IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 6, JUNE 2002 917

Nash Equilibria for Combined Flow Control and
Routing in Networks: Asymptotic Behavior
for a Large Number of Users
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Abstract—We consider a noncooperative game framework for ~ Noncooperative games combining flow and routing decisions
combined routing and flow control in a network of parallel links,  have been studied in the past; see, for example, [11], [14], and
where the number of users (players) is arbitrarily large. The utility 6 yeferences therein. In particular, it is well known that when

function of each user is related to the power criterion, and is taken the obiective f i f the ol th f link t
as the ratio of some positive power of the total throughput of that € CR[ECUVE TUNCLIONS Of the Players are e SuMm ot link costs

user to the average delay seen by the user. The utility function is Plus @ reward which is a function of the throughput, then the
nonconcave in the flow rates of the user, for which we introduce a underlying game can be transformed into one involving only
scaling to make it well defined as the number of userslV, becomes  routing decisions. Another recent paper that considers a com-
arbitrarily large. In spite of the lack of concavity, we obtain ex- bined flow control and routing game is [15], where the utility of

plicit expressions for the flow rates of the users and their associated h ol is related to th f the lirikk
routing decisions, which are inO(1/N) Nash equilibrium. This each player s related to the sum of powers over the knkse

O(1/N) equilibrium solution, which is symmetric across different  part of the utility in [15] that corresponds to the delay is given
users and could be multiple in some cases, exhibitsdelay-equal- by the sum of all link capacities minus all link flows, all mul-
izing feature among the links which carry positive flow. The paper tiplied by some entropy function. Thus, the utility in this case
also provides the complete optimal solution to the single-user case, jpes not directly correspond to the actual expected delay, but it
and includes several numerical examples to illustrate different fea- has the advant f leading t table Nash 'I',b .
tures of the solutions in the single- as well agv-user cases, asv" = . as the advaniage o e_a Ing to a computable Nash equilibrium
becomes arbitrar"y |arge. n the case Of pal‘allel ||nkS.

In this paper, we consider instead the actual power criterion,
that is the ratio between (some increasing function of) the total
throughput of a user and the average delay experienced by traffic
of that user. This power criterion is commonly used in flow con-

. INTRODUCTION trol games not involving routing decisions as it enables each

LOW CONTROL and routing are two components of relSer to view the network as a single link with an equivalent cost.
F source and traffic management in today’s high-speed né&this property holds, under certain assumptions, even in the case
works, such as the Internet and the ATM. Flow control is usét dynamic, state-dependent flow control games; see [12].)
by best-effort type traffic in order to adjust the input transmis- In the paper, we first consider the case of a single user ac-
sion rates (the instantaneous throughput of a connection) to 8§$Sing multiple links. Since the utility function we consider
available bandwidth in the network. Routing decisions are takénnot concave, the optimal solution (which exists) has to be
to select paths with certain desirable properties, for exampfptained by examining all stationary and boundary points. We
minimum delays. In many cases, both flow control and routir!oW that there is a simple procedure to perform such a search.
decisions can be made by the users (rather than by the netw R)interesting feature of the optimal solution is that it could
s0 as to meet some performance criteria. The appropriate frarfiiglate the user not to use all the links in the network. This ob-

work for modeling this situation is that of noncooperative ganeérvation is useful since such a behavior arises even in the case
theory. of multiple users attempting to reach a Nash equilibrium.

Following the study of the single-user case, we move on to the
case of multiple users and study the asymptotic case when the
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user in that framework is considered to be infinitesimally small, The objective of the user is to maximize the following utility
so that it does not have any influence on the costs of other uséusiction, which quantifies a tradeoff between throughput and
and more generally, on the link costs. This equilibrium has oftelelay

been used in the context of road traffic [6], [11] and it has the ap-

pealing feature that under fairly general network topologies and M 7
assumptions on the cost, its existence and uniqueness can be es- U = Am d(A) ©)
tablished. Moreover, as it has been shown in [11], the Wardrop !
equilibrium is the unique limit of any sequence of Nash equivheres € (0, 1) is a trade-off parameter. Such a utility function
libria obtained for a sequence of games in which the numberiefcommonly used in the literature in applications that are sen-
users is finite and tends to infinity (even in those games wheggive to throughput as well as delay (see, for example, [4], [9],
the Nash equilibrium is not unique). For our case here, where {h@], [19], and [5]). It consists of the ratio between the expected
total throughput of the players is not fixed, we consider a sinliroughput (or a power of it) and the expected delay. Thus it cap-
ilar limit of the Nash equilibrium for a large number of playerstures preferences toward higher throughputs and penalizes large
We determine alsymmetricO(1/N) Nash equilibria, and as a delays. Other types of utility functions have been proposed and
byproduct arrive at the conclusion that multiple equilibria dased in recent years, particularly for voice applications, which
exist in some cases. Another interesting feature of the asyniawever do not take into account delays, see, for example, [16].
totic Nash equilibria is that it is possible for only a strict subs@ot capturing delays in utility functions has been debated and
of the available links to carry positive flow. criticized in [3], where it is argued that a more realistic class of
The organization of the paper is as follows. The single-usetility functions are those that are in the form of a product of
case is discussed in Section I, and the multiple-user casg terms—one a function of the throughput and the other one
in Section Ill. Section IV discusses two numerical examplesfunction of the delay. The power criterion (3) we have intro-
which illustrate existence, nonexistence, and various featuresiated above indeed falls in that category.
O(1/N) Nash equilibria. Section V includes some discussion Now, coming back to (3), for convenience, we prefer to work
of future work and concluding remarks, and the paper engdgth the logarithm of this utility function
with an Appendix, which proves eobustnessesult for the

M
single-user case, which is also used in the proof of one of tE ) = log U(N) = (4 + 1) log A
theorems in the multiple-user case. ) i=logUQY) = (+ log Z "

m=

m=1
M
)\rn
Il. OPTIMAL ROUTING AND FLOW CONTROL —log <Z — ) . @
FOR A SINGLE USER o Cm T Am
A. Mathematical Formulation and the Main Result We note thatZL()) is not a concave function, but it is differ-

entiable. Because of lack of concavity, to find the optimal so-

_Consider a single user who wishes to send infinitesimally qjtjon /it becomes necessary to examine all stationary points
visible traffic to a destination, by distributing it ov&f possible of L, as well as its values on the boundary of the Get=

links, with a generic link denoted by, with m € M. Lete,, 0, c1] X [0, ¢a] X - - - [0, ] 2 The existence of an optimal solu-

and)\,,, denote respectively the capacity of and throughput ov; nis quaranteed by the fact that\) is continuous oit. and
Link m, and suppose that the links are labeled in such a way tlaa]t,S Co?npact. y ) ’

First, let us suppose that the optimal solution is an inner solu-
tion, i.e., itis not on the boundary 6f Then, the solution has to
be a stationary point of, determined from the set of equations

C12C 2 2 CMp.

