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Abstract

We consider the design of explicit rate-based congestion control for high-speed com-

munication networks and show that this can be formulated as a stochastic control

problem where the controls of di�erent users enter the system dynamics with dif-

ferent delays. We discuss the existence, derivation and the structure of the optimal

controller, as well as of suboptimal controllers of the certainty-equivalent type|a

terminology that is precisely de�ned in the paper for the speci�c context of the

congestion control problem considered. We consider, in particular, two certainty-

equivalent controllers which are easy to implement, and show that they are sta-

bilizing, i.e., they lead to bounded in�nite-horizon average cost, and stable queue

dynamics. Further, these controllers perform well in simulations.
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1 Introduction

Tra�c in high-speed communication networks can be broadly classi�ed as

guaranteed-service tra�c and best-e�ort service tra�c. Guaranteed service

refers to a contract between the network service provider and the end user

which requires the network to provide a �xed quality-of-service (QoS) to the

tra�c. The QoS guarantees could be in the form of upper bounds on packet

loss probability, delay, etc. In contrast, best-e�ort tra�c is guaranteed very

little a priori. In the Internet, there are no guarantees, while in the context of

Asynchronous Transfer Mode (ATM) networks, the best-e�ort tra�c (in par-

ticular the Available Bit Rate (ABR) service) may be guaranteed a minimum

data rate and a bound on the loss rate. Instead of guaranteeing �xed QoS

parameters, the idea is to fairly allocate the network resources to competing

users. The guaranteed-service tra�c (referred to as either Constant Bit Rate

(CBR) or Variable Bit Rate (VBR) tra�c in ATM networks) gets a higher

scheduling priority compared to the best-e�ort tra�c. In other words, at a

given node, when both best-e�ort tra�c and guaranteed-service tra�c are

backlogged (i.e., have packets that they are waiting to send), the packets from

the guaranteed-service tra�c are processed �rst, and the best-e�ort tra�c is

served only if there are no packets in the guaranteed-service queue.

From a control point of view, each best-e�ort source or user may be thought

of as an entity that generates data at a rate that is upperbounded by what

is speci�ed by the network. The network exercises control over the best-e�ort

tra�c by assigning these rates based on the congestion in the network. This is

referred to as congestion control. In the absence of such a control mechanism,

the bu�ers at each node in the network (which store packets temporarily) may

over
ow and lead to packet losses. Loosely speaking, the network attempts to

operate on the following principle: If the sources obey the control commands

issued by the network, then the network attempts to transfer the packets

without any loss. Of course, this can be achieved by making the data rates

equal to zero for all the sources, which is clearly not desirable. Thus, another

goal of the network is to maximize utilization, i.e., the the sum of the data

rates of all the sources should be nearly equal to the total capacity available

for best-e�ort sources.

There are two basic approaches to congestion control. In the Internet, the

protocol used for this purpose is called TCP (see, (Jacobson, 1988) for the

original congestion avoidance scheme in TCP, and (Keshav, 1997), and refer-

ences within, for subsequent modi�cations). In the TCP context, each source

slowly increases the rate at which it transmits data and upon detection of con-

gestion, the data rate is reduced. Congestion is detected when bu�ers over
ow

and packets are lost. It is the responsibility of the destination to inform the

source of lost packets and intermediate nodes in the network do not provide
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any feedback directly to the source.

In contrast, in ATM ABR service, the communication protocol between the

source and the network allows for intermediate nodes to inform the source

when queues start to build up or if the input rate is in excess of the available

capacity for ABR sources at that node. In fact, instead of exactly providing

this information back to the sources, the intermediate nodes are capable of

restricting the data rate of the ABR sources (Benmohammed and Meerkov,

1993, Mascolo et al., 1996, Kalyanaraman et al., 1997, Kolarov and Rama-

murthy, 1997, Altman et al., 1997, Altman et al., 1998, Benmohammed and

Wang, 1998). In this paper, we adopt this framework. Thus, from the point of

view of the current technology, one can view our work as a congestion control

mechanism for ATM ABR sources.

For the rest of the paper, we will adopt the point of view that there is a single

bottleneck node that plays a dominant role in determining the performance of

a given set of sources. In this case, the simplest feedback control mechanism

is called rate matching. In rate matching, the node measures the average rate

available to ABR sources at periodic intervals, and simply divides a fraction of

this capacity equally among the various users. This is the basic approach used

by Kalyanaraman et al. (1997), although several modi�cations are used in the

actual implementation. The main advantage of this scheme is its simplicity,

but it is di�cult to optimally control queue length to avoid bu�er over
ows.

However, this scheme is stable, i.e., the queue length remains bounded in an

appropriate stochastic sense, provided that the targeted utilization is less than

one (Ait-Hellal et al., 1997). Queue length information is not used in the basic

algorithm, although Kalyanaraman et al. (1997) allows one to incorporate

queue length information in an ad hoc manner.

Alternatively, this problem can also be viewed as a feedback control prob-

lem where queue length is used as the explicit feedback. This approach is

used in Benmohammed and Meerkov (1993), Mascolo et al. (1996), Kolarov

and Ramamurthy (1997), and Benmohammed and Wang (1998) to study this

problem using classical control techniques or using a state-space approach. As

in rate matching, the primary goal has not been one of optimality, but sim-

ply of queue-length stability. In these approaches, the available bandwidth to

ABR sources is treated as an unmodelled disturbance. Thus, the algorithms

in Benmohammed and Meerkov (1993), Mascolo et al. (1996), Kolarov and

Ramamurthy (1997), and Benmohammed and Wang, (1998) ensure stability

in the presence of this disturbance.

In contrast to the above approaches, we use both available rate and queue

length to compute the data rates for the ABR sources. To allow this in a

control-theoretic formulation, we model the available bandwidth as an autore-

gressive (AR) process driven by a white noise process, as in Altman and Ba�sar
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(1995). This allows us to represent the 
uctuations of available bandwidth due

to variations in instantaneous throughputs of high-priority sessions as well as

to variations in the number of connected high-priority sessions. The modeling

of real time tra�c as an AR process is often used, both for characterization of

correlation and tra�c parameters, as well as for queueing performance mod-

els. Some examples in the literature are Maglaris et al. (1988), Melamed et

al. (1992), and Melamed et al. (1994). In particular, a queueing performance

for AR tra�c is given in Addie and Zukerman (1972). AR processes for traf-

�c have also been widely used in the context of control. Ramamurthy and

Sengupta (1993) use an auto-regressive approach for designing a predictive

congestion control, in the presence of other real time tra�c. The stability of

rate based 
ow control of ABR (Available Bit Rate) tra�c in ATM in the

presence of exogenous VBR tra�c is analyzed in Ait-Hellal et al. (1997) and

Altman et al. (1994). In this paper, working with a speci�c model of the avail-

able bandwidth enables us to achieve much better performance than other

existing algorithms, as also demonstrated through simulations.

