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Abstract—We consider a noncooperative game framework for
combined routing and flow control in a network of parallel links,
where the number of users (players) is arbitrarily large. The utility
function of each user is related to the power criterion, and is taken
as the ratio of some positive power of the total throughput of that
user to the average delay seen by the user. The utility function is
nonconcave in the flow rates of the user, for which we introduce a
scaling to make it well defined as the number of users, , becomes
arbitrarily large. In spite of the lack of concavity, we obtain ex-
plicit expressions for the flow rates of the users and their associated
routing decisions, which are in (1 ) Nash equilibrium. This
(1 ) equilibrium solution, which is symmetric across different

users and could be multiple in some cases, exhibits adelay-equal-
izing feature among the links which carry positive flow. The paper
also provides the complete optimal solution to the single-user case,
and includes several numerical examples to illustrate different fea-
tures of the solutions in the single- as well as -user cases, as
becomes arbitrarily large.

Index Terms—Asymptotic Nash equilibria, flow control, net-
works, noncooperative equilibria, nonzero-sum games, routing.

I. INTRODUCTION

F LOW CONTROL and routing are two components of re-
source and traffic management in today’s high-speed net-

works, such as the Internet and the ATM. Flow control is used
by best-effort type traffic in order to adjust the input transmis-
sion rates (the instantaneous throughput of a connection) to the
available bandwidth in the network. Routing decisions are taken
to select paths with certain desirable properties, for example,
minimum delays. In many cases, both flow control and routing
decisions can be made by the users (rather than by the network)
so as to meet some performance criteria. The appropriate frame-
work for modeling this situation is that of noncooperative game
theory.
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Noncooperative games combining flow and routing decisions
have been studied in the past; see, for example, [11], [14], and
the references therein. In particular, it is well known that when
the objective functions of the players are the sum of link costs
plus a reward which is a function of the throughput, then the
underlying game can be transformed into one involving only
routing decisions. Another recent paper that considers a com-
bined flow control and routing game is [15], where the utility of
each player is related to the sum of powers over the links.1 The
part of the utility in [15] that corresponds to the delay is given
by the sum of all link capacities minus all link flows, all mul-
tiplied by some entropy function. Thus, the utility in this case
does not directly correspond to the actual expected delay, but it
has the advantage of leading to a computable Nash equilibrium
in the case of parallel links.

In this paper, we consider instead the actual power criterion,
that is the ratio between (some increasing function of) the total
throughput of a user and the average delay experienced by traffic
of that user. This power criterion is commonly used in flow con-
trol games not involving routing decisions as it enables each
user to view the network as a single link with an equivalent cost.
(This property holds, under certain assumptions, even in the case
of dynamic, state-dependent flow control games; see [12].)

In the paper, we first consider the case of a single user ac-
cessing multiple links. Since the utility function we consider
is not concave, the optimal solution (which exists) has to be
obtained by examining all stationary and boundary points. We
show that there is a simple procedure to perform such a search.
An interesting feature of the optimal solution is that it could
dictate the user not to use all the links in the network. This ob-
servation is useful since such a behavior arises even in the case
of multiple users attempting to reach a Nash equilibrium.

Following the study of the single-user case, we move on to the
case of multiple users and study the asymptotic case when the
number of users is very large. Here a user would represent ei-
ther an individual who is able to split his flow and determine its
routes, or a single service provider in the context of noncooper-
ative sharing of the network by many service providers. When
the total throughput of all players is fixed, a well-established
theory exists for the resulting routing game, and in this case,
the solution concept is known as theWardrop Equilibrium[18].
This equilibrium is characterized by the fact that users choose a
source-destination path only if it has the smallest delay. A single

1The power criterion is the ratio between some power of the throughput and
the delay.
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user in that framework is considered to be infinitesimally small,
so that it does not have any influence on the costs of other users,
and more generally, on the link costs. This equilibrium has often
been used in the context of road traffic [6], [11] and it has the ap-
pealing feature that under fairly general network topologies and
assumptions on the cost, its existence and uniqueness can be es-
tablished. Moreover, as it has been shown in [11], the Wardrop
equilibrium is the unique limit of any sequence of Nash equi-
libria obtained for a sequence of games in which the number of
users is finite and tends to infinity (even in those games where
the Nash equilibrium is not unique). For our case here, where the
total throughput of the players is not fixed, we consider a sim-
ilar limit of the Nash equilibrium for a large number of players.
We determine allsymmetric Nash equilibria, and as a
byproduct arrive at the conclusion that multiple equilibria do
exist in some cases. Another interesting feature of the asymp-
totic Nash equilibria is that it is possible for only a strict subset
of the available links to carry positive flow.

The organization of the paper is as follows. The single-user
case is discussed in Section II, and the multiple-user case
in Section III. Section IV discusses two numerical examples
which illustrate existence, nonexistence, and various features of

Nash equilibria. Section V includes some discussion
of future work and concluding remarks, and the paper ends
with an Appendix, which proves arobustnessresult for the
single-user case, which is also used in the proof of one of the
theorems in the multiple-user case.