Thus, the overall throughput of the use[ﬁ‘le Am - Assuming

anM /M /1 queue model for each link, andassuming that> oL -0, meM
0 for at least onen € M, the average delay experienced by the I,
user is given by which leads to
/3 + 1 Cm
M M —
A M - v =0 ®)
=11 E E _m DV o — Am )2 Y S
d()\) < m=1 Anl) m=1 Cm — Am (1) Ej_l I (C ) ZJ_]‘ cj=A;

It follows from (5) that the following relationship should hold,
where, also for future use, we have introduced the notatien  for some positive constapi:
(A1, Az,. .., Anm ). We note that because of the averaging, the

Cm 1
delay functiond() is not a monotonically increasing function Ty w2 3 (6)
, . . B . (crn - )‘rn) //L
ofthe),,,’s (whereas it would be if there were only a single link).
For mathematical completeness, we define the average delayfBHs
the limiting case whe A =0as
g D mem A = Com — fin/Cm, M € M. (7)
1 M 1 2Except at\,, = 0 Vm € M, whereL(}) is not well defined, but the fact
d(()) = —. (2) thatU'(0) = 0 in view of (2) implies that this point cannot be a solution, and

M ey Em hence need not be considered in the analysis.
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Substituting this in (5), we get equivalently as:,,, < /¢, because of the ordering of thgs
511 1 and because,, is positive whenever it exists. Of course, for
f +7 R— =0 existence we need the discriminant in (12) to be nonnegative,
€ — HCsq HCsq — NQM i_e_'
which leads to the following quadratic equation for ng 4B+ 1)' 14
where The optimal solution is then obtained by choosing the candidate

solution that results in the largest value for the utility function.
M M For each fixeds,,, (12) suggests that there might be two sta-
¢:= Z Cm, Csq = Z VCm. (8) tionary points, corresponding to the positive and negative square
m=1 m=1 roots in the expression far,,, (whose corresponding values we
denote by}, andy.,, respectively), which indeed is a real pos-
sibility as demonstrated in the context of an example (Example
(B + 2)aq \/([3 +2)2e2 — 4(B + 1)eM 2) Iat_er in this_section: Clearly, . woul_d be a viable candidate
. (9) solution (that is to satisfy the constrajmt, < \/c,) whenever
2B+ 1)M i is, but notvice versaand in fact yet another example (Ex-
Expression (7), together with (9), identifies the stationary poin?énple 1) included later |n.th|s sectlo_n demonstrates thatitis pos-
of (4) if the following conditions are satisfied: sible fpr onlyu;l to be a viable squtlon'. What one can actually
i) the discriminant in (9) is nonnegative, i.e show is that_ itis not necessary to consigér at all, since _ﬂ_ows
e corresponding to it (when it is viable) lead to smaller utility than
4B+ 1)M the flows corresponding t@,,,. We now provide a proof for this
W; (10) result.
Proposition 1: Let m € M be a fixed integer, (14) hold
i) 0 < p < /e, forallm € M, which follows from the with a strict inequality, angk,,, andy.;f, be given by (12), cor-
fact that we requir® < A, < - responding to the negative root and positive root, respectively,
To study whether or not the optimal solution lies on theatisfying the viability condition.}, < |/c,. Let A7 and)\;r
boundary ofC, we first assume that the traffic through each dbe as given by (11) witjy,,, given by and,, respectively.
the links in a given subset of the links, is nonzero and the Then, with the utility functionl/(X) as defined by (3), we have
traffic through the remaining links is zero. The following fact B N
on substitutabilitynow asserts that we need not consider all UAT) > UQAT).
possible subsets: suppose that there exists a link S and a Proof: With m € M fixed, letA be restricted to the struc-
link j € S¢ (the complement o) such that; < ¢;. Thenthe a1 form
utility to the user can be strictly improved by swappingnd j
in the setsS and S¢, because any flow through link results = {Cj — /G, JESm
in a smaller delay than the corresponding flow through link ! 0 JES,

Thus, the only subsets that we have to examine in the searq# . C . .
. . wherey, is a free parameter, which is positive and not exceeding
for the optimal solution are

/&m - Evaluating/(\) under this structure, and denoting the re-

Thus

u=

2
@>
z =

S =1{1,2 m), me M sulting function of the single parameteby W, (1), we arrive
S P 1 - at
For each of the subset$,,, the candidates for the optimal (@ — piEsqm)
solution are given by the following: Wn(p) = ————2% : (15)
csq,rn —mpu
_ Cj — an\/c_j J S Srn H e :

A= 5 e S (11) We know from the hypothesis of the proposition that this func-

J € om tion has two stationary points in the inten@l, ,/c,,,), at u1..,
where andyf,. On the extended positive real line, the function has two

zeres, atpy = 0 andp = €,,/Cqm, and a vertical asymp-
(B4 2)Cqm = \/([3 +2)%e2, . — 4B+ Dem tote aty = &q,m/m, and attains positive values to the left

Hm = 2B+ m of this asymptote, Whe_re botla, _and wh are, sincecs m 2
(12) men,. The seconaerois to the right of _the_ asymptote, since
(Gsqm/m) < (Em/Csqm), Where the strict inequality follows
and . . from Jensen’s inequality along with the observation that when
L - L c1 = --- = cm, i}, iS NOt a viable solution (see the discussion
m = Jz_:l o Gam = Jz_:l Ve (13) later in this section on the equal capacity case). Hence, the func-

tion W,,, (1) is continuous (actually continuously differentiable)
For eachm, the candidate solutions should further satisfy thia the open interva(0, ,/c,,), is strictly increasing to the left of
condition0 < ppn, < 4/c; forall i € S, which can be written 1. = 1, and strictly decreasing in the open interyaf,, 11;},),
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thus readily leading to the conclusion that it attains a strictBlong with0 < X, < ¢,, ¥m € M, is an optimal solution.

larger value afs = 11, than aty = p,. ¢ Infact, the optimal solution undé?()\) is also optimal for the
We are now in a position to recapitulate in precise terms thaility function V().
complete solution to the single-user problem. We now recapitulate and list the observations we have made

Theorem 1: For the single-use#/-link routing/flow-control regarding the optimal solutions under three different classes of
problem formulated in this subsection, the following hold trueutility functions.

i) There exists an optimum solution. * The utility functionU(\) may dictate the flows in some
i) The optimum solution dictates positive flows on of the links to be zero.
links 1,...,m*, and zero flow on the remaining <« The utiIityfunctioan()\) leads to nonzero flow over every
m*+1,..., M (if m* < M), where link.
« The utility functionV()\) leads to multiple optimal solu-

* fr— 2 - . . . . .
L v Win(tem)- tions, with some dictating nonzero flow over every link.

Here, M is the nonempty set of all integers.w with  C. A Special Case: Equal Link Capacities
the property thain € M implies that (14) is satisfied
and u,,, < \/c,. Further,W,,(1,,,) is given by (15),
where the expression for,, is given by (12) with the
negative square root.

iii) The optimum flows are given by (11), witlw = m* and

Later, when we study Nash equilibria with multiple users, the
results for the special case of a single user and equal link costs,
i.e.,¢n = c¥m € M, will turn out to be useful. Thus, we study
here this special case, which is also of independent importance
and interest. In this case

Hm = Hopr -
Proof: The result follows readily from the development Lm = or i Ym € M.
that preceded the theorem. & p+1
Since, we require:,, < +/c, the only viable value fof,, is
B. Two Other Classes of Utility Functions V¢/(B+1). Hence, in this casgt does not constitute a viable

It would be useful to contrast the aforementioned solutidiﬂ'Ution_- _ _ .
with the one corresponding to the more common utility function Considering any subsé,,, the corresponding optimal flow

defined as follows: is
M J5) )
- R <
OO = 3 Mlem—An), BE(0.1).  (16) A=gige Vism
m=1

o . o ] Since all the boundary solutions and the inner solution lead
This is simply the sum of the utilities on each individual linksys the same flow on each link with nonzero flow, the optimal

where the individual utility function on a link represents &q|ytion (and the unique one) is easily seen to be the one that
tradeoff between the throughput and the average delay @bs allaf links

that link. An appealing feature dff()\) is that it is strictly [
concave, and hence optimality of its local solution can readily .