There is a fundamental di�culty in obtaining good congestion control per-

formance, namely the presence of action delay, which is de�ned in terms of

two components (see Figure 1). The �rst component is the downstream delay,

Action

delay d1

S1

S2

S3

Time-varying
rate

Bottleneck

node

d

d 3

2

upstream
downstream

Fig. 1. Bottleneck node model with three ABR sources. The sum of the upstream

and downstream delays is called the action delay, and is denoted by di for Source i:

i.e., the delay between the time that the bottleneck node issues its command

to the time that it takes for a source to receive this command. The second

component is the upstream delay, i.e., the time that it takes for the data pack-

ets generated by the source to reach the bottleneck node. The sum of these

delays is the action delay. It is well known in the control literature that the

presence of delays in the feedback path generally poses di�culties. Here, this

problem is further ampli�ed due to the fact that the action delays are di�erent

for di�erent sources. While the simple rate matching algorithms (Ait-Hellal et
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al., 1997), (Kalyanaraman et al., 1997) do not account for delay, the control-

theoretic approaches (Benmohammed and Meerkov, 1993), (Mascolo et al.,

1996), (Kolarov and Ramamurthy, 1997), (Benmohammed and Wang, 1998)

account for feedback delay in their solutions. In our work, we also explicitly

take delay into account, but since we also stochastically model the available

capacity, this poses a more interesting challenge due to the fundamental role

of information structure in stochastic control problems, as we will see.

We formulate the congestion control problem as an LQG stochastic control

problem, where the control actions of all users are actually determined cen-

trally by the node, which however has to take into account the fact that these

di�erent actions will a�ect the queue dynamics at di�erent times due to up-

stream and downstream delays. Even though this is not directly related to the

analysis of this paper, one can actually show that (Altman et al., 1998) the

centralized control problem with action delays is equivalent to a decentralized

team problem with information delays, where now the decision are made by

the users. In the parlance of team theory, this �ts into the class of LQG teams

with nested information (Chu and Ho, 1972, Witsenhausen, 1971), and hence

is not intractable as those with nonclassical information (Witsenhausen, 1968,

Bansal and Ba�sar, 1987, Srikant and Ba�sar, 1992).

The problem posed here does in fact admit an optimal solution, which is char-

acterized in terms of the solution of a discrete-time algebraic Riccati equation

(DARE) whose dimension is determined by the magnitude of the largest de-

lay and the order of the AR process describing the available capacity (Imer

and Ba�sar, 1999b). There are, however, other solutions, easier to implement

(they involve the solution of a scalar DARE), which share a common appealing

feature of certainty equivalence in addition to being also stabilizing. It is the

derivation of these suboptimal controllers that this paper is focussed on, along

with their stability, and a comparative study of their performance through sim-

ulations. We also clarify the issue of certainty equivalence for problems of the

type considered here.

The rest of the paper is organized as follows. In Section 2, we present the

mathematical formulation of the congestion control problem, discuss the na-

ture of the optimal solution, and introduce a notion of certainty equivalence,

tailored to the problem at hand. In Section 3, we consider a special �nite-

horizon version of this problem, derive the optimal as well as two suboptimal

certainty-equivalent solutions. This then leads to the presentation, in Section

4, of the two certainty-equivalent controllers for the original in�nite-horizon

problem. In Section 5, we show that, while these two certainty-equivalent con-

trollers may not be optimal, they are still stabilizing. Simulation results are

presented in Section 6, and concluding remarks are included in Section 7.
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2 Mathematical model and the notion of certainty equivalence

2.1 Mathematical model

We consider here a discrete-time model, where a time unit corresponds to

the length of the minimum measurement interval. Let qn denote the queue

length at a bottleneck link, and �n denote the e�ective service rate available

for ABR tra�c in that link at the beginning of the nth time slot. Let rmn

denote the e�ective source rate for source m (m = 1; : : : ;M) at the input of

the bottleneck link during the nth time slot, which is actually the outcome

of an action taken by source m several time steps earlier, based on command

signal sent by the switch even earlier. We denote the total time it takes for

the decision of the switch on the transmission rate of source m to reach that

source and subsequently for the e�ect of this decision to reach the bottleneck

node (i.e., the sum of downstream and upstream delays{using the terminology

introduced in the previous section) by dm,
1 and the command decision of the

switch for source m at time n by vmn, which we will sometimes also write as

vm;n. Hence, we have the relationship:

vm;n�dm = rmn : (1)

Now, in terms of the notation introduced, the queue length evolves according

to

qn+1= qn +
MX

m=1

rmn � �n � qn +
MX

m=1

vm;n�dm � �n : (2)

The above equation corresponds to a linearized version of the actual queue

dynamics, since we have ignored the fact that the queue length cannot be

negative. Simulations in Altman et al. (1997) and Altman et al. (1998) show

that this linearization is in fact valid when the controllers are successful in

maintaining the queue size around a positive target value Q, su�ciently away

from zero. The service rate �n available to the sources may change over time

in an unpredictable way, since this is the capacity left over from high priority

tra�c. We model this available capacity by a p-dimensional stable AR process:

�n=�+ �n (3)

1 Without any loss of generality, we take the dm's to be ordered in accordance with

their indices, that is d1 � d2 � : : : ;� dM .
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�n=
pX

i=1

�i �n�i + �n�1 ; (4)

where � is the known constant nominal service rate, �i; i = 1; : : : ; p, are known

parameters, and f�ngn�1 is a zero-mean i.i.d. sequence with �nite variance

denoted by k
2
:

The objective function, to be minimized by the switch, involves the transmis-

sion rates of all the sources which use the isolated bottleneck node, as well as

the length of the queue at that node, and is given by

J = lim sup
N!1

1

N
E

(
NX
n=1

h
(qn �Q)

2
+

MX
m=1

1

c2m

(rmn � am �n)
2
]

)
(5)

where Q is the target queue length, cm's are some positive constants, andPM
m=1

am = 1: The �rst additive term above represents a penalty for deviating

from a desirable queue length. The second additive term is a measure of the

quality with which the input rate for each source tracks a given fraction of the

available service rate, where the cm's are weighting terms that serve to priori-

tize relative importance of these individual terms (among di�erent sources as

well as collectively with respect to the �rst additive term). For example, if we

desire \fair" sharing of the available bandwidth, we would choose

a1 = a2 = � � � = aM =
1

M
;

assuming that everything else is also symmetric for the sources.