II. OPTIMAL ROUTING AND FLOW CONTROL

FOR A SINGLE USER

A. Mathematical Formulation and the Main Result

Consider a single user who wishes to send infinitesimally di-
visible traffic to a destination, by distributing it over possible
links, with a generic link denoted by , with . Let
and denote respectively the capacity of and throughput over
Link , and suppose that the links are labeled in such a way that

Thus, the overall throughput of the user is . Assuming
an queue model for each link, and assuming that

for at least one , the average delay experienced by the
user is given by

(1)

where, also for future use, we have introduced the notation
. We note that because of the averaging, the

delay function is not a monotonically increasing function
of the ’s (whereas it would be if there were only a single link).
For mathematical completeness, we define the average delay for
the limiting case when as

(2)

The objective of the user is to maximize the following utility
function, which quantifies a tradeoff between throughput and
delay

(3)

where is a trade-off parameter. Such a utility function
is commonly used in the literature in applications that are sen-
sitive to throughput as well as delay (see, for example, [4], [9],
[10], [19], and [5]). It consists of the ratio between the expected
throughput (or a power of it) and the expected delay. Thus it cap-
tures preferences toward higher throughputs and penalizes large
delays. Other types of utility functions have been proposed and
used in recent years, particularly for voice applications, which
however do not take into account delays, see, for example, [16].
Not capturing delays in utility functions has been debated and
criticized in [3], where it is argued that a more realistic class of
utility functions are those that are in the form of a product of
two terms—one a function of the throughput and the other one
a function of the delay. The power criterion (3) we have intro-
duced above indeed falls in that category.

Now, coming back to (3), for convenience, we prefer to work
with the logarithm of this utility function

(4)

We note that is not a concave function, but it is differ-
entiable. Because of lack of concavity, to find the optimal so-
lution, it becomes necessary to examine all stationary points
of , as well as its values on the boundary of the set

.2 The existence of an optimal solu-
tion is guaranteed by the fact that is continuous on , and

is compact.
First, let us suppose that the optimal solution is an inner solu-

tion, i.e., it is not on the boundary of. Then, the solution has to
be a stationary point of , determined from the set of equations

which leads to

(5)

It follows from (5) that the following relationship should hold,
for some positive constant :

(6)

Thus

(7)

2Except at� = 0 8m 2 M, whereL(�) is not well defined, but the fact
thatU(0) = 0 in view of (2) implies that this point cannot be a solution, and
hence need not be considered in the analysis.
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Substituting this in (5), we get

which leads to the following quadratic equation for:

where

(8)

Thus

(9)

Expression (7), together with (9), identifies the stationary points
of (4) if the following conditions are satisfied:

i) the discriminant in (9) is nonnegative, i.e.,

(10)

ii) , for all , which follows from the
fact that we require .

To study whether or not the optimal solution lies on the
boundary of , we first assume that the traffic through each of
the links in a given subset of the links,, is nonzero and the
traffic through the remaining links is zero. The following fact
on substitutabilitynow asserts that we need not consider all
possible subsets: suppose that there exists a link and a
link (the complement of ) such that . Then the
utility to the user can be strictly improved by swappingand
in the sets and , because any flow through link results
in a smaller delay than the corresponding flow through link.
Thus, the only subsets that we have to examine in the search
for the optimal solution are

For each of the subsets , the candidates for the optimal
solution are given by the following:

(11)

where

(12)

and

(13)

For each , the candidate solutions should further satisfy the
condition for all , which can be written

equivalently as , because of the ordering of the’s
and because is positive whenever it exists. Of course, for
existence we need the discriminant in (12) to be nonnegative,
i.e.,

(14)

The optimal solution is then obtained by choosing the candidate
solution that results in the largest value for the utility function.
For each fixed , (12) suggests that there might be two sta-
tionary points, corresponding to the positive and negative square
roots in the expression for (whose corresponding values we
denote by and , respectively), which indeed is a real pos-
sibility as demonstrated in the context of an example (Example
2) later in this section. Clearly, would be a viable candidate
solution (that is to satisfy the constraint ) whenever

is, but notvice versa, and in fact yet another example (Ex-
ample 1) included later in this section demonstrates that it is pos-
sible for only to be a viable solution. What one can actually
show is that it is not necessary to considerat all, since flows
corresponding to it (when it is viable) lead to smaller utility than
the flows corresponding to . We now provide a proof for this
result.

