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Abstract. In this paper we consider a singularly perturbed Markov decision
process with ®nitely many states and actions and the limiting expected average
reward criterion. We make no assumptions about the underlying ergodic
structure. We present algorithms for the computation of a uniformly optimal
deterministic control, that is, a control which is optimal for all values of the
perturbation parameter that are su½ciently small. Our algorithms are based
on Jeroslow's Asymptotic Linear Programming.
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1 Introduction

Singularly perturbed Markov decision processes (MDPs, for short), are dy-
namic stochastic systems controlled by a ``controller'' or a ``decision-maker''
in which the probability transition law is subject to ``small'' perturbations that
a¨ect the ergodic structure of the underlying Markov chains. A simpler type
of perturbation (usually called regular) is one that does not change the ergodic
structure.

Both regular and singular perturbations of Markov chains and MDPs have
been studied extensively since the 60's (e.g., [1, 2, 5, 6, 12, 14, 17, 18]). In
Abbad and Filar [1] it was demonstrated that singularly perturbed MDPs
possess uniformly optimal stationary deterministic policies, namely, those
which are optimal for all su½ciently small values of the perturbation param-
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eter. However, no practical algorithm for ®nding such policies was given in
[1]. The latter problem is solved in this paper.

It is important to note that the linear programming problem that solves
our perturbed MDP has a coe½cient matrix that depends on e, the perturba-
tion parameter. Furthermore, at e � 0, there will typically be a change of rank
in this coe½cient matrix (see Example 5.2). It will be seen that by adapting the
asymptotic linear programming technique of Jeroslow [10] or by applying
similar ideas to the policy iteration method, such di½culties can be overcome
and uniformly optimal policies can be found in ®nitely many steps.

It should be mentioned that asymptotic linear programming has been used
in the MDP context by Hordijk et al. [7], for the purpose of computing a
Blackwell optimal policy in discounted MDP's. Hence it is natural to expect
that similar approach might also work in the problem addressed here.

However, there are three important di¨erences between the problem con-
sidered in [7] and our model. Firstly, the variable perturbation parameter
considered here alters the transition probabilities of the MDP, whereas in [7]
the underlying structure is unchanged and only the discount factor is variable.
The latter does not a¨ect the ergodic structure and impacts only the overall
reward criterion. Secondly, the linear program considered in [7] is simpler
than the one analysed in this paper, because it comes from the discounted
MDP rather than from the multi-chain limiting average MDP, which is the
basis of our problem. This means that we need to consider two sets of con-
straints and variables. Thirdly, the asymptotics of the problem in [7] (as dis-
count factor tends to one) constitute an important classical sensitivity analysis
problem studied by many authors including Blackwell [4], Miller and Veinott
[13], Ross and Varadarajan [16], Altman, Hordijk and Kallenberg [3]. In our
case, the asymptotics of the perturbed problem (as perturbation tends to zero)
have not been fully analysed in the past.

Finally, it has been noted in Huang [9] that the asymptotic linear pro-
gramming method based on expansions of regular matrix pencils should be
applicable to our problem.

2 The model

Consider a perturbed Markov decision process with a ®nite state space X �
f0; 1; . . . ;Ng and a ®nite action space A. Let Ax denote the set of actions
available in state x and K � f�x; a� : x A Ax; a A Xg. The probability to go
from state x to state y given that action a is used, is given by the transition
probability

pe
xay :� pxay � eqxay V 0 �1�

where
P

y qxay � 0 and e > 0 is a ``small'' perturbation parameter.

A policy u in the policy space U is described as u � fu1; u2; . . .g, where the
decision rule ut, applied at time epoch t, is a probability measure over A con-
ditioned on the whole history of actions and states prior to t, as well as on the
state at time t. Given an initial distribution b on X, each policy u induces a
probability measure denoted by Pu

b on the space of sample paths of states and
actions (which serves as the canonical sample space W). The corresponding
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expectation operator is denoted by E u
b . On this probability space the state and

action processes, Xt;At; t � 1; 2; . . . are de®ned.
A Markov policy u A U�M� is characterized by the dependence of ut on the

current state xt and the time t only. A stationary policy g A U�S� is charac-
terized by a single conditional probability measure p

g
�jx over A, so that p

g
Ajx �

1; under g, the state process Xt becomes a Markov chain with transition
probabilities given by pe

xy�g� �
P

a AA p
g
ajx p e

xay. The steady state distribution

for e > 0 is given by the Cesaro limit

P�; e�g� � lim
t!y

1

t� 1

Xt

s�0
�P e�g��s:

The class of deterministic policies U�D� is a subclass of U�S�, and every
g A U�D� is characterized by a mapping g : X! A, such that p

g
�jx � dg�x���� is

concentrated at the point g�x� for each x.
Let r : X� A! R, be a (real valued) reward function and de®ne the long-

run expected average reward associated with a policy u and with an initial
distribution b on X as

R e
b�u� � lim

t!y

1

t
E u

b

Xt

s�1
r�Xs;As�

" #
�2�

Let OP�e� denote the problem of ®nding a policy u that maximizes Re
b�u�

for a given initial distribution b. Let R e
b be the optimal value of OP�e�. A

policy that achieves Re
b�u� � Re

b is said to be optimal for OP�e�. Let U e
b denote

the set of all such policies.
Following Abbad and Filar [1] we de®ne the limit control problem as the

problem of maximizing over u A U

R0
b�u� � lim

e!0

Re
b�u�:

However, by Proposition 3.1 in [1] we can restrict consideration to the class of
deterministic policies U�D�.

A policy u is said to be limit control optimal, if for any policy v A U�D�,

lim
e!0
�Re

b�u� ÿ Re
b�v��V 0:

A policy u is said to be uniformly optimal, if for all e su½ciently small and
any policy v A U�D�,

Re
b�u�VRe

b�v�: �3�

The existence of a uniformly optimal stationary deterministic policy was
established in Abbad and Filar [1]. A uniformly optimal policy is limit control
optimal, but the converse need not hold, as the following example illustrates.
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Example 2.1: Consider X � fx; yg, Ax � fa; bg, Ay � fag; let
pe

xax � 1; r�x; a� � 10

pe
xbx � 1ÿ e; r�x; b� � 10

p e
xby � e;

p e
yax � 1; r�y; a� � 0

Then the stationary policy ux � a; uy � a is uniformly optimal with expected
average reward R e

b�u� � Re
b � 10. The stationary policy vx � b; vy � a is limit

control optimal as lime!0 Re
b�v� � 10, but for every e > 0,

R e
b�v� �

10

1� e
< Re

b�u�:

The main purpose of this note is to present two algorithms which derive a
uniformly optimal policy.

The following notation is used below: 1fAg is the indicator function of the
set A and da�x� is the Kronecker delta function. We denote by jBj the cardi-
nality of a set B, i.e. the number of elements in B. For two vectors c and d of
appropriate dimensions, c � d denotes the summation over common indices
(scalar product). For a stationary policy u, we denote the immediate expected
reward vector by r�u�, the vector of dimension jXj, whose x-th entry is r�x; u�
:�Pa r�x; a�uajx.

3 Perturbed linear program

One method of solving OP�e� for a ®xed e is based on the solution of a linear
program which we present below (see [8]).

Given the initial distribution b over X, de®ne P e
b to be the set of f�z; z�g,

z; z A RjKj, that satisfyX
y AX

X
a AAy

�dy�v� ÿ pyav ÿ eqyav�z�y; a� � 0; Ev A X �4�

X
a AAv

z�v; a� �
X
y AX

X
a AAy

�dy�v� ÿ pyav ÿ eqyav�z�y; a� � b�v�; Ev A X �5�

zV 0; zV 0: �6�

Remark 3.1: (i) Every z��; �� A P e
b satis®es

P
y;a z�y; a� � 1. This can be seen by

summing equation (5) over all v A X.
(ii) We may delete one of the constraints among (4). This follows from the
fact that the coe½cients of z�y; a� in (4) sum to 0.

