define M(0) := M and

M(k) := sup{j : xα
i − xα

i−1 ≤ C0 for all i = k + 1, . . . , j}.

Observe thatM(k) is the capacity conditioned on the coverage
satisfying C > xk. Define C(k) as

C(k) := (C0 + xα
M(k))

1/α

1) The linear case: α = 1:
Lemma 7.1: If α = 1 then
(i) M(k) − k are identically distributed, k = 0, 1, 2, ...
(ii) C(k) − xk are identically distributed, k = 0, 1, 2, ...

The expected coverage C can be computed as follows. The
location x1 of the nearest user (to the BS) is exponentially
distributed with parameter λ. With probability exp(−λC0) we
have x1 > C0 and then C = C0. With the complementary
probability, x1 < C0 so that C > x1. In that case, C = C(1)
where C(1)−x1 has the same distribution as C (due to Lemma
7.1). We conclude that

E[C] = E[C1{x1>C0}] + E[(x1 + C)1{x1≤C0}]

= C0 exp(−λC0) + E[x11{X≤C0}]

+E[C]E[1{x1≤C0}]

=
1 − exp(−λC0)

λ
+ (1 − exp(−λC0))E[C]

Thus the expected coverage is given by

E[C] =
1 − exp(−λC0)

λ exp(−λC0)

Similarly, the expected capacity can be seen to be

E[N ] =
1 − exp(−λC0)

exp(−λC0)

2) α > 1: We observe that, for α2 ≥ α1 ≥ 1,

(
C0 + aα2

)1/α2

≤
(
C0 + aα1

)1/α1

for all a ≥ 0. A similar analysis as the one for α = 1, shows
that the expected capacity and the expected coverage reduce
as α is increased. Thus, the linear case gives an upper bound
on both.

VIII. NON-COOPERATIVE SUBSCRIPTION PROBLEM:
MULTIPLE RESOURCES

A. Model

Finally, we consider a network with N users and M
multicast sources (say, BSs) all of which provide the same
multicast service. An user’s power requirement depends upon
which provider it associates with (say, owing to its different
distances to different BSs). Assume that if user i joins the
multicast session of provider j, then it requires a transmission
with power pij . When provider j transmits with a power p,
it incurs a cost fj(p). We assume that all the providers apply
the same cost sharing mechanism which is HCA.
Users have choice to associate with any one of the providers.
We define an assignment to be a partition I = {I1, ..., IM} of
the set of all users where Ij is set of users that join provider j.
We view the association problem as a non-cooperative game
and characterize an equilibrium assignment.
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B. Min-max equilibrium

Let us consider an assignment I . We define vj(I) to be
the power with which BS j needs to transmits; vj(I) =
maxi∈Ij

pij , j = 1, . . . , M (vj(I) := 0 if Ij = ∅). Let v∗(I)
be the vector of transmission powers of BSs arranged in a
decreasing order.
Definition 8.1: We call an assignment I a min-max assign-
ment if v∗(I) is lexicographically smaller than v∗(I ′) for any
other assignment I ′.
Let j(i) be the base station that is closest to user i. Then,
player i can guarantee to pay a cost no more than fj(i)(pi,j(i)).
Also, define i(S) to be the user whose power requirement
achieves the max-min cost among a set of users S. In other
words, i(S) is defined to be the user i′ whose distance to the
closest BS j(i′) is the largest among all the users in S:

i(S) = argmax
i∈S

min
j

pij .

Consider the following algorithm A1:

1) Set k = 1 and let Nk be the set of all users.
2) Define ik = i(Nk)
3) Let Ik be the set of all users in Nk that are closer to
BS j(ik) than ik.

4) If the set is nonempty then increase k by one, define
Nk+1 = Nk \ Ik and go to step 2.

5) Let Ij be the set set of users that connect to the multicast
session j.

Theorem 8.1: Algorithm A1 determines a max-min equilib-
rium assignment I .

IX. CONCLUSION

We have addressed the problem of sharing the cost for a
multicast session among the subscribers in a wireless network.
We proposed various methods that had in common an stability
aspect with the meaning that no sub-coalition can emerge
availing the same service to the users at better price. With
these basic building blocks at hand we then considered the
association problem in which users decide, based on the cost
sharing mechanism of the service provider, whether to join
the multicast session or opt for a unicast alternative. We
formulated the association problem as a non-cooperative game
among users. Further, we extended the analysis to the cases
where a user has incomplete or no information about the
network topology, e.g., its own requirement, number of other
users in the network and their requirements etc. Finally, we
considered an association problem in presence of several mul-
ticast service providers; users take association decisions based
on their eventual cost shares in different multicast groups.
We give an algorithm that leads to a max-min equilibrium
assignment.
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