The information available to the switch at time n is In, where

In= f�n; �n�1; : : : ; qn; qn�1; : : : ; vjk; j = 1; : : : ;M; k � ng

Hence,

vmn= 
mn(In); n = 1; 2; : : : ; ; m = 1; 2; : : : ;M;

where 
mn is some Borel-measurable function, with respect to which J will be

minimized.

We now introduce the new (appropriately shifted) variables

xn := qn �Q (6)

umn := vmn � am� (7)
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which will serve as the state and the control, respectively. The queue dynamics

(2) can be re-written in terms of these quantities as:

xn+1= xn +
MX

m=1

um;n�dm � �n (8)

�n+1=
pX

i=1

�i �n+1�i + �n (9)

and the cost function J can be re-written as:

J = lim sup
N!1

1

N
E

8>>>>><
>>>>>:

NX
n=1

"
(xn)

2 +
MX

m=1

1

c2m

(um;n�dm � am �n)
2

#
| {z }

`n(xn;�n;un)

9>>>>>=
>>>>>;

(10)

where `n denotes the instantaneous (running) cost.

Now, assume for the moment that all delays are zero, and introduce

~umn := umn � am �n ; ~un := (~u1n; : : : ; ~uMn)
0
:

Then, the instantaneous cost takes the pure quadratic form

`n(xn; �n; un) = ~̀
n(xn; ~un) = (xn)

2 + j~unj2R : (11)

where j � jR denotes the Euclidean norm in the M-dimensional vector space,

weighted by R, and

R := diag

 
1

c21

; � � � ;
1

c2M

!
: (12)

Also, in terms of ~u, the dynamics for x become:

xn+1 = xn + b
0 ~un ; (13)

where

b
0 := ( 1 1 � � � 1 ) : (14)

Hence, if there were no action delays, we would have a standard discrete-

time linear-quadratic regulator problem, which admits the unique solution

(Anderson and Moore, 1990):
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~un=�[R + bb
0
s]�1bs xn ; (15)

where s is the unique positive root of the algebraic equation

s=1 + s[1� b
0(R + bb

0
s)�1bs] : (16)

This positive root can in fact be explicitly computed:

s =
1 +

p
1 + 4c2

2
; c

2 :=

 
MX

m=1

1

c2m

!�1
: (17)

The corresponding control ~u renders the closed-loop queue dynamics asymp-

totically stable:

xn+1=
1

2

 
1 + 2c2 �

p
1 + 4c2

c2

!
xn :

Note that in this case the queue dynamics are completely decoupled from the

AR process (which is stable by our initial hypothesis). Further note that in

spite of this decoupling, the original control un is still a function of �n, since

the inverse transformation from ~un to un yields

un= ~un +

0
BBBBB@
a1

...

aM

1
CCCCCA �n : (18)

Expression (15) can be simpli�ed further by applying the following matrix

inversion lemma (Appendix D, Sage and White, 1977) to the matrix (R+bb0s).

Lemma 1 Suppose that the square and compatible-dimensional matrices A;

C and A+B
0
C
�1
B are all invertible. Then

(A+B
0
C
�1
B)�1 = A

�1 � A
�1
B
0(BA�1

B
0 + C)�1BA�1

:

Using this lemma, we obtain

(R + bb
0
s)�1 = R

�1 �R
�1
b(b0R�1

b +
1

s
)�1b0R�1

:
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Since R is a diagonal matrix, we have

R
�1 = diag(c2

1
; c

2

2
; : : : ; c

2

M) ;

and

b
0
R
�1
b =

MX
i=1

c
2

i ;

and hence the (i; i)th element of (R + bb
0
s)�1 is given by

c
2

i �
�
sc

4

i =

�
1 + s

MX
`=1

c
2

`

��
;

and, for i 6= j; the (i; j)th element is given by

�sc2i c
2

j=

�
1 + s

MX
`=1

c
2

`

�
:

Thus, the mth element of (R + bb
0
s)�1bs, to be denoted by pm, is

pm= c
2

m �
sc

4

m

1 + s
PM

`=1 c
2

`

�
sc

2

m

PM
`=1;`6=m c

2

`

1 + s
PM

`=1 c
2

`

= c
2

m=

�
1 + s

MX
`=1

c
2

`

�
: (19)

In view of this, we can now rewrite (18) for the individual components of un
as:

umn=�pm xn + am �n ; m = 1 : : : ;M : (20)

This is therefore the optimum transmission rate for source m if there were

no delay (upstream or downstream) in the network. In the presence of delay,

however, these rates could lead to an unstable queue system, and hence there

is a need to take into account the upstream and downstream delays on various

links.
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2.2 The optimal solution and certainty equivalence

The optimal solution to the problem, as formulated by (8), (9), and (10), can

be obtained either by dynamic programming (Imer and Ba�sar, 1999a) or by

converting it into a standard linear-quadratic optimal control problem in an

extended state space (Imer and Ba�sar, 1999b). In this latter approach, one in-

troduces additional state variables (precisely dM of them) so that the controls

umn's enter the state equation in this extended space without delay. Further-

more, one has to introduce additional state variables (precisely, p�1 of them)

so as to convert equation (9) describing the AR process into a �rst-order dif-

ference equation. Finally, one also has to rewrite the second set of additive

terms in (10) (by an appropriate expansion, and by making use of the fact that

future values of �n's are independent of the past controls) in such a way that

the term corresponding to um;n�dm involves only �j; j � n� dm { this being so

for all m and n. These transformations and extensions bring the problem into

a linear-quadratic control problem with perfect state information, and with

the dM + p+ 1-dimensional state equation driven by a zero-mean white noise

sequence. The optimal transmission rates for the sources are then obtained

as linear feedback on the dM + p + 1-dimensional state, with the gain deter-

mined from the solution of a dM + p + 1-dimensional discrete-time algebraic

Riccati equation (DARE). Since the overall system is stabilizable-detectable,

this DARE admits a unique solution in the class of nonnegative-de�nite ma-

trices, and the optimal controller leads to stable queue dynamics (Anderson

and Moore, 1990). Our interest in this paper is to explore the possibility of ob-

taining other (clearly suboptimal, but still queue-stabilizing) controllers which

would not require the (numerical) solution of a high-dimensional DARE, which

in real implementations will have to be updated periodically as the parameters

(�i's and p) of the AR process and the various delays (d1; : : : ; dM) are revised.