Consider the perturbed linear program: LP�e�: Find z; z A RjKj, that

maxfr � zg
subject to
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�z; z� A P e
b:

LP�e� is related to OP�e� in the following way. Given any �z; z� A P e
b, de®ne

the stationary policy g�z; z� by

p
g�z;z�
ajy �

z�y; a�P
a 0 z�y; a 0�

; if
P

a 0 z�y; a 0� > 0

z�y; a�P
a 0 z�y; a 0�

; if
P

a 0 z�y; a 0� � 0 and
P

a 0 z�y; a 0� > 0

arbitrary; otherwise.

8>>>>>><>>>>>>:
�7�

This construction was introduced by Hordijk and Kallenberg [8]. The fol-
lowing lemma is an immediate corollary of the results in [8], for e > 0 and
®xed.

Lemma 3.2. (i) Fix e > 0. The optimal values of OP�e� and of LP�e� are
equal. (ii) Suppose that �z��e�; z��e�� is an optimal solution of LP�e�, then
g�z��e�; z��e�� is optimal for OP�e�.

However, the results in [8] do not permit us to ®nd a uniformly optimal
deterministic policy. The latter is a more di½cult problem both from a theo-
retical point of view and due to the fact that the rank of the coe½cient matrix
of LP�e� can change at e � 0 (the case of the singular perturbation). This can
create numerical problems when e > 0 is small.

4 Asymptotic linear programming

A key step in our method is to ®nd a basis for LP�e�, which is optimal for all
e su½ciently small. In order to achieve this we follow an asymptotic linear
programming approach due to Jeroslow [10]. In particular we consider the
entries of the coe½cient matrix of LP�e� not as the elements of the usual
Archimedean ordered ®eld of the real numbers, but as elements of the non-
Archimedean ordered ®eld F�R� of rational functions with real coe½cients.
This approach was previously applied to MDPs by Hordijk et al. [7] to obtain
a Blackwell optimal policy (i.e. a policy that is optimal for all discount factor
su½ciently close to 1). As in [10, 7], the asymptotic simplex method can also
be used to solve our LP�e�. An order relation between two rational functions
will be de®ned as in [10]. We denote the ordering and equality in this ®eld by
``>l '' and ``�l '', respectively (see Appendix).

The logical steps of asymptotic linear programming method (ALP) are:

. In order to identify an initial feasible basis, we may add the arti®cial vari-
ables r�v�; x�v�; v A X, one variable for each of the constraints in (4) and (5),
respectively. We note that

�z; z; r; x� � �0; 0; 0; b�
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is feasible. A feasible initial basis is an identity matrix corresponding to the
arti®cial variables.. One may follow the standard or the revised simplex method for solving the
linear program maxfr � xg s:t: A�e�x �l b; xV 0, but with respect to the
order and equality relations of F�R�. Note that after adding the arti®cial
variables, A�e� is of full rank. A basis is optimal if and only if the reduced
costs rN�e� :� rN ÿ rBBÿ1�e�N�e�U l0. Here, rB (rN , resp.) is the vector of
rewards corresponding to the elements in the basis (not in the basis, resp.);
B�e� is a basic submatrix of A�e�, and N�e� is the corresponding nonbasic
submatrix. Let us use the simplex tableaux. We shall write in the simplex
tableaux only the numerators of the rational functions which are the co-
e½cients of variables in LP�e�. This is possible because the entries of the
simplex tableaux can be assumed to have common denominators. Let yik

denote the ik-th entry of the current tableau. In the ®rst column we indicate
the basic variables. The reduced costs are written in the bottom row of the
tableau, and Bÿ1b appears in the right most column. We denote the i-th
element of the latter by yi0.. The entry and exit rules are natural extensions of the usual simplex rules:
(i) First, we determine the entering non-basic column. Any column (not in
the basis) whose corresponding reduced cost is strictly positive (with respect
to ``>l '') can be chosen to enter. As usual, we can choose the column with
the largest nonnegative reduced cost to enter.
(ii) The column p to leave the basis is one that minimizes (with respect to
``>l '') the ratio yi0�e�=yik�e� among those i 0s satisfying yik�e� >l 0 (k is the
index of the entering column).
We now perform the pivot operation and construct the new tableau. This
employs algebraic operations over the ®eld of polynomials P�R�.. The order of the polynomials appearing in both the numerators and de-
nominators never exceeds the number of constraints, that is, twice the
number of states. This follows from the fact that (i) each coe½cient of the
constraints A�e� is linear in e, and (ii) the elements in the simplex tableau are
given by Bÿ1�e�b, where A�e� is the matrix of constraints, and b is the vector
of the right hand side coe½cients.