Proposition 1: Let be a fixed integer, (14) hold
with a strict inequality, and and be given by (12), cor-
responding to the negative root and positive root, respectively,
satisfying the viability condition . Let and
be as given by (11) with given by and , respectively.
Then, with the utility function as defined by (3), we have

Proof: With fixed, let be restricted to the struc-
tural form

where is a free parameter, which is positive and not exceeding
. Evaluating under this structure, and denoting the re-

sulting function of the single parameterby , we arrive
at

(15)

We know from the hypothesis of the proposition that this func-
tion has two stationary points in the interval , at
and . On the extended positive real line, the function has two
zeros, at and , and a vertical asymp-
tote at , and attains positive values to the left
of this asymptote, where both and are, since

. The secondzero is to the right of the asymptote, since
, where the strict inequality follows

from Jensen’s inequality along with the observation that when
is not a viable solution (see the discussion

later in this section on the equal capacity case). Hence, the func-
tion is continuous (actually continuously differentiable)
in the open interval , is strictly increasing to the left of

, and strictly decreasing in the open interval ,
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thus readily leading to the conclusion that it attains a strictly
larger value at than at .

We are now in a position to recapitulate in precise terms the
complete solution to the single-user problem.

Theorem 1: For the single-user -link routing/flow-control
problem formulated in this subsection, the following hold true.

i) There exists an optimum solution.
ii) The optimum solution dictates positive flows on

links , and zero flow on the remaining
(if ), where

Here, is the nonempty set of all integers in with
the property that implies that (14) is satisfied
and . Further, is given by (15),
where the expression for is given by (12) with the
negative square root.

iii) The optimum flows are given by (11), with and
.

Proof: The result follows readily from the development
that preceded the theorem.

B. Two Other Classes of Utility Functions

It would be useful to contrast the aforementioned solution
with the one corresponding to the more common utility function
defined as follows:

(16)

This is simply the sum of the utilities on each individual links,
where the individual utility function on a link represents a
tradeoff between the throughput and the average delay on
that link. An appealing feature of is that it is strictly
concave, and hence optimality of its local solution can readily
be ascertained, and in fact the unique optimal solution can
easily be obtained as

Note that the optimal solution in this case puts nonzero flow
to every link. However, no longer captures the tradeoff
between the overall throughput and the overall average delay,
as done by the more realistic utility function considered
in this paper, albeit at the expense of a more complicated (yet
explicitly computable) solution.

Yet another utility function that has been considered in the
previous literature is [15]

where is the total capacity of all the links. This function is
concave in (not strictly concave, in the multiple link case),
and any set of satisfying

along with , is an optimal solution.
In fact, the optimal solution under is also optimal for the
utility function .

We now recapitulate and list the observations we have made
regarding the optimal solutions under three different classes of
utility functions.

• The utility function may dictate the flows in some
of the links to be zero.

• The utility function leads to nonzero flow over every
link.

• The utility function leads to multiple optimal solu-
tions, with some dictating nonzero flow over every link.

C. A Special Case: Equal Link Capacities

Later, when we study Nash equilibria with multiple users, the
results for the special case of a single user and equal link costs,
i.e., , will turn out to be useful. Thus, we study
here this special case, which is also of independent importance
and interest. In this case

or

Since, we require , the only viable value for is
. Hence, in this case does not constitute a viable

solution.
Considering any subset , the corresponding optimal flow

is

Since all the boundary solutions and the inner solution lead
to the same flow on each link with nonzero flow, the optimal
solution (and the unique one) is easily seen to be the one that
uses all links

Note that in this case the optimal solution coincides with the one
under the utility function given by (16).

The optimal single-user solution for the case of equal capaci-
ties has the following robustness property which we will require
later.

Theorem 2: Consider a system consisting of one user and
links with the capacity of the th link being . Then,

there exists such that for , the utility-
maximizing solution is unique and is an inner solution.

Proof: See Appendix I.
Yet another useful robustness property of the single-user so-

lution with equal link capacities, which we will have occasion
to use in the next section, is a result that complements that of
Theorem 2 in a different direction. It says that starting with an
original network of equal capacity links (for which there exists
a unique solution which is inner, as already shown), if we add
additional links of lower capacity, the original solution remains
intact (that is, the utility-maximizing solution dictates zero flow
over these additional links) provided thatis sufficiently small.
The precise statement is the following.

Theorem 3: Consider a network consisting of one user and
links, with the first links having equal capacity,, and
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the remaining having capacities less than(i.e.,
). Then, there exists a

(depending on and ) such that for ,
the unique utility-maximizing solution dictates zero flow over
the links . Equivalently, the unique solution is
given by (using the notation introduced earlier)

Proof: First note that the right-hand side of (14) is less
than 1, and can be made arbitrarily close to 1 by pickingsuf-
ficiently close tozero. The left-hand side of (14), on the other
hand, is 1 when (since the first links have equal ca-
pacity), and strictly less than 1 if , as we now show.
That is, denoting the left-hand side of (14), as a function of
the integer , by , we show that for .
This will then immediately lead to the result of the theorem, by
picking as the unique positive solution of the quadratic equa-
tion , where is the for
which is the largest. This follows because the right-hand side
of (14) is a monotonically decreasing function offor ,
and for the necessary condition for an optimum,
(14), does not hold for any . We should note that one
can in fact show (with a little more effort) that is monotoni-
cally nonincreasing in , but we will not do this since it is not
needed in the proof of the theorem.