For this, our starting point will be the \no-delay" optimal solution given by

(20), which we now rewrite as follows by noting that in the presence of delay

the control umn should actually be replaced by um;n�dm:

um;n�dm =�pm xn + am �n ; m = 1; : : : ;M : (21)

But this is not implementable, since the state (xn; �n) is not available to

um;n�dm, but only In�dm is. Hence, one approach (that uses (21) as a starting

point) would be to replace xn and �n in (21) by their predicted values, 2 given

the information In�dm , and the controllers ujkj ; j < m; kj < n � dj. We will

call such a controller, which is derived from (21) and is compatible with the

available information, a certainty-equivalent controller, and write it as:

2 This terminology is used here in a rather loose sense. It will be made precise in

the next two sections.
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um;n�dm =�pm x̂njn�dm + am �njn�dm (22)

Hence, a certainty-equivalent controller has the property that if the predicted

values of x and � were to coincide with the actual values used in the opti-

mal solution that ignores the presence of delays, then it would be an opti-

mal controller, but since this can never happen in the presence of delays, a

certainty-equivalent controller will lead to a performance that is worse than

that attained under (21). Now, an important point to note here is that (22)

above is not the only certainty-equivalent controller, simply because (21) is

not the only optimal controller for the delay-free problem. Any representation

of (21) that shows explicit dependence on the controls of other sources, and

which reduces to (21) when all these controllers are set to their optimal choices

according to (21), leads to exactly the same performance as that attained by

(21). Within a linear structure, we can characterize all these representations

of (21) by:

um;n�dm =�pm xn + am �n

+
MX

j=m+1

X
k<n�dm

�
m;n
j;k (ujk + pjxk+dj � aj�k+dj ) ; (23)

where �
m;n
j;k 's for j > m;m = 1; : : : ;M ; k < n � dm are arbitrary parameters,

and the dependence on the controls of other sources exhibit a lower-shifted

upper triangular structure consistent with the ordering of the delays (that is,

um` is allowed to depend on ujk if and only if dm � dj and k � `� dm). This,

in a sense, constitutes an equivalence class of controllers for the sources, all

leading to the same value for the cost (10). This is though not the entire class of

such controllers, because we could also have included nonlinear terms in (23),

which we have not; it is, however, the entire class of linear controllers with

a lower-shifted upper triangular dependence on other controllers as described

above. Now, a certainty-equivalent controller derived from each element of

that equivalence class would be:

um;n�dm =�pmx̂njn�dm + am�̂njn�dm

+
MX

j=m+1

X
k<n�dm

�
m;n
j;k (uj;k + pjx̂k+dj jn�dm � aj �̂k+dj jn�dm );(24)

where x̂k0
jn�dm and �̂k0

jn�dm are de�ned to be xk0 and �k0 for k0 := k + dj �
n� dm. A point to stress here is that these certainty-equivalent controllers no

longer constitute an iso-cost equivalence class, and in fact each one leads to

a di�erent value for the cost (10). The optimal policy (whose derivation was

discussed at the beginning of this subsection) is indeed a certainty-equivalent

controller, and corresponds to (24) for some speci�c values of the �
mn
jk 's. A
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class of certainty-equivalent controllers where in the inner summation in (24)

only the term corresponding to k = n� dj is retained, that is:

um;n�dm =�pm x̂njn�dm + am �̂njn�dm

+
MX

j=m+1

�
m;n
j;n�dj

( uj;n�dj + pjx̂njn�dm � aj �̂njn�dm ) ; (25)

carries some appealing properties (from the point of view of ease in implemen-

tation), and will be studied further in this paper. In particular, we present in

Section 4 two such certainty-equivalent controllers, where we also clarify pre-

cisely what we mean by \predicted values" of xn and �n, and subsequently

show in Section 5 that each of these controllers leads to stable queue dynam-

ics. But �rst we discuss in the next section a simpler �nite-horizon problem,

to illustrate and further clarify the discussion of this subsection on optimality

and certainty equivalence.

3 A Three-Stage Example

We consider here a special �nite-horizon version of the optimal control problem

described by (8), (9), (10), with delayed actions, to demonstrate the existence

of multiple certainty-equivalent controllers, and the derivation of the optimal

one which is also certainty equivalent. This special case involves two users and

three stages, with user 1 acting at all three stages and having no action delay

(i.e., d1 = 0), and user 2 acting only once, but having a two-step action delay

(i.e., d2 = 0). In accordance with this, the shifted queue dynamics are

x4 = x3 + u13 + u21 � �3

x3 = x2 + u12 � �2

x2 = x1 + u11 � �1

(26)

where uin is the action of user i at stage n, and �n, n � 1, is generated by the

�rst-order AR process:

�n+1=��n + �n; n = 1; 2

where the quadruple fx1; �1; �1; �2g is a set of independent, zero-mean, second-

order random variables, and � is a scalar parameter, with j�j < 1.

The expected cost to be minimized for this �nite-horizon problem is:
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J(
11; 
12; 
13; 
21)=Ef(x4)2 + (x3)
2 + (x2)

2 + (u13 � a1�3)
2

+(u21 � a2�3)
2 + (u12 � �2)

2 + (u11 � �1)
2g (27)

where 0 < a1 < 1, 0 < a2 < 1, a1 + a2 = 1, and 
in is the policy of user i at

stage n, which is taken to be a general Borel-measurable function according

to:

u11 = 
11(�1; x1) =: 
11(I1)

u12 = 
12(�2; �1; x2; x1; u21; u11) =: 
12(I2)

u13 = 
13(�3; �2; �1; x3; x2; x1; u21; u11; u12) =: 
13(I3)

u21 = 
21(�1; x1) =: 
21(I1):

(28)

Note that user 1 has access to perfect measurement of all the current and

past variables and the past controls, while user 2 has access to only the pair

(�1; x1).