5 Numerical examples

Consider the following illustrative examples.

Example 5.1: Consider X � fx; yg, Ax � Ay � fa; bg; let
pe

xax � 1; r�x; a� � 10

pe
xbx � 1ÿ e; r�x; b� � 10

p e
xby � e;

p e
yax � 1; r�y; a� � 0

p e
ybx � pe

yby � 0:5; r�y; b� � 5:

We take b�x� � b�y� � 0:5.
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By adding the arti®cial variables, the linear program LP�e� becomes:

Maxf10z�x; a� � 10z�x; b� � 5z�y; b� ÿ 100x�x�
ÿ 100x�y� ÿ 100r�x� ÿ 100r�y�g

subject to the constraints

�ez�x; b� ÿ z�y; a� ÿ 0:5z�y; b� � x�x� � 0

ÿez�x; b� � z�y; a� � 0:5z�y; b� � x�y� � 0

�z�x; a� � z�x; b� � ez�x; b� ÿ z�y; a� ÿ 0:5z�y; b� � r�x� � 0:5

�z�y; a� � z�y; b� ÿ ez�x; b� � z�y; a� � 0:5z�y; b� � r�y� � 0:5

z�x; a�; z�x; b�; z�y; a�; z�y; b�; z�x; a�; z�x; b�; z�y; a�; z�y; b�V 0:

A reader familiar with MDPs will note that this example is of the so-called
``unichain'' model (for e > 0). Consequently, a simpler version of LP(e) could
have been used (e.g., see Kallenberg [11] p. 132). However, the present version
of LP(e) applies generally and hence is better suited for demonstrating this
new technique.

We added a penalty term for the arti®cial variables to ensure that they exit
the basis. We shall delete the 2nd constraint (and will thus not use x�y�, see
Remark 3.1 (ii)).

The ®rst simplex tableau is given in Table 1. The common denominator is
1. We then choose the 1st column z�x; a� to enter. The row/variable to exit is
the 2nd one, r�x�. In all the tableaux the pivoting element is underlined.

The second simplex tableau is given in Table 2. The common denominator
is again one. The column that enters the basis is z�x; a� for which the reduced
cost 110 is the largest. The column to exit is r�y�.

The third and fourth simplex tableaux are given in Tables 3, and 4. The
common denominator in Table 3 is 1, and in 4 it is e.

At this stage we have obtained an optimal solution over the ®eld of
rational functions F�R� with real coe½cients (see Appendix). A uniformly
optimal policy uses action a in states x and y, as follows from (7). Note that it

Table 1. First tableau of Ex. 5.1

Basis artif. variables z variables z variables

x�x� r�x� r�y� xa xb ya yb xa xb ya yb r.h.s

x�x� 1 0 0 0 e ÿ1 ÿ0:5 0 0 0 0 0

r�x� 0 1 0 1 1 0 0 0 e ÿ1 ÿ0:5 0.5

r�y� 0 0 1 0 0 1 1 0 ÿe 1 0.5 0.5

red. cost 0 0 0 110 110� 100e 0 55 0 0 0 0
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is uniformly optimal for all e (satisfying the constraint (1)), i.e. e A �0; 1�. The
value of this MDP is 10 (independently of e). The stationary deterministic
policies that choose action b in state x are optimal for the limit problem but
are not optimal for any positive e.

Now consider the second example, which exposes the singularity of the
problem.