Now, to prove the required auxiliary result, we will proceed
by induction (showing that for some implies

). Let , and start with the strict inequality
, which holds because of the ordering of

the ’s. Rewrite this inequality equivalently as

Since , the left-hand side can be bounded from below
by , leading to (after taking the square roots of both
sides)

Now, add to both sides, and the nonpositive quantity
to the left-hand side. The resulting strict inequality

(after some rearrangement) can be seen to be equivalent to
, which proves the desired result.

D. Examples for the Single-User Case

Example 1: Consider a network of ten links, with the ca-
pacity of the th link being . Let the throughput-
delay tradeoff parameterbe 0.6. The optimal solution is given
by

with the remaining three links having zero flow. The optimal
value of the utility function is 1061 units. In this example, only
the negative square root in the expression for , satis-
fies all the constraints. For , the discriminant in (12) for

is negative, thus there are no candidate optimal solutions for
these values of .

Example 2: Consider a network of links, with
.

In this case, (14) is not satisfied for (as well as for
and ), and hence the optimal solution would

dictate zero flow on the links with capacity 0.25. We therefore
have to consider only the two subsets . It turns out
that the optimal solution corresponds to , i.e., it dictates
use offour links, with the corresponding throughputs being

The optimal value of the utility function is 1.455 units. In this
example, both positive and negative roots in (12) are viable for

, with the corresponding values being and
, with the utility corresponding to the former case

being , which is of course lower than the op-
timal utility level of 1.455, consistent with the result of Propo-
sition 1. It is important to underscore two features of the op-
timal solution as illustrated by this example: First, when there
is more than one link at the same capacity level, if the search for
an optimum fails when some of these links are used this does
not necessarily mean that the search will fail also if additional
links with the same capacity are considered. Second, it is pos-
sible for both positive and negative roots in the expression (12)
for to lead to viable candidate solutions.

III. M ULTIPLE USERS

We now return to the original goal of this paper, which is
the case of multiple users. To formulate this problem in precise
terms, consider a routing and flow control game involving
parallel links and players (users). Let be
the set of players and as before be the set of
links. Let denote the flow of Playerover link , and

denote total flow on link .
Each player chooses to maximize his or her

utility function. The total throughput of Playerover all the
links is , and, using an queue model as
before, the average delay for the generic Playeris given by the
equation shown at the bottom of the next page, whereis the
capacity of link . As in the previous section, we again adopt
the labeling . As a natural counterpart of
(3), in the single-user case, the utility function of Playeris
taken to be in the form

where here stands for the collection , and again
. Note that (the parameter that captures the tradeoff

between throughput and delay) is taken here to be player in-
dependent. We will, however, taketo depend on (for rea-
sons to be clear shortly), and write it also as. To indicate
the explicit dependence of the utility functions on, we will
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also write as where necessary, and write the logarithm
of , except for the case , by , where

(17)

A few observations and remarks are in place here. First note
that since Player will be maximizing , and
when , (17) can be considered as the utility of
Player without any loss of generality. Second, a decision maker
need not correspond to a single connection, so that the utility
need not be considered at a packet level, that is as a power of
throughput divided by the delay as experienced by a single con-
nection. Instead, a decision maker could correspond to a ser-
vice provider that generates through its subscribers a flow of
calls. The throughput of a call can then be taken to be constant,
and then the throughput determined by the decision maker will
correspond to the average number of calls that can be gener-
ated by his subscribers. The utility part that corresponds to the
throughput of a service provider could then also be viewed as a
result of some pricing mechanism; a detailed study of this, how-
ever, is beyond the scope of this paper.

We now seek a Nash equilibrium solution [2] for the-player
game introduced above; that is, an-tuple that
satisfies for all , and for all

Of course, the same set of inequalities can equivalently be
written in terms of instead of .

To obtain closed-form expressions for such a solution seems
to be out of reach for the most general case, particularly in view
of the nonconcave nature of the individual utility functions. In
view of this, we will focus here on the asymptotic case where
the number of users is large. We will show that, under some
appropriate conditions, symmetric Nash equilibrium takes on a
simple form in the limit as , and the limiting solution
exhibits an appealingdelay-equalizingproperty as in Wardrop
equilibrium [11], [18].

Before delving into the derivation of asymptotic equilibrium
policies of the users, let us make it precise what we mean by an
asymptotic Nash equilibrium.

Definition 1: For the player game defined above, with
arbitrarily large, let be a set of poli-
cies (flow rates) for the users, which are defined for all positive
integers , and show possible dependence on. We say that

these constitute anasymptotic Nash equilibrium, or areasymp-
totic equilibrium policiesif, for all

(18)

Of course, (18) could have been expressed also in terms of
, or any continuous monotonically increasing function of
, without affecting the definition. Now, a further refinement

can be brought in to an asymptotic Nash equilibrium by spec-
ifying how close the two expressions in (18) are for finite but
arbitrarily large . In this case, one has to work with a spe-
cific structure for the utility function, which we choose to be
the logarithmic utility function . This further refinement is
now captured by the following definition.