. ; : : . ™ Bt
be ascertained, and in fact the unique optimal solution can o A+ i . o )
easily be obtained as Note that in this case the optimal solution coincides with the one

under the utility functiorl/ given by (16).

L= p e ¥m € M. The optimal single-user solution for the case of equal capaci-

p+1 ties has the following robustness property which we will require
Note that the optimal solution in this case puts nonzero flol@ter.
to every link. However[7(\) no longer captures the tradeoff Theorem 2:Consider a system consisting of one user and
between the overall throughput and the overall average deldy,links with the capacity of thenth link beingc + 6,,,. Then,
as done by the more realistic utility functidi(\) considered there exists) > 0 such that folé,,,| < 6 ¥m € M, the utility-
in this paper, albeit at the expense of a more complicated (ye@ximizing solution is unique and is an inner solution.

c Vme M.

explicitly computable) solution. Proof: See Appendix I. %
Yet another utility function that has been considered in the Yet another useful robustness property of the single-user so-
previous literature is [15] lution with equal link capacities, which we will have occasion
5 to use in the next section, is a result that complements that of
. M ' M Theorem 2 in a different direction. It says that starting with an
VA = < )‘T") <C N Z )‘T") original network of equal capacity links (for which there exists
m=1 m=1

a unique solution which is inner, as already shown), if we add
wherec is the total capacity of all the links. This function isadditional links of lower capacity, the original solution remains
concave in\ (not strictly concave, in the multiple link case),intact (that is, the utility-maximizing solution dictates zero flow

and any set of A,,,} satisfying over these additional links) provided thais sufficiently small.
M The precise statement is the following.
Z = LE Theorem 3: Consider a network consisting of one user and
o g+1 M links, with the first/ links having equal capacity,, and
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the remainingd! — 7 having capacities less thar(i.e.,c; = ., iS negative, thus there are no candidate optimal solutions for
r = Cm = € > Cma1 2 coc 2 cp). Then, there exists athese values of. &
3* > 0 (depending oz andc¢y;,41) such that fors € (0, 3%), Example 2: Consider a network ofi/ links, with M >
the unique utility-maximizing solution dictates zero flow oveb,c; = 2.29,¢0 = ¢3 = ¢4 = 1,¢,, = 0.25,m > 5,5 = 0.5.
the linksm + 1, ..., M. Equivalently, the unique solution isin this case, (14) is not satisfied fen > 5 (as well as for
given by (using the notation introduced earlier) m = 2 andm = 3), and hence the optimal solution would
. dictate zero flow on the links with capacity 0.25. We therefore
A= { (B/(B+1)e, JESn have to consider only the two subséts, m = 1, 4. It turns out
‘ 0 JES that the optimal solution correspondsito= 4, i.e., it dictates

Proof: First note that the right-hand side of (14) is lesdS€ offour links, with the corresponding throughputs being

than 1, and can be made arbitrarily close to 1 by pickirepf-
ficiently close tozera The left-hand side of (14), on the other

hand, is 1 whemn = s (since the firsth links have equal ca- The optimal value of the utility function is 1.455 units. In this

pacny), and St.”Ctly less than 1 m > 7, 8s we now shpw. example, both positive and negative roots in (12) are viable for
That is, denoting the left-hand side of (14), as a function of _ 4 with the corresponding values beipg = 0.9695 and
the integerm, by g,,, we show thatg,, < 1 for m > 7. ! )

L . ; 1 = 0.9111, with the utility corresponding to the former case
This will then immediately lead to the result of the theorem, tfg‘* y P g

o ) - . . eingU(AT) = 1.334, which is of course lower than the op-
picking 5* as the unique positive solution of the quadratic €Y% mal utility level of 1.455, consistent with the result of Propo-
tion (3 +2)2gm- — 4(8+ 1) = 0, wherem* is them > i for i

. . . : _sition 1. It is important to underscore two features of the op-
Wh'ChgT" is the Iarge§t. Thlsfollows.becausg the right-hand S'(Tﬁhal solution as illustrated by this example: First, when there
of (14)isa monoionlcally decreasing fuppuon/bfor p > 0, is more than one link at the same capacity level, if the search for
and for§ € (0, 5*) the necessa[y condition for an optlmuman optimum fails when some of these links are used this does
(14)’. does not h0|d. for any > . We should _note that ON€ ot necessarily mean that the search will fail also if additional
canin fagt show .(W't.h alittle more effort) thg’t_" |s_mon_oFon|- links with the same capacity are considered. Second, it is pos-
cally nonincreasing im:, but we will not do this since it is not sible for both positive and negative roots in the expression (12)
needed in the proof of the theorem.

i . . for to lead to viable candidate solutions.
Now, to prove the required auxiliary result, we will proceed fom ¢

by induction (showing tha,, < 1 for somem > 7 implies
dm+1 < 1). Letm > s, and start with the strict inequality
(€m — memy1)? > 0, which holds because of the ordering of We now return to the original goal of this paper, which is

A1 =0.9113  Xg = A3 = Ay = 0.0889.

I1l. M ULTIPLE USERS

thec,,’s. Rewrite this inequality equivalently as the case of multiple users. To formulate this problem in precise
) terms, consider a routing and flow control game involvitig
4MEmCmi1 < (Em + MCmy1) parallel links andV players (users). Let/ := {1,...,N} be

) ) the set of players and as befokd := {1,..., M} be the set of
Sinceg,, < 1, the left-hand side can be bounded from beloyy,ys. Let\;; > 0 denote the flow of Playei over link j, and

by 4. _ c..41, leading to (after taking the square roots of bot N S
S?éecss)%mc +1 gto gthesq R; = 3N |\, denote total flow on linkj.