Optimal controller for the delay-free problem

As a benchmark performance, let us �rst determine the optimal controller for

both users under the assumption that user 2 does not have any action delay,

or equivalently that the construction of u21 is based on the same information

as that of u13. Then, this is a standard linear-quadratic stochastic control

problem, with a two-dimensional control at stage three, which admits the

solution:



DF

13 (I3) = 

DF

21 (I3) = �(1=3)x3 + a1�3



DF

12
(I2) = �(4=7)x2 + �2 ; 


DF

11
(I1) = �(11=18)x1 + �1

(29a)

with the corresponding unique minimum value for J being:

JDF=
11

18
var (x1) (29b)

where var (x1) := E[x2
1
]. These correspond to the controllers (21) introduced

earlier.

An important point to emphasize here is that, as mentioned earlier, even

though the minimum value of J as given above is unique, the solution given

14



is not unique as a control policy, as some other representation of it, such as 3

~
13(I3)=�
1

3
x3 + a1�3 + �1

�
u21 +

1

3
x3 � a2�3

�
(30a)



DF

21
(I3)=�

1

3
x3 + a2�3 (30b)



DF

12
(I2)=�

4

7
x2 + �2 + �2

�
u21 +

1

3
x3 � a2�3

�
(30c)



DF

11
(I1)=�

11

18
x1 + �1 (30d)

would also constitute a solution for every choice of the pair (�1; �2). This is

an important observation because as indicated earlier if one wishes to obtain

a certainty-equivalent controller, with the delay-free optimal controller being

the starting point, whether one uses representation (29a) or representation

(30a)-(30d) with nonzero �'s, will make a di�erence as we will shortly see.

Optimal controller with action delays

To obtain the solution to the original problem, where user 2 has a 2-step action

delay, we can use a dynamic programming approach | though a nonstandard

one. We �rst minimize J , given by (27), with respect to 
13, which leads to



�

13(I3)=�
1

2
x3 �

1

2
u21 +

�
a1 +

1

2
a2

�
�3: (31a)

Next we substitute this back into (27) and minimize the resulting expression

with respect to 
12, leading to



�

12(I2)=�
3

5
x2 �

1

5
u21 +

�
1 +

a2�

5

�
�2: (31b)

Now, the �nal step is to minimize J with respect to 
11 and 
21 (jointly or

sequentially), under (31a) and (31b), which leads to the unique solution



�

11
(I1)=�

11

18
x1 + �1 (31c)



�

21
(I1)=�

1

18
x1 + a2�

2
�1; (31d)

3 This corresponds to the class of controllers (23), with �
13
21 = �1; �

12
22 = �2, and all

other �'s zero.
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and to the unique optimal cost value:

J
�=

11

18
var (x1) +

3

2
(a2)

2 var (�2) +
7

5
�
2(a2)

2 var (�1) (32)

where var (�n) := E[�2n].

Note that the loss in performance in going from the delay-free optimal con-

troller (or the optimal controller with perfect anticipation of the future) to

the optimal controller that is compatible with the information structure of

the original problem depends only on var (�1) and var (�2), and not on

var (x1). This feature could signal some certainty-equivalence property to be

associated with this controller { { which is indeed the case provided that an

appropriate representation of (29a) is used.

First, note that (31a) is precisely (30a) with �1 = �1

2
, and hence 
�

13
is indeed

part of an optimal solution for the delay-free version of the problem. Also note

that 
�
11
� 


DF

11
, and



�

21
(I1)=E

h


DF

21
(I3) j I1; 
DF21

; 

DF

11

i

where the latter holds (with E[�j�] denoting conditional expectation) because

E [�3 j I1] =�
2
�1

and

E

h
x3 j I1; u12 = 


DF

12
(I2); u11 = 


DF

11
(I1)

i
=
1

6
x1:

This says that 
�
21
is also \certainty equivalent," because it is the conditional

mean of 
DF
21

given the information available for the construction of the con-

troller of user 2 and given the forms of the delay-free optimal controllers of

user 1. Now, �nally to see the certainty-equivalence property of 
�
12
, start with

the representation (30c) of 
DF12 with �2 = �(1=5):

~
12(I3)=�
4

7
x2 + �2 �

1

5

�
u21 +

1

3
x3 � a2�3

�

and take its conditional mean with respect to I2:

E

�
�
4

7
x2 + �2 �

1

5

�
u21 +

1

3
x3 � a2�3

����� I2; 
DF12

�
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=�
4

7
x2 + �2 �

1

5
u21 �

1

35
x2 +

1

5
a2��2

=�
3

5
x2 �

1

5
u21 +

�
1 +

a2�

5

�
�2 (33)

where we have used the property that

E

h
x3 j I2; 
DF12

i
=
3

7
x2:

Note that (33) is identical with (31b), which makes it a certainty-equivalent

controller.

Other certainty-equivalent controllers

Even though the optimal controller (31a)-(31d) is a certainty-equivalent con-

troller, it does not have an obvious structure that can be obtained readily

as a representation of the optimal controller for the delay-free version of the

problem, unless one goes through the actual derivation. There are, of course,

other certainty-equivalent controllers, which can be derived directly from (29a)

or some other �xed representation of it (such as (30a)-(30d) ); these all will,

however, necessarily lead to a performance worse than (32). For illustration

purposes, and as a prelude to the presentation in the next section, let us

present here two such controllers.