Example 5.2: Consider X � fw; x; yg and Aw � fa; bg, Ax � fag, Ay � fag.
And let

Table 2. Second tableau of Ex. 5.1

Basis artif. variables z variables z variables

x�x� r�x� r�y� xa xb ya yb xa xb ya yb r.h.s

x�x� 1 0 0 0 e ÿ1 ÿ0:5 0 0 0 0 0

z�x; a� 0 1 0 1 1 0 0 0 e ÿ1 ÿ0:5 0.5

r�y� 0 0 1 0 0 1 1 0 ÿe 1 0.5 0.5

red. cost 0 ÿ110 0 0 100e 0 55 0 ÿ110e 110 55

Table 3. Third tableau of Ex. 5.1

Basis artif. variables z variables z variables

x�x� r�x� r�y� xa xb ya yb xa xb ya yb r.h.s

x�x� 1 0 0 0 e ÿ1 ÿ0:5 0 0 0 0 0

z�x; a� 0 1 1 1 1 1 1 0 0 0 0 1

z�y; a� 0 0 1 0 0 1 1 0 ÿe 1 0.5 0.5

red. cost 0 ÿ110 ÿ110 0 100e ÿ110 ÿ55 0 0 0 0

Table 4. Fourth tableau of Ex. 5.1

Basis artif. variables z variables z variables

x�x� r�x� r�y� xa xb ya yb xa xb ya yb r.h.s

z�x; b� 1 0 0 0 e ÿ1 ÿ0:5 0 0 0 0 0

z�x; a� ÿ1 e e e 0 1� e 0:5� e 0 0 0 0 e

z�y; a� 0 0 e 0 0 e e 0 ÿe2 e 0:5e 0:5e

red. cost ÿ100e ÿ110e ÿ110e 0 0 ÿ10e ÿ5e 0 0 0 0
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pe
waw � 1ÿ e; pe

way � e; r�w; a� � 10

pe
wbw � 1ÿ e; pe

wbx � e; r�w; b� � 10

pe
xax � 1ÿ e; pe

xay � e; r�x; a� � 10

pe
yaw � pe

yax � 0:5; r�y; a� � 0:

Since the perturbed Markov chain is ergodic for all stationary policies, we
may use a simpli®ed form of LP(e) with only the z-variables (see Kallenberg
[11], p. 128). Thus our LP(e) problem is

max
X
x;a

r�x; a�z�x; a� jA�e�z � b; zV 0

( )
;

where

A�e� �
e e 0 ÿ0:5
0 ÿe e ÿ0:5
1 1 1 1

0@ 1A; b �
0

0

1

0@ 1A:
We shall start with a basis consisting of the columns that correspond to the
policy �a; a; a�. Hence

B�e� �
e 0 ÿ0:5
0 e ÿ0:5
1 1 1

0@ 1A:
We have

Bÿ1�e� � �e� e2�ÿ1
0:5� e ÿ0:5 0:5e

ÿ0:5 0:5� e 0:5e

ÿe ÿe e2

0@ 1A:
Note that Bÿ1�e� has a singularity at e � 0. Now,

Bÿ1�e�b � �1� e�ÿ1
0:5

0:5

e

0@ 1A;
and ®nally

Bÿ1�e�A�1;b��e� � �1� e�ÿ1
1:5� e

ÿ0:5ÿ e

e

0@ 1A:
The reduced reward coe½cients corresponding to the element �1; b� is r�1; b�ÿ

Asymptotic linear programming and policy improvement 105



�rBBÿ1�e�A�1;b��e�� � 10e�1� e�ÿ1 (where rB is the vector of rewards corre-
sponding to the elements in the basis).

In the ®rst simplex tableau (Table 5) we only write the numerators. The
denominator which is common to all entries is �1� e�. The expected long-run
average reward corresponding to this basis is 10�1� e�ÿ1.

To obtain the second tableau, the second column enters the basis and the
®rst row exits the basis. This simply corresponds to the policy �b; a; a�. The
common denominator to all entries in the second Tableau is �1:5� e�, which
we have omitted.

The reward corresponding to the new basis is 15�1:5� e�ÿ1 and the policy
�b; a; a� is uniformly optimal.