Each playeri chooses{);;};ca+ to maximize his or her
_ _ utility function. The total throughput of Playerover all the
2saum/Cm41 < Cn M links is 3=, v, Aij, and, using anM/M/1 queue model as

Now, add .4, to both sides, and the nonpositive quantit)l?efore’ the average delay for the generic Playggiven by the

2y.m — M, to the left-hand side. The resulting strict inequalitfquat'.?n spﬁvx:(nﬁa;thg ti[?]ttom Of the nex:-page, whgn_e thg ¢
(after some rearrangement) can be seen to be equivalenﬁgaCI y olinkj. AS In the previous section, we again adop
he labelinge; > ¢2 > --- > ¢ar. As a natural counterpart of

. 1, which proves the desired result. . . " . .
gmt1 < P ¢ (3), in the single-user case, the utility function of Playds

D. Examples for the Single-User Case taken to be in the form

Example 1: Consider a network of ten links, with the ca- o Ao
pacity of themth link being100—10(m—1). Let the throughput- Z Aij Z ”)\ ) Z Aij >0
delay tradeoff parametgrbe 0.6. The optimal solution is given U;(\) = jeM Jem G TN e

by 0, > Xi=0
JEM
AL =449 X =3773 A3=30.72 Ay =23.90
As =17.32 Ag=11.04 X\, =5.15 whereA here stands for the collectidi\; ; };c a7 jc 41, and again
2 € (0,1). Note that? (the parameter that captures the tradeoff

with the remaining three links having zero flow. The optimabetween throughput and delay) is taken here to be player in-
value of the utility function is 1061 units. In this example, onlylependent. We will, however, taketo depend onV (for rea-
the negative square root in the expressionfgrm < 7, satis- sons to be clear shortly), and write it also/g. To indicate
fies all the constraints. Far > 7, the discriminant in (12) for the explicit dependence of the utility functions 8 we will
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also writel’; asU/}¥ where necessary, and write the logarithnthese constitute amsymptotic Nash equilibriunor areasymp-

of U}Y, except for the casg’ ;. , Aij = 0, by L}, where totic equilibrium policiesf, for all : €
lim LY ({5 (V) Yieat, I () ben kot jem)
. )\z g i JEM, kj kEN ki, jEM
LY =By +Dlog D Aij—log p | . (A7) "7 N )
jem jem G TN = Jim max L (A e AN (M) bkew ki jem).
(18)

A few observations and remarks are in place here. First note
that since Playei will be maximizingU; (), andU;(A) = 0 &
WhenzjcM Ai; = 0, (17) can be considered as the utility of Of course, (18) could have been expressed also in terms of
Player: without any loss of generality. Second, a decision makég", or any continuous monotonically increasing function of
need not correspond to a single connection, so that the utilfy" , without affecting the definition. Now, a further refinement
need not be considered at a packet level, that is as a powefah be brought in to an asymptotic Nash equilibrium by spec-
throughput divided by the delay as experienced by a single cdfying how close the two expressions in (18) are for finite but
nection. Instead, a decision maker could correspond to a siitrarily largeN. In this case, one has to work with a spe-
vice provider that generates through its subscribers a flow @fic structure for the utility function, which we choose to be
calls. The throughput of a call can then be taken to be constdh€ logarithmic utility functionZ;". This further refinement is
and then the throughput determined by the decision maker WlffW captured by the following definition. _ _
correspond to the average number of calls that can be geneP€finition 2: For the N player game defined earlier, with
ated by his subscribers. The utility part that corresponds to e ISganthmlc utility functions and withV' arbitrarily large,
throughput of a service provider could then also be viewed alh i (V).© € . j € M be a set of asymptotic equilibrium

result of some pricing mechanism; a detailed study of this, ho%g icies (flow rates) for the users. We say that these constitute an

ever, is beyond the scope of fis paper. Wit exponent, f there oxits a nonpositve scalarindepen.
We now seek a Nash equilibrium solution [2] for tiNeplayer P ' P P

game introduced above; that is, Ahtuple {\}; }icx jer that dent of N, such that, for alf €

satisfies for al{\;; };ca, and for alli € A LY ({5 (N Y eats A (N ke ki geat)
. = max LY ({Nijlem, {05 (V) then ktijem)
UN ({5 e A% e wstijean) {Af;}je-'w !
> UN({ij Hieam {05 Tren st jem)- TN T o(1/N). (19)
Of course, the same set of inequalities can equivalently be N

Now, toward obtaining the asymptotic equilibrium solution
hich we will also show to be i¥(1/N) Nash equilibrium),
us first assume that for eacéth the Nash equilibrium exists

written in terms ofLY¥ instead ofU}".
To obtain closed-form expressions for such a solution see
to be out of reach for the most general case, particularly in view : S .
g b y nd is an inner solution, i.e\f, (V) #0Vi € N,k € M, and

of the nonconcave nature of the individual utility functions. | ; . o .
. . : . consider the first-order necessary conditions given by
view of this, we will focus here on the asymptotic case wheré

the number of users is large. We will show that, under some oL;
appropriate conditions, symmetric Nash equilibrium takes on a A
simple form in the limit agV — oo, and the limiting solution
exhibits an appealindelay-equalizingoroperty as in Wardrop

=0 YieN, keM (20)

which are equivalent tei € A/, k € M

equilibrium [11], [18]. v+l e +Had)
Before delving into the derivation of asymptotic equilibrium > A (V) (¢ — A(V))2 2 jem %

policies of the users, let us make it precise what we mean by an o (21)

asymptotic Nash equilibrium In order to obtain nontrivial solutions to (21) in the limit &s—

Definition 1: For theV player game defined above, witfi oo, we will scale the parametegty appropriately with respect
arbitrarily large, let\;(N),i € N,j € M be a set of poli- to N, specifically as
cies (flow rates) for the users, which are defined for all positive o
integersV, and show possible dependence@nWe say that Pv=xy VN (22)

1 o >
Z s )‘71 >0
YjemMi i =N =

di(A) = iz 1 S a0
M (¢; =2 ) )’ v

JEM nEN n#i )\TU) jEM
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wherec« is a positive constant. This scaling is reminiscent of Consider any convergent subsequencg of(N)} and de-
heavy-traffic limit results for certain stochastic models of commote its limit by ;.. Assume that; < ¢,k € M, and further
munication networks where appropriate scaling is invoked dnat) := > kem Ak > 0. Then, from (24), the quantity

the problem parameters to obtain meaningful limiting solutions,

see [17], [8], [13], [7], and the references therein. To motivate ) N 1 A(N)

this particular scaling in the context of our model here, consider N XN e — (V) ) > X ()

a simpler version of this model where there is only one link, JEM c;=Ai(N)

i.e.,M = 1. Itis easy to see from (21) that in this case the Nasg§ finite for eachkt € M. That is, for some constan{&; }
equilibrium solution is unigue symmetric, and given By

1 1
1— ——  p(N)= —hp+o(1/N), ke M

b | Ck_Ak(N)p( )= 7l +o(1/N)

)\il(N):4clzz)\(N), ieN. . - .
Npn +1 where (along the subsequence identified earlier)

Note that the corresponding total flow over the linkig = I NY— 5 ) Aj

NA*(N), and hence to ascertain finiteness of the resulting delay Aim p(N) =p= z,; G — N
J€

in the limit asN — <o, we have to requirgy to be of the
order of 1/N. Under this scaling (22) foy, we first present This leads to
an informal derivation of the limiting value of the solution that 1
satisfies the first-order necessary conditions given by (21), and = (V) = [1 + Nhk} p(N) +o(1/N).
then make the result precise. o
We henceforth restrict our attention only to solutions that afg'Us. to am(1/N) approximation
symmetric across the users, which is a reasonable assumption _ i
given that the players (users) enter the game symmetrically: G- NN =ea- AN+, 5>1 (25)

for some constantg,; := (h; — h1)p, with ;11 = 0. Introduce
Aij(N) = N (N)/N Vie N, andeachj € M. 3= (=) '