The �rst one (which we will call Controller I) uses the original representation

(29a). All we need to do is compute



I
21(I1)=E

h


DF

21 (I3) j I1; 

DF

1n ; n = 1; 2; 3
i
= �

1

18
x1 + a2�

2
�1; (34a)

and pick



I

1n� 

DF

1n ; n = 1; 2; 3: (34b)

Under (34a) and (34b), the cost is

JI=
11

18
var (x1) + 2(a2)

2
h
var (�2) + �

2 var (�1)
i
: (34c)

The second one (which we will call Controller II) uses the representation (30a)-
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(30d), with �1 = �1

2
; �2 = 0, 4 and hence the only di�erence between this one

and Controller I is that 
13 is now



II

13(I3)=�
1

2
x3 �

1

2
u21 +

�
a1 +

1

2
a2

�
�3; (35a)

while



II

12
� 


I

12
; 


II

11
� 


I

11
; 


II

21
� 


I

21
: (35b)

The corresponding value of J is

JII=
11

18
var (x1) +

3

2
(a2)

2[ var (�2) + �
2 var (�1)]: (35c)

Note that with var (�1) > 0, � 6= 0, a2 6= 0, we have the strict ordering

JI > JII > J
�
> JDF: (36)

4 Two Certainty-Equivalent Controllers

We now return to the original in�nite-horizon stochastic optimal control prob-

lem, and �rst present two certainty-equivalent controllers which belong to the

class represented by (25), and in a sense constitute two extreme cases in that

class; they correspond to the two controllers I and II presented in the previous

section. Subsequently, in the next section, we show that both these controllers

lead to a stable queue dynamics.

4.1 Controller I

This is obtained from (25) by taking the �'s equal to zero, and hence in a

sense is the simplest certainty-equivalent controller:

u
�

m;n= �pm x̂n+dm jn + am �̂n+dmjn ; m = 1; : : : ;M : (37)

Here pm is as de�ned by (19), and x̂n+dmjn, �̂n+dmjn are the predicted values of

xn+dm and �n+dm , respectively, based on the information In, and given that all

other controllers are also in the form (37). These predictors are generated by

4 The motivation behind this particular choice will become clear in the next section.
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x̂n+jjn= x̂n+j�1jn +
MX
i=1

ûm;n�dm+j�1jn � �̂n+j�1jn ; j � 1 ; (38)

x̂njn=xn

�̂n+jjn=
pX

i=1

�i �̂n+j�ijn ; j � 1 ; �̂n�kjn = �n�k ; k � 0 ; (39)

and

ûm;n�dm+j�1jn :=

8>>>>><
>>>>>:

�pmx̂n+j�1jn + am�̂n+j�1jn if j � dm + 1

um;n�dm+j�1 if j < dm + 1

(40)

These are the recursive equations generating the predictors for the the queue

length and rate information at a future time, where the future time is the

current time plus the action delay for the corresponding source. For example,

�̂n+jjn denotes the predicted value at time n of the value of � at some future

time n+j, based on the information available at time n, which is In. A similar

interpretation holds for x̂n+jjn.

The above algorithm is relatively easy to implement. The estimator algorithms

are simple scalar operations and the scalar solution of the Riccati equation s

has already been obtained explicitly.

In summary, an easily implementable version of Controller I is given below in

the form of a pseudo-code:

Pseudo-code for the node's computation at time n using Controller I

for j = 1 to dM do

for m = 1 to M do

if (n + j � dm � 1 � n)

ûm;n+j�dm�1jn = �pmx̂n+j�1 + am�̂n+j�1

end

x̂n+j = x̂n+j�1 +
MX

m=1

ûm;n+j�1+dmjn � �̂n+j�1

end

umn = �pmx̂n+dm + am�n+dm �
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4.2 Controller II

The second controller we consider here is again obtained from (25), now by

assigning some speci�c nonzero values to the �'s. These values are picked in

such a way that at each stage controls that will experience smaller delay are

made to depend in a \robust way" on controls that will experience larger

delay. This is accomplished by applying a Cholesky decomposition (Sage and

White, 1977) to the positive-de�nite matrix (R+ bb
0
s). In particular, we have

(R + bb
0
s) = U

0
U ;

where U is a non-singular, upper-triangular matrix. In view of this, (18) can

be rewritten as

U ~un = �~xn; (41)

where ~xn := (U 0)�1bsxn: Let Uij represent the (i; j)th element of U and qm

represent the mth element of (U 0)�1bs: Then, it is easy to see that (41) can be

written as

~umn = �
1

Umm

0
@ MX
k=m+1

Umk ~ukn + qm xn

1
A ; (42)

or, equivalently, using the relationship between ~u and u (see (18) ):

umn=�
1

Umm

0
@ MX
k=m+1

Umk ukn + qmxn

1
A (43)

+

0
@am +

1

Umm

MX
k=m+1

Umkak

1
A �n:

Now, to incorporate the action delays into this expression, we simply replace

ukn by uk;n�dk, thus arriving at:

um;n�dm =�
1

Umm

0
@ MX
k=m+1

Umk uk;n�dk + qm xn

1
A

+

0
@am +

1

Umm

MX
k=m+1

Umkak

1
A �n: (44)
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The certainty-equivalent Controller II then simply replaces xn and �n in the

expression for um;n�dm by their predicted values based on information In�dm ,

while using the new representation (44) for the controllers. Shifting the time

forward by dm units, we arrive at:

u
��

mn=�
1

Umm

0
@ MX
j=m+1

Umjuj;n+dm�dj + qmx̂n+dmjn

1
A

+

0
@am +

1

Umm

MX
k=m+1

Umk ak

1
A �̂n+dmjn (45)

where x̂, �̂ are generated by

x̂n+jjn= x̂n+j�1jn +
MX
i=1

ûm;n�dm+j�1jn � �̂n+j�1jn ; j � 1 ; (46)

x̂njn=xn

�̂n+jjn=
pX

i=1

�i �̂n+j�ijn ; j � 1 ; �̂n�kjn = �n�k ; k � 0 ; (47)

(48)

and

ûm;n�dm+j�1jn :=

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

�
1

Umm

0
@ MX
k=m+1

Umk ûk;n�dk+j�1 + qm x̂n+j�1jn

1
A

+

0
@am +

1

Umm

MX
k=m+1

Umk ak

1
A �̂n+j�1jn if j � dm + 1

um;n�dm+j�1 if j < dm + 1

(49)

The hatted terms above admit the same interpretations as in the corresponding

cases for Controller I, and hence will not be repeated here. We note, however,

that even though the implementation of Controller II requires the computation

of a Cholesky decomposition of the matrix (R + bb
0
s); this computation can

be carried out explicitly due to the special structure of the problem. It is not

di�cult to see that the expression for the (i; i)th entry of U is:

21



Uii =

vuut� 1 + s

iX
`=1

c
2

`

�
=

�
c
2

i (1 + s

i�1X
`=1

c
2

`)

�
;

and the one for the (i; j)th entry, j > i, is:

Uij = sci=

vuut(1 + s

iX
`=1

c
2

`)(1 + s

i�1X
`=1

c
2

`) :

Since U is upper triangular, Uij = 0 for j < i: Further, qm = Umj; for any

j > m:

For convenience, the pseudo-code for Controller II is provided below.