Definition 2: For the player game defined earlier, with
the logarithmic utility functions and with arbitrarily large,
let be a set of asymptotic equilibrium
policies (flow rates) for the users. We say that these constitute an

Nash equilibrium, or are equilibrium policies,
with exponent , if there exists a nonpositive scalar, indepen-
dent of , such that, for all

(19)

Now, toward obtaining the asymptotic equilibrium solution
(which we will also show to be in Nash equilibrium),
let us first assume that for each the Nash equilibrium exists
and is an inner solution, i.e., , and
consider the first-order necessary conditions given by

(20)

which are equivalent to

(21)
In order to obtain nontrivial solutions to (21) in the limit as

, we will scale the parameter appropriately with respect
to , specifically as

(22)
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where is a positive constant. This scaling is reminiscent of
heavy-traffic limit results for certain stochastic models of com-
munication networks where appropriate scaling is invoked on
the problem parameters to obtain meaningful limiting solutions,
see [17], [8], [13], [7], and the references therein. To motivate
this particular scaling in the context of our model here, consider
a simpler version of this model where there is only one link,
i.e., . It is easy to see from (21) that in this case the Nash
equilibrium solution is unique3 , symmetric, and given by4

Note that the corresponding total flow over the link is
, and hence to ascertain finiteness of the resulting delay

in the limit as , we have to require to be of the
order of . Under this scaling (22) for , we first present
an informal derivation of the limiting value of the solution that
satisfies the first-order necessary conditions given by (21), and
then make the result precise.

We henceforth restrict our attention only to solutions that are
symmetric across the users, which is a reasonable assumption
given that the players (users) enter the game symmetrically:

and each

In view of this assumption, (21) can equivalently be written as

(23)

where

Note that by our “inner solution” assumption, .5

Now, using in (23) yields

which can be written as

(24)

We are interested in the solution to this set ofequations for
large .

3Uniquenessfollows because (21) is also sufficient in this case.
4For consistency in notation, we still use a subscript “1” to designate the link,

even though there is only one link.
5Even without the “inner solution” assumption, this property holds because

U (�) = 0 when the total throughput of Playeri is zero, i 2 N .

Consider any convergent subsequence of and de-
note its limit by . Assume that , and further
that . Then, from (24), the quantity

is finite for each . That is, for some constants

where (along the subsequence identified earlier)

This leads to

Thus, to an approximation

(25)

for some constants , with . Introduce

(26)

Substituting (25) into (26), and ignoring the terms

Thus,

Therefore, as , (24) becomes (for )

Thus, for , we obtain, in the limit as

For a general , we have

(27)
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Since, by (25), is independent of , we have

which leads to

Therefore

(28)

Next, we explicitly compute . In order to solve for the ’s,
we first introduce

Then, from (28), we obtain

(29)

Let . Summation over yields

(30)

This time, starting with the relationship , squaring
both sides, summing over , multiplying by , and using
(30), we arrive at the following relationship:

(31)

Using this in (29), we obtain the following quadratic equation
for :

which admits the solution(s)

(32)

where . For all this to be valid, at least one of the
aforementioned solutions should satisfy the bounds

(33)

in which case the corresponding individual’s (that is, total
flows over the individual links) become

(34)

provided that

(35)

Theorem 4: Suppose that there exist satisfying
(32)–(35). Then

(36)

constitute an Nash equilibrium with exponent

(37)

where

(38)

and

(39)

Proof: Let us fix the flows of all users except those of a
generic user, Player, as given by (32)–(35). Let the flows of
Player , arbitrary at this point, be denoted by .
Then, what Player faces is a single-user problem of the type
studied in Section II, with the capacity of link , as
seen by Player being

(40)

Note that all being independent of above
is a -perturbation around a nominal constant capacity

per link (independent also of the user), and hence,
the generic user sees an almost equal link capacity network.
By Theorem 2, there exists an , sufficiently large, such that
for all Player ’s response to (32)–(35) is an inner
solution. Further, for each such, the solution is unique, and
obtained as the unique stationary point of , with all other
users’ policies fixed as given, that is, of the function

(41)

where is given by (40). It now readily follows from Theorem
1, and particularly, (15), that the unique inner maximizing solu-
tion for , alluded to previously, yields the value

(42)

where and are given by

with defined by (39), and given by (9) with the negative
sign, and with and replaced by and , respectively.
Equivalently
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with

Our goal now is to compute for sufficiently large, and
particularly, as . Toward this end, we start with the fact
that for any real-positive number

and use it to obtain the expansion

which further leads to

(43)

and

(44)

In view of these expansions, we have

where is precisely the one given by (38), which can also be
written as

Note also that

(45)

For this expression to be valid, it is of course necessary that
be positive, which, however, readily follows from the positivity
of for all sufficiently large , which itself follows from the
single-user result embodied in Theorem 2. It is also possible to
show positivity of directly, which we quickly do here for the
sake of completeness. Start with the obvious inequality

which is equivalent to

Dividing throughout by and using the definition of , leads
to .