N 1 A(N)
In view of this assumption, (21) can equivalently be written as f(N) =< I—— : (V)
)\(N) C1 A1 (N) Z . _AGMYT
vk e M JEM c;—A;(N)
(26)
N({}N—Fl) B Ck—)\k(N)—i—)\k(N)/N

n =0 (23) substituting (25) into (26), and ignoring thél /N) terms
AN) (er = M(NV))? T e pn 225005 g (25) into (26), and ignoring thél/N)

where f(N)= )\(]j\f) 1- - il(N)
M
AN = DX (V). A(N)

> NN (1
_ JEM =X (N) (c1—A (N)N
Note that by our “inner solution” assumptiok(V) > 0 YN .5

Now, using3y = /N in (23) yieldsvk € M _N | A(N)
A(N) N (1 -
G+ N N = M)+ A (V) Ziem M) (1~ =iz
AN (e — M(IN))2 > em % Thus,
li N)y=—=% M - A)A.
which can be written as d J) Z sti/ller = ANl
jeEM
N : 1 NN Therefore, agVv — oo, (24) becomes (fok = 1)
) o= A(N) A () e Ajl
AN) e = Ak(N) ZJEM c;—A;(N) 2 — QJEM e -3 at =0.
a )\k(N) )\ )\ (Cl — )\1) )\(Cl — )\1)
+= - — =0 (24 Th _ P P
(N us, fork = 1, we obtain, in the limit agV. — co
AN (e = M) e ﬁ
. . . . . 1 1
We are interested in the solution to this set\dfequations for a=-—— AL+ X Z Ajj
large V. - jcMm
SUniquenesgollows because (21) is also sufficient in this case. For a generak, we have
4For consistency in notation, we still use a subscript “1” to designate the link,
even though there is only one link. 1 1
SEven without the “inner solution” assumption, this property holds because o= h — M A + i Z )‘j (Nj - Nk) . (27)

U,(X) = 0 when the total throughput of Playéis zerg i € N. jEM
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Since, by (25)(ck — M) is independent ok, we havevk, m

)\k + = Z )\ )\rn + < Z )‘ an
JEM jEM
which leads to
Z )\ Nn) = MUk — Hm-
JCM
Therefore
1 e + = Z A (
o =
Cp — )\k k
JCM
k*—"+>\ de \/1 ]
1
= —§:A ke M. (28)
Cp — )\k

jeEM
Next, we explicitly computé\s. In order to solve for the;’s,

we first introduce
_ 2 5 2
c::ch, :Z)\j cQ:Zch.
JEM JEM

JEM

Then, from (28), we obtain
a)\z (cp — k) ZZ)\2<:>CY)\C—CY)\2

kg
Let ¢ := ¢ — Ax. Summation ovek € M yields

MX2. (29)

M¢=2— X (30)

This time, starting with the relationship. = ¢;, — ¢, squaring
both sides, summing ovérc A1, multiplying by A, and using
(30), we arrive at the following relationship:
MX2 = Mc? — 2Me¢ + M*(()?
=M —2¢E— N+ (e— N3
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Theorem 4:Suppose that there exigt\;}1Z, satisfying
(32)—(35). Then
Aj

)\Z‘jIN, teN, jeM (36)
constitute arO(1/N) Nash equilibrium with exponent
k= alog 72)\ <0 (37)
VAQ + oMy
where
AT MA2
= +a’M?y > 0, (38)
~
and o
A2
= 39
vi=3 (39)

Proof: Let us fix the flows of all users except those of a
generic user, Player as given by (32)—(35). Let the flows of
Playeri, arbitrary at this point, be denoted by,,,m € M.
Then, what Playef faces is a single-user problem of the type
studied in Section II, with the capacity of link,m € M, as
seen by Playet being

7 N - N2

Cm = Cm N )\m = a)\)\ + )\ma
Note that \,,, A2, X all being independent ofV, ¢, above
is a (1/N)-perturbation around a nominal constant capacity
(A2/a)) per link (independent also of the user), and hence,
the generic user sees an almost equal link capacity network.
By Theorem 2, there exists aw*, sufficiently large, such that
for all N > N* Playeri's response to (32)—(35) is an inner
solution. Further, for each sucH, the solution is unique, and
obtained as the unique stationary pointlét’, with all other
users’ policies fixed as given, that is, of the function

I+ M
Tim
Wt = (S ) /(35"
m=1 m=1 Cm ~ Thim

(41)

m e M. (40)

Using this in (29), we obtain the following quadratic equatiofyherec?  is given by (40). It now readily follows from Theorem

=M -2+ )\ (31)
for A:
(a+ DX —aeh+ M - =0
which admits the solution(s)
_ v =+ v+ 22 —4(a+1)M
s e Vla 22 —dlat DMy (32)
2(a+1)

whererv = ¢2/é2.

aforementioned solutions should satisfy the bounds
0<i<e (33)

in which case the corresponding individugf's (that is, total
flows over the individual links) become

c— A

(34)
provided that
(35)

For all this to be valid, at least one of the

1, and patrticularly, (15), that the unique inner maximizing solu-
tion for V¥, alluded to previously, yields the value

42
D)
max V¥ ({mij}iem) = ~—=—=—t—pn=: V"

{nis}iem — MLL
(42)
where¢ andcZ are given by

M - -

_ ‘ - A A

b= = —=My+ =

c ,; Cr -2+ N + N

: Z Ve, = \/
m=1 m=1

with + defined by (39), and. given by (9) with the negative
sign, and withc;; and é replaced byei, andc’, respectively.

Equivalently
9)

o= (e ) V) (au s



ALTMAN et al: NASH EQUILIBRIA FOR COMBINED FLOW CONTROL AND ROUTING IN NETWORKS 925

with and next expanding the denominator of (42), we get
a2 ——2 N — =
= . ) _ . ) —_— MOé +
Q (j—i—N) c, —4M (l—i—N)c Céq_MN:\/;4N\/§+O(1/N)'
a” —2 @ —2 —
= V2% +4(1+N) (csq —Mc). Hence ) )
0 I nowis t ti," for N sufficiently | d lim vV = 1 5 TANY s
ur goal now is to computey,~ for N sufficiently large, and  1im V" = lim \/5—}—04M\/f7 I yttsR
particularly, asV — oo. Toward this end, we start with the fact’ —>° N—eo
that for any real-positive number, Z— A
I =V= 5 (46)
/ — 3
Ite=1+5-5+ O(z) On the other hand, with;; = \;; as given in Theorem 4
and use it to obtain the expansion substituted intd’;" given by (41), yields
; M/ N)LHe/N
[ e L\’ 1 V(DN = WA
v = 1 T ] = O — 3 J al()2
Tt N ﬁ( TN 8(ny> AW S
which further leads to (AT e A AT 47
A A2 1 1 _,y(N)_MN.()
cy =V <M + SN 82 N2 +0 <W)> This tends tdé— \) /M asN tends to infinity, which is identical
wit . Hence, the policies in Theorem 4 indeed constitute an
(43) ith (46). H h liciesin Th 4 indeed [
asymptotic Nash equilibrium.
and - o To prove that they are also #©(1/N) equilibrium, it will be
adil Vo A2 — M2 1 Lo <L) (44) sufficient to compute, using the expansions already obtained
sq - 2 3/ .
| oo AR log V;V({A,/V}) ~ log V7Y
In view of these expansions, we have o 2\
- — oo = —log————— +0(1/N)
Q=N T MM 4 "My O<L) N 7 /4@ + aMy
dy NZ N? N? which is exact to th€1/N) term. The exponent also readily
~ 0. 1 40 <i> follows from the aforementioned expression, which is also neg-
o N N3 ative, as the following sequence of simple steps shows:

where() is precisely the one given by (38), which can also be MX2 > 22— AMX? > 322 + M X2

written as = daMly > 3\ 4+ M2
Q:EQ—MC—Q-FO(Q(E—;\)QM = A2 — MA2 + P M?H? > 4)2
a c—A ’ —daM Xy + o*M?y?
Note also that = Q> (2X — aMfy)?
_éq_# ol \/7_ = \/7Q + aM~y > 2)\.
B= 2 T SN <acSq +4/Q ) +0o(1/N). (45)

o

For this expression to be valid, it is of course necessaryhat Theorem 4 has provided a characterization of a symmetric
be positive, which, however, readily follows from the positivit)@(l/N) Nash equilibrium provided that (32)—(35) admit a so-
of @ for all sufficiently large/N', which itself follows from the  |ytion. Inevitably, this requires that flows @il M links be pos-
single-user result embodied in Theorem 2. It is also possibleime’ which may not always be the case. In other words, a sym-
show positivity of¢) directly, which we quickly do here for the metricO(1/~) Nash equilibrium with nonzero flows on all the

sake of completeness. Start with the obvious inequality links may not exist, even though there may still exist a sym-
(M) = A2 > —MAZ())? r_netricO(l_/N) Nash equilibrium that uses only a subset _of the

links, that isS,,, := {1,...,m} for somem. Such a solution

which is equivalent to would be obtained by simply substitutingfor M in (32)—(35).

Vi 57 T Now, even if a solution exists to (32)—(35) with < M re-
2/\2\2 2 2 27\2

MEAR)™ = MNP+ (A)7 > 0. placing M, it does not necessarily follow from Theorem 4 that

Dividing throughout byA? and using the definition of, leads the resulting policies, extended by assigning zero flows to links

toQ > 0. in 8¢, will be in O(1/N) Nash equilibrium. They would be in
Now, first expanding the numerator of the expression (42) f6}(1/N) Nash equilibrium when restricted ), (this follows
V.N*, but without the powef1 + «/N), we obtain readily from Theorem 4), but this property may not hold in the

_ extended game with ali/ links. What needs to be shown is that
& — . = yaM n V@) 1 +o(1/N) when all players except one use the flows dictated by the result
> 2 2 )N of Theorem 4 withm < M replacingM, and zero flows on
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the remainingy/ — m links, then the remaining player does notn his logarithmic utility. Ifc,,,+1 = ¢1 — AT?, then by our earlier
have any incentive (in terms of maximizing his utility) in usingliscussion of the single-user problem, Player 1 will distribute its
any of the links outside,,,. Assuring this will inevitably im- total flow among alln + 1 links and again the solution does not
pose some restriction on the capacities of the links belonginggmvide anO(1/N) Nash equilibrium, nor an asymptotic Nash
S;, relative to the excess capacities left for that player on tleguilibrium. &
links belonging tos,,,, which is what the next theorem does. It The two theorems included in this section provide, in a sense,
provides testable necessary and sufficient conditions for a Het complete solution to the combined routing and flow control
of positive flows on only a subset of the links to constitute problem with multiple links and an arbitrarily large number of
symmetricO(1/N) Nash equilibrium for the original/-link  users. They provide testable conditions for a characterization
network. of the entire set of symmetri©(1/N) Nash equilibria, where
Theorem 5: For someS,,,, suppose that there exists a soluthe number of tests is equal the number of link&, Each test
tion to (32)—(35), with the corresponding total flow on Ligik involves checking the existence of a solution to (32)—(35) inter-
denoted by\§m>, Then, the set of flows preted for a generak, and ifm < M also checking condition
(m) . (49). If all these conditions fail, for ath € M, then the network
Aij(N) = {)‘j /N, j<m, jeM, ieN (48) 9amedoesnotadmitany symmetfil/N) Nash equilibrium,

0, J>m, but we should note that this does not rule out the existence of
provides arO(1/N) Nash equilibrium if an O(1/N) Nash equilibrium which is not symmetric across
players.
Cmp1 < e — A, (49)  Even though the conditions embodied in the two theorems

are easily testable through numerical computation, it may

. . still be desirable to translate these conditions into ones that

given by (37) withM replaced byn. : . . . .
involve simple regions in the space of all parameters defining

Conversely, ifemi1 > c1 — AU, then the set of flows (48) NN o
. . = L . the network game. One set of such conditions is provided in
is not in O(1/N) Nash equilibrium nor do they constitute an ork g u " 'S provi !

totic Nash ibri Appendix Il for the case corresponding to full use of all links
asympp 0 'fC Uasd et?]u”h ”uTh' is of the th fix the fl of the network (that is, the situation covered by Theorem 4),
root: ‘Under the hiypothesis o the theorem, fix the c)qut can easily be extended to cover the setup of Theorem 5 by

of all users except Player 1, as given by (48), and consider { . . - . .
optimal flow allocation for Player 1. Assume that (49) hold 4%91)ply replacing with m and requiring also satisfaction of

Then, the problem faced by Player 1 is a single-user problem
(as in the proof of Theorem 4) with link capacitiels i € M,

In this case, the exponentin the O(1/N) approximation is

IV. EXAMPLES OF SYMMETRIC O(1/N) NASH EQUILIBRIA

where
We present in this section two numerical examples which il-
¢t =c1 +O(1/N) i=2,3,...,m : "
i 1 ’ 195 lustrate various features of symmet€x1//N) Nash equilibria.
and Example 3: Consider the same network of links as in Ex-

1

m?

i>m. ample 1 of Section II-D, witlx = 0.9. There is no solution to
(32)—(35) if we consides$,,, form > 7. Form = 6, the positive

We will now show that this single-user problem does not admijuare root in the expression (32) leads to a feasible solution,

a solution for anys,,, n > m. Sincec;,, 4, < ¢;,, we have with the corresponding value for (32) beind = 182.95. The

n 2 " negative oneX~ = 30.206, however does not, since it leads to
<l Z /cl> < 1 <Z cl) — an < nel (50) @ negative\g. The flows corresponding ta+ are, from (33):
n £ 7 n £ 7 5, n
=1 =1 AL =55.49 X =4549 A3 =35.49
whgre the notatio_n i; that of. (13) with only SL_Jpe.rsc;i‘ipkjd.ed. Ai=2549 X5 =1549 )¢ = 5.49.
In view of the strict inequality in (50), the discriminant in the
expression (12) is negative wheh= 0, and by continuity for Itis easy to verify that the condition given in Theorem 5 is satis-
all positive values off sufficiently close tazero(and hence for fied in this case, and thus, we have a symmefc/V) Nash
all sufficiently largeV). This implies that,, given by (12) does equilibrium. The exponent in the O(1/N) approximation is
not exist for sufficiently largeV. Thus, there is no incentive & = —0.0875. _ _ N
for Player 1 to use the links outside the s&t, and therefore ~ Form < 6, (32)—(35) provide a solution, but the condition
the result of Theorem 4) applies with judf replaced bym. givenin Theorem 5 is not satisfied, and thus, there is no sym-
Hence, the set of policies (48) provides a symmettd/N) metric asymptotic Nash equilibrium where the users send posi-
Nash equilibrium under the given conditiep; < ¢; — /\gm)_ tive flow on only t.he firstfive (or. fewer) links. _ &
links S,,,.+1, by the previous argument, for largé, the optimal Multiple O(1/N) Nash equilibria. Specifically, consider a net-
response of Player 1 is to allocate allits flow to Limk-1. Thus, WOrkof 10 links with
the soluthn to (32)—(_35) cannot b_e d_iz(l/N) Nash equmb-_ =100 and ¢, =50 m=23,... 10
rium, nor in asymptotic Nash equilibrium, because the optimal
response of Player 1 (which uses Limk+ 1) with the flows of and witha = 0.9. In this case, it turns out that all 10 links
all other players fixed as given results in@ql) improvement can be used, and hence Theorem 4 directly applies, with both