6 Asymptotic policy iteration

The method of Jeroslow [10] can also be used in a policy iteration type
method for obtaining a uniformly optimal policy. The steps of Asymptotic
Policy Iteration Method (API) are as follows:

1. Start with an arbitrary stationary deterministic policy u.
2. Solve the equations with unknowns R;H;W , which are all jXj-dimensional

vectors whose entries are elements in the ®eld F�R� of rational functions
(in e) with real coe½cients:

Table 5. First tableau of Ex. 5.2

Basis z variables

�1; a� �1; b� �2; a� �3; a� r.h.s.

z�1; a� 1� e 1:5� e 0 0 0.5

z�2; a� 0 ÿ0:5ÿ e 1� e 0 0.5

z�3; a� 0 e 0 1� e e

red. cost 0 10e 0 0

Table 6. Second tableau of Ex. 5.2

Basis z variables

�1; a� �1; b� �2; a� �3; a� r.h.s.

z�1; b� 1� e 1:5� e 0 0 0.5

z�2; a� 0:5� e 0 1:5� e 0 1

z�3; a� ÿe 0 0 1:5� e e

red. cost ÿ10e 0 0 0
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P e�u�R �l R �8�

�P e�u� ÿ I�H �l Rÿ r�u� �9�

�P e�u� ÿ I�W �l H �10�

(R and H are uniquely determined (e.g., see [15] p. 452), and R �l Re�u�,
H �l H e�u�.)

3. Choose a stationary deterministic policy v that selects an action v�x� � a
in state x as follows: If there is an action a such thatX

y

pe
xayRy >l Rx;

then v�x� � a. If such an action does not exist, but there is an action a for
whichX

y

pe
xayRy �l Rx and r�x; a� �

X
y

pe
xayHy >l Rx �Hx;

then set v�x� :� a. If there are no actions satisfying either of the above
conditions, then the action at this state is unchanged (we set v�x� :� u�x�).

4. If u � v then stop. Otherwise, set u :� v, and return to Step 1.

7 Finite convergence

The next proposition demonstrates that both the (ALP) and (API) methods
indeed solve the original problem (3).

Proposition 1. Consider a singularly perturbed MDP and the associated optimal
control problem OP�e�. Apply either the (ALP) or the (API) method to this
problem. Both methods terminate in ®nitely many iterations and yield a uni-
formly optimal control.

Proof: (i) For the (API) method.
In Steps 2 and 3 of (API) the relations ``>l '' and ``�l '' are with respect to the
ordering of rational function with real coe½cients, as in [10, 7] (see exact def-
initions given in the Appendix). The above algorithm ®nds an optimal policy
in ®nitely many steps. This follows from the fact that each step in the algo-
rithm yields a strict improvement of the long-run expected average reward
criterion with respect to the ordering over F�R�. Now, the uniformity follows
from the following reasoning. Consider a rational function p=q, where p and q
are polynomials with rational coe½cients. It is called positive (nonnegative,
resp.) if p=q >l �Vl�p0, respectively. Then p=q is positive if and only if there
exists e0 > 0 such that p�e�=q�e� > 0 for all e A �0; e0�. The latter implies that
we ®nd a policy which is optimal for all su½ciently small e, namely, a uniform
optimal policy.

(ii) For the (ALP) method.
This follows immediately from the arguments presented by Jeroslow [10].
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8 Appendix: The ®eld of rational functions with real coe½cients

In order for this paper to be self contained, we include a brief description
of the ®eld of rational functions (see e.g. [7]). Let P�R� denote the set of
polynomials with real coe½cients of the form

p�x� � a0 � a1x� . . .� anxn; n A N:

Let p0 and p1 denote the polynomials p0 �def 0; p1 �def 1, respectively. Let d�p�
denote the dominating (leading) coe½cient of the polynomial p; it is ak, where
k is the smallest integer with ak 6� 0.

The ®eld F�R� of rational functions with real coe½cients consists of ele-
ments of the form p=q, where p; q A P�R�. A polynomial p is identi®ed with
p=1. We say that p=q �l r=s if ps � qr, p; q; r; s A P�R�. The addition and
multiplication of elements in F�R� are de®ned by

p

q
� r

s
�l

ps� rq

qs
;

p

q
� r
s
�l

pr

qs
; p; q; r; s A P�R�:

p0 and p1 are the identities with respect to addition and multiplication,
respectively. A complete ordering on F�R� is obtained by de®ning

p=q >l p0 if and only if d�p�d�q� > 0:
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