Now, first expanding the numerator of the expression (42) for
, but without the power , we obtain

and next expanding the denominator of (42), we get

Hence

(46)

On the other hand, with as given in Theorem 4
substituted into given by (41), yields

(47)

This tends to as tends to infinity, which is identical
with (46). Hence, the policies in Theorem 4 indeed constitute an
asymptotic Nash equilibrium.

To prove that they are also in equilibrium, it will be
sufficient to compute, using the expansions already obtained

which is exact to the term. The exponent also readily
follows from the aforementioned expression, which is also neg-
ative, as the following sequence of simple steps shows:

Theorem 4 has provided a characterization of a symmetric
Nash equilibrium provided that (32)–(35) admit a so-

lution. Inevitably, this requires that flows onall links be pos-
itive, which may not always be the case. In other words, a sym-
metric Nash equilibrium with nonzero flows on all the
links may not exist, even though there may still exist a sym-
metric Nash equilibrium that uses only a subset of the
links, that is for some . Such a solution
would be obtained by simply substitutingfor in (32)–(35).
Now, even if a solution exists to (32)–(35) with re-
placing , it does not necessarily follow from Theorem 4 that
the resulting policies, extended by assigning zero flows to links
in will be in Nash equilibrium. They would be in

Nash equilibrium when restricted to (this follows
readily from Theorem 4), but this property may not hold in the
extended game with all links. What needs to be shown is that
when all players except one use the flows dictated by the result
of Theorem 4 with replacing , and zero flows on
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the remaining links, then the remaining player does not
have any incentive (in terms of maximizing his utility) in using
any of the links outside . Assuring this will inevitably im-
pose some restriction on the capacities of the links belonging to

relative to the excess capacities left for that player on the
links belonging to , which is what the next theorem does. It
provides testable necessary and sufficient conditions for a set
of positive flows on only a subset of the links to constitute a
symmetric Nash equilibrium for the original -link
network.

Theorem 5: For some , suppose that there exists a solu-
tion to (32)–(35), with the corresponding total flow on Link
denoted by . Then, the set of flows

(48)

provides an Nash equilibrium if

(49)

In this case, the exponent in the approximation is
given by (37) with replaced by .

Conversely, if , then the set of flows (48)
is not in Nash equilibrium nor do they constitute an
asymptotic Nash equilibrium.

Proof: Under the hypothesis of the theorem, fix the flows
of all users except Player 1, as given by (48), and consider the
optimal flow allocation for Player 1. Assume that (49) holds.
Then, the problem faced by Player 1 is a single-user problem
(as in the proof of Theorem 4) with link capacities ,
where

and

We will now show that this single-user problem does not admit
a solution for any . Since , we have

(50)

where the notation is that of (13) with only superscriptadded.
In view of the strict inequality in (50), the discriminant in the
expression (12) is negative when , and by continuity for
all positive values of sufficiently close tozero(and hence for
all sufficiently large ). This implies that given by (12) does
not exist for sufficiently large . Thus, there is no incentive
for Player 1 to use the links outside the set, and therefore
the result of Theorem 4) applies with just replaced by .
Hence, the set of policies (48) provides a symmetric
Nash equilibrium under the given condition .

Next, suppose that . Considering the set of
links , by the previous argument, for large, the optimal
response of Player 1 is to allocate all its flow to Link . Thus,
the solution to (32)–(35) cannot be in Nash equilib-
rium, nor in asymptotic Nash equilibrium, because the optimal
response of Player 1 (which uses Link ) with the flows of
all other players fixed as given results in an improvement

in his logarithmic utility. If , then by our earlier
discussion of the single-user problem, Player 1 will distribute its
total flow among all links and again the solution does not
provide an Nash equilibrium, nor an asymptotic Nash
equilibrium.

The two theorems included in this section provide, in a sense,
the complete solution to the combined routing and flow control
problem with multiple links and an arbitrarily large number of
users. They provide testable conditions for a characterization
of the entire set of symmetric Nash equilibria, where
the number of tests is equal the number of links,. Each test
involves checking the existence of a solution to (32)–(35) inter-
preted for a general , and if also checking condition
(49). If all these conditions fail, for all , then the network
game does not admit any symmetric Nash equilibrium,
but we should note that this does not rule out the existence of
an Nash equilibrium which is not symmetric across
players.

Even though the conditions embodied in the two theorems
are easily testable through numerical computation, it may
still be desirable to translate these conditions into ones that
involve simple regions in the space of all parameters defining
the network game. One set of such conditions is provided in
Appendix II for the case corresponding to full use of all links
of the network (that is, the situation covered by Theorem 4),
but can easily be extended to cover the setup of Theorem 5 by
simply replacing with and requiring also satisfaction of
(49).