1_ ..
cj—c]<c
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positive and negative square roots in the expression (32) &dgorithms for the users’ myopic response behavior to evolve
A yielding feasible solutions. Hence, we haveo symmetric (converge) to theD(1/N) Nash equilibrium; iii) developing
O(1/N) Nash equilibria. The one corresponding to the positivthe counterparts of these results for general topology networks,
square rooft = 201.9 is such as [1]; and iv) exploring the possibilities of other types
. . of scaling (of3 with respect ta/V) and their implications on
AL =6519 A, =1519 m=23,...,10 existence of Nash equilibria.

and the one corresponding to the negative square xoot=
58.7 is: APPENDIX |

PROOF OFTHEOREM 2
A =50.87 A\, =087 m=23,...,10. _ , , o
In this Appendix, we provide a proof for Theorem 2 given in

Again, we see the delay-equalizing property in both cases. Biection II. Let us first introduce some notation and state some
nally, the exponents for th&(1/N) approximation for these properties of the utility function to be maximized by the generic
two sets of policies are user.

Let f(A;¢) denote the utility function (3), where we show

+_ - _
Rt =-01472 k= 07773, here its explicit dependence on the link capacities vector
To explore the possibility for other Nash equilibria (withe = (c1,...,¢a), in addition to the throughput vector
fewer links used with positive flow), we computet for A = (A1,...,Ax). The domain of definition forf as a

all m < 10. For S,,,m = 6,7,8,9, both the positive and function of\is [0, c;1] x - - - x [0, en]. Note that on this domain,
negative square roots provide;} that satisfy (32)—(35), but f is a continuous function of for each fixedc. Furthermore,
the condition in Theorem 5 for af(1/N) Nash equilibriumis as a function ofc, for fixed A > 0, it is continuous in the
not satisfied for any of these. Thus, none of these solutions céfmain[A;,00) x - - - x [Axr, 00). Moreover,f(A; c) > 0, with
stitute anO(1/N) Nash equilibrium. FoiS,,,m = 2,3,4,5, equality holding if and only if eitheA = 0 or A, = ¢, for at
there exists ng\; } that satisfies (32)—(35). Fdi;, the negative least onem = 1,..., M. Now consider, for fixed: > 0, the
square root yields solution to (g?)—(%) given by = 47.37. maximization problem:

Sincecs = 50 < 52.63 = ¢; — A; 7, the condition of Theorem )

5 is satisfied, and hence thete is indeed @1 /N) Nash )\mc[O,chfla)inzl ..... M f(ie) (1)
equilibrium where all users use only Link 1. The exponent

in this case iss = —0.6904. Note that the total flow over the bounded . ists (which we denoteb dth
network under thi©)(1/N) Nash equilibrium (which is 47.37) Pounded, amaximum exists (which we denote\bft), and the
maximum value byf*(¢)), and furthermore sinc¢ takes the

is less than the ones under the otlign /N) Nash equilibria I hen\. — o f haver:
above which dictate use of all ten links (which are 201.9 an@ uezerownen A, = ¢, foranym, we nave m(€) < em.
Now letc” denote the vector of link capacities, whose compo-

58.7). : X .
) ri1tents are all equal, with (by a slight abuse of notatisrgiso de-

An interesting feature exhibited by this last example is that tina th | fth individual ts. Th
is possible folO(1/N) Nash equilibria for a particular networkcv%'EgowetﬁZTmon value otthese individual components. then,

game to dictate use @il available links oonly onelink for all
ing i 3
users, and nothing in between. A (e0) = /31100’ meM:={l,..., M}

is the unique solution to (51), which is clearly an inner solution.
We have obtained explicit expressions for asymptotic and Two further properties of will be useful in the development

O(1/N) Nash equilibria in a network witd/ parallel links below:

and a large numberN, of players who attempt to choose

routes and flows to maximize their individual utility functions, FOm; A = 0;:¢7) < f¥(e%),

which are taken as the ratio of some positive power of the YA, €[0,¢?], i#£m, meM (52)

total throughput of that user to the average delay seen by the , , , , )

user. We have focused only on the symmetric equilibria, whi@d for anye’ := (¢, ..., ¢j) such thae; > ¢; Vi

turned out to have the appealing property that as the number . .

of players, N, becomes arbitrarily large, the delays over all Jse) < JAi€), VAn €[0,em], m e M. (53)

links with positive flow become equal. It would be interesting Consider now the following class pierturbedoptimization

to explore whether the problem also admits nonsymmetgi¢oblems:

O(1/N) Nash equilibria, and what their properties would be.

It would also be interesting to study the more general network | . Wmax =~ fm(A e +4), meM (54)

game where different users or different groups of users have !

different delay-throughput tradeoff parametefiés (or «’s), whereA := (é1,...,65), and fp, is f with A,y = -+ =

in which case it will be necessary to consider nonsymmetrig,, = 0, that is with only the firstn links.

equilibria. Other extensions one can envision are: i) studyingThe following lemma now says that the maximum value of

the existence and characterization of Nash equilibria in the cabg in (54) for each fixedn can be made sufficiently close to

of a finite number of users; ii) developing distributed dynamig;,(c®) by pickingé;’s sufficiently close tazera

Sincejf is continuous (iM\) and the constraint set is closed and

V. CONCLUSION
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LemmaA.1:Givene > 0,36 > OsuchthaV's;, |6;| < 6,7 < To prove the left-hand side inequality of the Lemma, we go

m. through similar steps, but this time obtaining lower bounds in-
stead of upper. Letting := min(6;,0), A~ := (61 ,...,6,,),
—e+ frm(c?) < [ lna]X fm(Ac® + A) the first set of inequalities in the proof above is now replaced by
A C 0,c§?+67- a=1,..., m
< fr(e®)+e Al ;pfg;] .y FO® + A)
 Aef > a e+ A
Proof: Define s := max(§;,0), At == (67,...,6;), = )\Z_C[chlfﬁif}?icM Jxe )

and note that in view of property (53) > max FOue® + A7)
T ne0eots; iem
max f e+ A)

A €[0,co+68;],i€ M > Ao g@g} .y F(\e® = 81y)
< J )\' © A+ 7>(< (; 7
- Aie[o,glﬁgf},iemf( AT 2 () =«
< N fse? + A and this completes the proof of the Lemma. &
i€l0efHoT e M . We now use the result of Lemma A.1 to prove Theorem 2 of
< A Cl0.Co 43 iCM F; ¢ + 81) (35)  section II. What we need to show is that there exists an open

neighborhood of® € R such that in that neighborhood the
wherel,, is the A/-dimensional vector with all entries 1. Here solution to (51) still requires alM links to be used, a&*(<°)
the first inequality follows because the function to the maxidoes.
mized on the right-hand side is no smaller than the one on theToward this end, let the maximum @fA; ¢) with A,; = 0 be
left-hand side; the second inequality follows because the caoff;_;(¢), and without this constraint bg,(c), which we had
straint set is no smaller; and the third inequality follows for botélenoted earlier af*(c). Sincef(A; ¢?) has a uniqgue maximum,
aforementioned reasons. we already know that

Now consider the maximization problem e Fo(e) = Foy (%) > 0.