Pseudo-code for the node's computation at time n using Controller II

for j = 1 to dM do

for m = 1 to M do

if (n + j � dm � 1 � n) compute um;n+j�dm�1jn using (49).

end

x̂n+j = x̂n+j�1 +
MX

m=1

ûm;n+j�1+dmjn � �̂n+j�1

end

umn=�
1

Umm

0
@ MX
j=m+1

Umjujn + qmx̂n+dm

1
A

+

0
@am +

1

Umm

MX
j=m+1

Umjaj

1
A �̂n+dm :

�

The pseudo-codes for the two controllers show that the computations involve

only scalar additions and multiplications. This is in contrast to the optimal so-

lution which involves the solution of a (dM+p+1�dM+p+1)-dimensional Ric-

cati equation, in addition to the scalar additions and multiplications. Further,

when a new source becomes active or an active source becomes inactive, the

Riccati equation has to be solved again to implement the optimal controller.

The suboptimal controllers described here do not require this. However, the

expressions for the estimators (the hatted terms) have to be updated when the
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number of sources change. But this computation is simple as is evident from

the pseudo-codes.

5 Stability via the Certainty-Equivalent Controllers

In this section, we show that the linearized queue dynamics are stable under

both Controllers I and II, i.e., both controllers result in a bounded cost. Con-

sider the original system with the following modi�ed N -stage cost function,

along with a cost at the terminal state:

JN = s(xN+1)
2 +

NX
n=1

"
(xn)

2 +
MX

m=1

1

c2m

(um;n�dm � am �n)
2

#
: (50)

Let

�mn := um;n�dm � am �n ; �n := (�1n; : : : ; �Mn)
0
:

Then, using a \completion-of-squares" argument, JN can be rewritten as

JN =
NX
n=1

j�n + s(R + bb
0
s)�1bxnj2(sbb0+R) + sx

2

1
: (51)

De�ning

L := sbb
0 +R; k := s(sbb0 +R)�1b ;

JN can be expressed as

JN = sx
2

1
+

NX
n=1

(
MX

m=1

(�mn � am�n � kmxn)
2
Lmm

+2
MX

m=1

m�1X
j=1

Lmj(�mn � am�n + kmxn)(�jn � aj�n + kjxn)

9=
; (52)

where Lmj is the (m; j)th element of the matrix L and km is the mth element

of the vector k:

Substituting the expression for Controller I in (52), we get
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JN = sx
2

1
+

NX
n=1

(
MX

m=1

(am�̂
(m)

n + kmx̂
(m)

n � am�n � kmxn)
2
Lmm

+2
MX

m=1

m�1X
j=1

Lmj(am�̂
(m)

n + kmx̂
(m)

n � am�n + kmxn)

�(aj �̂(j)n + kmx̂
(j)
n � aj�n + kjxn)

o
(53)

where �̂
(m)

n := �̂njn�dm ; m = 1; : : : ;M: and x̂
(m)

n := x̂njn�dm: We recall that

�̂
(m)

n = E(�njIn�dm); x̂
(m)

n = E(xnjIn�dm);

where the latter uses the given structure of the controllers. Since

�n =
pX

i=1

�i �n�i + �n�1;

it follows that

�n = f�;m(�n�dm; �n�dm�1; : : : ; �n�dm�p+1)

+f�;m(�n�1; �n�2; : : : ; �n�dm�1);
(54)

and

�̂
(m)

n = f�;m(�n�dm; �n�dm�1; : : : ; �n�dm�p+1); (55)

where f�;m and f�;m are linear functions. Thus,

�n � �̂
(m)

n = f�;m(�n�1; �n�2; : : : ; �n�dm�1): (56)

In other words, (�n � �̂
(m)

n ) is a linear function of a �nite number of primitive

random variables. Using a similar argument, it is also possible to show that,

8l such that n� dm < l � n;

�̂ljn�dm = f
(l)

�;m(�n�1; �n�2; : : : ; �n�dm�1);

where f
(l)

�;m is some linear function.

Next, we show that (xn � x̂
(m)

n ) is also a linear function of a �nite number of

primitive random variables. For any m 2 f1; 2; : : : ;Mg; n � dm + 1 � l � n;
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we can write x` as

xl = gu;m;l(fu1k; u2k; : : : ; um�1;k; n� dm � k � lg)

+hu;m;l(fumk; um+1;k; : : : ; uMkg; n� dm � k � lg)

+f�;m;l(�n�dm; �n�dm�1; : : : ; �n�dm�p) +
~f�;m;l(�l; �l�1; : : : ; �n�dm);

(57)

where f; g; h and ~f are all linear functions. Thus, for m = 1;

x̂ljl�d1 = hu;1;l(fu1k; u2;k; : : : ; uMkg; n� d1 � k � lg)

+ ~f�;1;l(�n�d1; �n�d1�1; : : : ; �n�d1�p)

and

xn � x̂
(1)

n = ~f�;1;n(�n; �n�1; : : : ; �n�d1):

In fact, it is easy to see that ~f�;1;n is independent of n; which we will denote

as ~f�;1: By an induction on m; one can then show that

xn � x̂
(m)

n = ~f�;m(�n; �n�1; : : : ; �n�dm); (58)

for some linear functions ~f�;m: Thus, from (56) and (58), it follows that, there

exists a C > 0 such that

E

�
(am�̂

(m)

n +Kmx̂
(m)

n � am�n �Kmxn)
2
�
� C; (59)

independent of m;n: De�ne #n := am�n + Kmxn and #̂
(m)

m := E[am�n +

KmxnjIn�dm ]: For j < m;

E[(#̂(m)

n � #n)(#̂
(j)
n � #n)] =E[(#̂(m)

n #̂
(j)
n � #n#̂

(j)
n � #n#̂

(m)

n + #
2

n)]

=E[(#̂(m)

n )2]� E[(#̂(j)n )2]� E[(#̂(m)

n )2] + E[(#2n)]

=E[(#n � #̂
(j)
n )2] :

Thus, from (53),

JN � C

NX
n=1

0
@ MX
m=1

Lmm + 2
MX

m=1

m�1X
j=1

Lmj

1
A = N ~C;
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where

~C := C

0
@ MX
m=1

Lmm + 2
MX

m=1

m�1X
j=1

Lmj

1
A :

Therefore,

J � lim
N!1

JN

N
= ~C;

which proves that Controller I is stabilizing.