IV. EXAMPLES OFSYMMETRIC NASH EQUILIBRIA

We present in this section two numerical examples which il-
lustrate various features of symmetric Nash equilibria.

Example 3: Consider the same network of links as in Ex-
ample 1 of Section II-D, with . There is no solution to
(32)–(35) if we consider for . For , the positive
square root in the expression (32) leads to a feasible solution,
with the corresponding value for (32) being . The
negative one, , however does not, since it leads to
a negative . The flows corresponding to are, from (33):

It is easy to verify that the condition given in Theorem 5 is satis-
fied in this case, and thus, we have a symmetric Nash
equilibrium. The exponent in the approximation is

.
For , (32)–(35) provide a solution, but the condition

given in Theorem 5 is not satisfied, and thus, there is no sym-
metric asymptotic Nash equilibrium where the users send posi-
tive flow on only the firstfive (or fewer) links.

Example 4: This example will demonstrate the existence of
multiple Nash equilibria. Specifically, consider a net-
workof 10 links with

and

and with . In this case, it turns out that all 10 links
can be used, and hence Theorem 4 directly applies, with both
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positive and negative square roots in the expression (32) for
yielding feasible solutions. Hence, we havetwo symmetric

Nash equilibria. The one corresponding to the positive
square root is

and the one corresponding to the negative square root
is:

Again, we see the delay-equalizing property in both cases. Fi-
nally, the exponents for the approximation for these
two sets of policies are

To explore the possibility for other Nash equilibria (with
fewer links used with positive flow), we computed for
all . For , both the positive and
negative square roots provide that satisfy (32)–(35), but
the condition in Theorem 5 for an Nash equilibrium is
not satisfied for any of these. Thus, none of these solutions con-
stitute an Nash equilibrium. For ,
there exists no that satisfies (32)–(35). For , the negative
square root yields solution to (32)–(35) given by .
Since , the condition of Theorem
5 is satisfied, and hence there is indeed an Nash
equilibrium where all users use only Link 1. The exponent
in this case is . Note that the total flow over the
network under this Nash equilibrium (which is 47.37)
is less than the ones under the other Nash equilibria
above which dictate use of all ten links (which are 201.9 and
58.7).

An interesting feature exhibited by this last example is that it
is possible for Nash equilibria for a particular network
game to dictate use ofall available links oronly onelink for all
users, and nothing in between.

V. CONCLUSION

We have obtained explicit expressions for asymptotic and
Nash equilibria in a network with parallel links

and a large number, , of players who attempt to choose
routes and flows to maximize their individual utility functions,
which are taken as the ratio of some positive power of the
total throughput of that user to the average delay seen by the
user. We have focused only on the symmetric equilibria, which
turned out to have the appealing property that as the number
of players, , becomes arbitrarily large, the delays over all
links with positive flow become equal. It would be interesting
to explore whether the problem also admits nonsymmetric

Nash equilibria, and what their properties would be.
It would also be interesting to study the more general network
game where different users or different groups of users have
different delay-throughput tradeoff parameters,’s (or ’s),
in which case it will be necessary to consider nonsymmetric
equilibria. Other extensions one can envision are: i) studying
the existence and characterization of Nash equilibria in the case
of a finite number of users; ii) developing distributed dynamic

algorithms for the users’ myopic response behavior to evolve
(converge) to the Nash equilibrium; iii) developing
the counterparts of these results for general topology networks,
such as [1]; and iv) exploring the possibilities of other types
of scaling (of with respect to ) and their implications on
existence of Nash equilibria.

APPENDIX I
PROOF OFTHEOREM 2

In this Appendix, we provide a proof for Theorem 2 given in
Section II. Let us first introduce some notation and state some
properties of the utility function to be maximized by the generic
user.

Let denote the utility function (3), where we show
here its explicit dependence on the link capacities vector

, in addition to the throughput vector
. The domain of definition for as a

function of is . Note that on this domain,
is a continuous function of for each fixed . Furthermore,

as a function of , for fixed , it is continuous in the
domain . Moreover, , with
equality holding if and only if either or for at
least one . Now consider, for fixed , the
maximization problem:

(51)

Since is continuous (in ) and the constraint set is closed and
bounded, a maximum exists (which we denote by , and the
maximum value by ), and furthermore since takes the
valuezerowhen for any , we have .

Now let denote the vector of link capacities, whose compo-
nents are all equal, with (by a slight abuse of notation)also de-
noting the common value of these individual components. Then,
we know that

is the unique solution to (51), which is clearly an inner solution.
Two further properties of will be useful in the development

below:

(52)

and for any such that

(53)

Consider now the following class ofperturbedoptimization
problems:

(54)

where , and is with
, that is with only the first links.