N[0, LB ie M FG e+ 81ar) (56)  Then, pickinge = «/3 on the right-hand side inequality of
Lemma A.1, withm = M — 1, leads to
wheres” < §. Sincef();¢) — 0 as); approaches the upper

limit of its constraint, for any, 36" < & such thatvé”,0 < cpo copb iy aoy SfOm, A =0;¢7 + 4)
1 1 H H 1 H H
0" < _6 : the maximization problem (56) is equivalent to the < PO = Fi(e) +e—Be= f () — 2¢
following:
whereas doing the same on the left-hand side inequality of
max  f(Ac+ 6 1nm). (57) Lemma A.1, withm = M, leads to
A;:C[0,e0],iCc M
. ) _ _ max A +A) > fi(c?)—¢€
Since f(\; ¢ + §1p) is continuous ins’ > 0 for eachA € A €[0,c045;]i=1,..., M u ) > Tule)

[0,¢] x -~ x [0, ¢?], where the latter is a closed and boundegly,; -, (when compared with the previous inequality) shows that

M qi y 5
ilibset ORO j‘glvene > 0,38 such that/¢',0 < ¢’ < 6, and there is loss of performance if the'th link is dropped. This
i €[0,¢)i e M completes the proof of Theorem 2.
. A0 ! .0
Fe” +81a) < fF(Xe”) +e APPENDIX ||

This property immediately leads to the bound: EXISTENCE ANALYSIS

We provide in this Appendix direct conditions on the param-

A-e[én§f(iem F ¢+ 8'1y) eters of the network game under which the discriminant in (32)
e N el o is nonnegative, and at least one of the solutishsand )\~ sat-
< ,\ie[éf}ffieM Fse?) +e=f1(e") +e isfy (33) and (35), equivalently, conditions on the parameters for

) the network game to admit a symmetéx1/N) Nash equilib-
In view of this bound, picking = min(§"”, 6) in (55), provides rium with positive flow on allM links. The lengthy but fairly

the bound straightforward analysis that has led to these results has not been
included here.
max T+ A) < fr () +e Let us first introduce some notation
A €[0,c04-6;],i=1,...,m
which is the right-hand side inequality of the Lemma, for= €= @4/5’
M. One can go through the same steps forany M as well, vi=dife (58)
whereé could actually depend om. But since there is only a p:=2[Mv—14++/(Mv—1)Mv] (59)
finite number of them, taking the smallest one proves the result v 2—-Mé . 1

if 6 < — (60)

(right-hand side only) for arbitrary.. (1-Me¢)e 11— Mé M’
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=0, ifé= 1 3) If all ¢;'s are equal, from Subcase 1), no restriction is
M imposed or, and the discriminantin (32) is zero, leading
ra=(1-— Mé)/(Mé — 1) (61) to the solutiom\ = (/o + 1)¢, and hence
' 2
i = ¢ Vie M.
We now consider two complementary regions for the parameter a+l
values (which do not depend ar). 4) For the network game of Example 3 in Section IV
Region A: M6<1/2 N _ o . 1 . ) 1 7 57
If o > g, (32) with the positive square rook;", satisfies both €= e Me= 11 < 5 VT 4Ty

(33) and (35).
Otherwise, there is no feasible solution to (32)—(35) when pa-
rameters lie in Region A.
Region B: M¢ > 1/2.
Subcase 1)« > max{p,r}.
Again AT satisfies both conditions (33) and (35).

which puts us in Region A. Sineg> « = 0.9, the con-

dition fails, and there is no feasible solution—consistent

with the result of Example 3 that there is no symmetric

O(1/N) Nash equilibrium with positive flow on all links.
5) For the network game of Example 4 in Section IV

1 10 1
Subcase 2) t== Mé=—>> p=01074 r=0.1010
Mée? (% 17141 111 ?
max{p,q} < a <r and ;/gwcl p=1 1=
¢ and sincex = 0.9, we have the strict ordering < p <
Under these two conditions, agait satisfies « < g, Which puts us in Region B, Subcase 3), implying
both conditions (33) and (35). that bothA™ and A~ are feasible, consistent with what
Subcase 3) was reported in Section IV.
) 6) ReplacingM with m < M in the conditions previously
Me resented would provide a set of direct conditions appli-
2 1 <a<qg and v> —r—. P : )
max{p,r} £ ¢ < g Y= oMe—1 cable to networks where onty out of A/ links carry posi-

tive flow (the situation covered by Theorem 5). Of course

- > o in this case one also have (49) to check, but at least the
these two conditions, and hend¢ is a fea- previous direct conditions would help to eliminate infea-
sible solution here. However, under these two  gjp\a cases. For example, in the network game of Example
more restrictive conditions, (32) with the nega- 3 one can show that these conditions fail not only for
t'V‘_a square “?0@\_' also prqy|de a feasible so- m = M = 10, as shown in item 4 above, but also for all
lution, s_atlsf_ylng both conditions (33) _and (35). m > 7. For example, forn = 7, mén, = (4/7) > (1/2),
Hence, in this case we have two solutions. . which puts us in Region B. However, the ordering

Subcase 4) If the conditions of the three subcases above fall,
then there is no feasible solution to (32)—(35) p=07575<a=09<q¢g=1083<r =6

when parameters lie in Region B. _ . .
We now make a few ful observations based on the previ tells us that there is no feasible solution. Fer= 6, on
€ nowmake afew usefulobservations based onth€ previous o giher handiné,, = (2/3) > (1/2), which puts us

results.

1) The maximum possible value @f¢ is 1, which is at-
tained when all the link capacities are equal. What dis- p = 0.5707 <7 = 0.6667 < ¢ = 0.7333 < a = 0.9
tinguishes Region A from Region B is, roughly speaking,
whether the difference between the largest and smallest
link capacities is relatively large (the former) or relatively
small (the latter). On the boundary between the two re-
gions, that is in the limiting cas&/¢ = 1/2, a solution
(and a unique one) exists if and onlyif> 4AMv — 3, and
the solution is\™. In this caseg > p, and Region A solu- [1] E. Altman, T. Basr, T. Jiménez, and N. Shimkin, “Competitive routing

. . . in networks with polynomial costsfEEE Trans. Automat. Confivol.
tion and Region B Subcase 2) lead to the same asymptotic 47 5 92-96 Jifn_yzooz_ J '

The condition of Subcase 1) is subsumed by

again in Region B. The ordering in this case is

which is Subcase 1), telling us that (m) is feasible for
m = 6. This is, of course all, consistent with what was
reported in Section IV for Example 3.
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