The proof for any other certainty-equivalent controller of the form given in

(24) is similar. Instead of working with the form of JN given by (51), we start

by �rst rewriting of (R + sbb
0) using a Hermitian similarity transformation

of the form V
0
PV , where V is an upper-triangular matrix. In other words,

rewrite JN as

JN =
NX
n=1

(�n + s(R + bb
0
s)�1bxn)

0
V
0
PV (�n + s(R + bb

0
s)�1bxn) + sx

2

1
:

Controller II is a special case of such a transformation with P = I: With

minor modi�cations, the rest of the stability proof for all certainty-equivalent

controllers follows as for Controller I. In addition to the type of terms in the

cost for Controller I, the cost for a general certainty-controller has additional

terms of the form

E(xn � x̂njn�dm)(xk � xkjn�dm);

where n < k < n � d1 + dM : Since k is upper-bounded, it is easy to see

that the above term is also upper-bounded and stability is assured for all

certainty-equivalent controllers.

6 Simulation Results

To evaluate the performance of Controllers I and II, we consider a single

congested node accessed by three sources as in Figure 1 in Section 1. Source

1 is subject to no action delay, Source 2 experiences an action delay of 5 time

units and Source 3 experiences an action delay of 10 time units. The fairness

indices are taken to be a1 = a2 = a3 = 1=3: The AR process is assumed to be

of order 2; and the parameters of the process are �1 = �2 = 0:4: The driving
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zero-mean Gaussian white noise process has a variance equal to 1: Figures 2

and 6 depict the performances of the two controllers for various values of the

parameter c2; where c2 = c
2
m; m = 1; 2; 3:

For the purposes of comparison, we have also plotted the results using the op-

timal controller derived in (Imer and Ba�sar, 1999b). In addition, we have also

compared the results from a controller which ignores the AR model and simply

stabilizes the system using standard LQ theory. For each value of c2 and for

each controller, the simulation was run for 100; 000 time units starting with an

initial queue length of 10: The �gures show that Controllers I and II perform

signi�cantly better than the simple stabilizing controller, especially in regulat-

ing the queue length, and their performances are close to the performance of

the optimal controller. Evidently, modelling the available bandwidth results in

signi�cant improvement in the performance. In the results shown here, as well

as many other simulation experiments that we have performed, Controller II

often performs better than Controller I. We do not believe, however, that this

result will generally hold, since neither controller is optimal. The �gures also

show that one can control the queue length fairly tightly around a nominal

level Q; by increasing ci's. Also, as expected, the mean values of x; u1; u2 and

u3 were all observed to be close to zero. This shows that the controller is fair

in the long-term. The fact that the variances of ui for the three sources are of

approximately the same magnitude also shows that the 
uctuation from fair

allocation is about the same for all sources, despite the di�erent action delays.
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7 Discussion and Conclusions

We have presented two algorithms for rate control that are derived using tools

from stochastic control theory. They are easy to implement, carry an appealing

certainty-equivalence property, and are stabilizing. They take into account the

presence of di�erent delays for di�erent users, and are actually implemented

at a centralized entity, namely, the node.

There are several avenues of further research that we are currently investigat-

ing:

� Measurement interval: We considered a discrete-time problem in which the

basic time unit was some minimum interval over which each node in the net-

work would compute the available rate. Very small measurement intervals

would lead to poor estimates of the available rate, whereas large measure-

ment intervals would lead to poor utilization. Further, since our model is

a discrete-time model, if the measurement interval is large, queue length

variations within the measurement interval may become important. Thus,

the impact of this discretization is a potential topic for further research.

� RM (rate management) cells: Here we have assumed that each source re-

ceives feedback from the controller at the node at each time instant. Under

the current ATM standards, the feedback is available only when the source

generates an RM cell. The RM cell travels through the entire route of a

virtual circuit (i.e., the route taken by the ABR source from source to des-

tination) and collects feedback information along the path. More speci�cally,

the RM cell is generated by the source and travels to the destination, where

it is turned back to the source. In the reverse path, each node on the path

sets the maximum allowable rate for the source. The minimum of these

rates is used by the ABR source. An RM cell is generated every Nrm data

cells, where Nrm is typically 32: The only exception is when the source's

data rate becomes very low, in which case, other special mechanisms come

into play. We believe that the controllers presented here can stabilize queue

length even when the feedback mechanism is implemented using RM cells.

In fact, since our discrete time unit is the measurement interval which will

be typically longer than the time between two RM cells, we always expect

that there will be at least one RM cell per time unit.

� Unknown number of active users: In the formulation here, we assumed that

the number of active users is known. If this is unknown, then one can use

some estimation scheme, such as the one in Kalyanaraman et al. (1997), to

estimate the number of active users and use that as the parameter M in

our formulation.

� Peak rate constraints and bursty sources: If a source cannot send at the rate

at which the node asks it to, either due to peak rate constraints or simply

because it is not currently generating tra�c at that rate, then one can use
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the ER �eld in the forward RM cell to signal to the node the maximum

rate at which the source can currently transmit. Then, this rate could be

subtracted from the available mean rate at the node, the number of active

sources (M) can be reduced by one, and the algorithm can proceed as usual.

� AR process: We have assumed here that the parameters of the AR process

are known. In practice, the node has to estimate this. Preliminary results

indicate that the use of standard estimators such as recursive least-squares,

in conjunction with our controller, performs well.

� Multi-node network model: In Compans (1998), many of the above modi�-

cations have been incorporated into the basic algorithm derived here. Sim-

ulation results on many network con�gurations indicate that, even when

the assumption of linearity is violated, either due to the queue length hit-

ting zero or due to the presence of multiple bottleneck nodes, the algorithm

still leads to stable queue dynamics without much performance degradation

(Compans, 1998).

� Unknown and random delay: ATM's signaling protocol allows one to esti-

mate action delay at call set-up time. However, in addition to this, there

could be additional variable delay introduced due to queueing which cannot

be measured. The e�ect of this should be best studied in the context of a

real network model, which we plan to do in a subsequent publication.
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