The following lemma now says that the maximum value of
in (54) for each fixed can be made sufficiently close to

by picking ’s sufficiently close tozero.
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Lemma A.1:Given such that

Proof: Define ,
and note that in view of property (53)

(55)

where is the -dimensional vector with all entries 1. Here,
the first inequality follows because the function to the maxi-
mized on the right-hand side is no smaller than the one on the
left-hand side; the second inequality follows because the con-
straint set is no smaller; and the third inequality follows for both
aforementioned reasons.

Now consider the maximization problem

(56)

where . Since as approaches the upper
limit of its constraint, for any such that

, the maximization problem (56) is equivalent to the
following:

(57)

Since is continuous in for each
, where the latter is a closed and bounded

subset of , given such that , and

This property immediately leads to the bound:

In view of this bound, picking in (55), provides
the bound

which is the right-hand side inequality of the Lemma, for
. One can go through the same steps for any as well,

where could actually depend on . But since there is only a
finite number of them, taking the smallest one proves the result
(right-hand side only) for arbitrary .

To prove the left-hand side inequality of the Lemma, we go
through similar steps, but this time obtaining lower bounds in-
stead of upper. Letting ,
the first set of inequalities in the proof above is now replaced by

and this completes the proof of the Lemma.
We now use the result of Lemma A.1 to prove Theorem 2 of

Section II. What we need to show is that there exists an open
neighborhood of such that in that neighborhood the
solution to (51) still requires all links to be used, as
does.

Toward this end, let the maximum of with be
, and without this constraint be , which we had

denoted earlier as . Since has a unique maximum,
we already know that

Then, picking on the right-hand side inequality of
Lemma A.1, with , leads to

whereas doing the same on the left-hand side inequality of
Lemma A.1, with , leads to

which (when compared with the previous inequality) shows that
there is loss of performance if the ’th link is dropped. This
completes the proof of Theorem 2.

APPENDIX II
EXISTENCE ANALYSIS

We provide in this Appendix direct conditions on the param-
eters of the network game under which the discriminant in (32)
is nonnegative, and at least one of the solutionsand sat-
isfy (33) and (35), equivalently, conditions on the parameters for
the network game to admit a symmetric Nash equilib-
rium with positive flow on all links. The lengthy but fairly
straightforward analysis that has led to these results has not been
included here.

Let us first introduce some notation

(58)

(59)

if (60)
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if

(61)

We now consider two complementary regions for the parameter
values (which do not depend on).

Region A:
If , (32) with the positive square root, , satisfies both
(33) and (35).
Otherwise, there is no feasible solution to (32)–(35) when pa-
rameters lie in Region A.

Region B: .

Subcase 1) .
Again satisfies both conditions (33) and (35).

Subcase 2)

and

Under these two conditions, again satisfies
both conditions (33) and (35).

Subcase 3)

and

The condition of Subcase 1) is subsumed by
these two conditions, and hence is a fea-
sible solution here. However, under these two
more restrictive conditions, (32) with the nega-
tive square root, , also provide a feasible so-
lution, satisfying both conditions (33) and (35).
Hence, in this case we have two solutions.

Subcase 4) If the conditions of the three subcases above fail,
then there is no feasible solution to (32)–(35)
when parameters lie in Region B.

We now make a few useful observations based on the previous
results.

1) The maximum possible value of is 1, which is at-
tained when all the link capacities are equal. What dis-
tinguishes Region A from Region B is, roughly speaking,
whether the difference between the largest and smallest
link capacities is relatively large (the former) or relatively
small (the latter). On the boundary between the two re-
gions, that is in the limiting case , a solution
(and a unique one) exists if and only if , and
the solution is . In this case, , and Region A solu-
tion and Region B Subcase 2) lead to the same asymptotic
result.

2) In Subcase 1) of Region B, it is possible for to
be as well as .

• If is closer to 1, then dominates (e.g.,
.

• is closer to , then is the smaller quantity
(e.g.,

.
• For makes them

equal.

3) If all ’s are equal, from Subcase 1), no restriction is
imposed on , and the discriminant in (32) is zero, leading
to the solution , and hence

4) For the network game of Example 3 in Section IV

which puts us in Region A. Since , the con-
dition fails, and there is no feasible solution—consistent
with the result of Example 3 that there is no symmetric

Nash equilibrium with positive flow on all links.
5) For the network game of Example 4 in Section IV

and since , we have the strict ordering
, which puts us in Region B, Subcase 3), implying

that both and are feasible, consistent with what
was reported in Section IV.

6) Replacing with in the conditions previously
presented would provide a set of direct conditions appli-
cable to networks where only out of links carry posi-
tive flow (the situation covered by Theorem 5). Of course
in this case one also have (49) to check, but at least the
previous direct conditions would help to eliminate infea-
sible cases. For example, in the network game of Example
3, one can show that these conditions fail not only for

, as shown in item 4 above, but also for all
. For example, for ,

which puts us in Region B. However, the ordering

tells us that there is no feasible solution. For , on
the other hand, , which puts us
again in Region B. The ordering in this case is

which is Subcase 1), telling us that is feasible for
. This is, of course all, consistent with what was

reported in Section IV for Example 3.
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