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Abstract

We study the throughput of multi-hop routes and stability of forwarding queues in a wireless ad-hoc network with ran-
dom access channel. We focus on a wireless network with static nodes, such as community wireless networks. Our main
result is characterization of stability condition and the end-to-end throughput using the balance rate. We also investigate
the impact of routing on end-to-end throughput and stability of intermediate nodes. We show that (i) as long as the inter-
mediate queues in the network are stable, the end-to-end throughput of a connection does not depend on the load on the
intermediate nodes, (ii) we show that if the weight of a link originating from a node is set to the number of neighbors of this
node, then shortest-path routing maximizes the minimum probability of end-to-end packet delivery in a network of
weighted fair queues. Numerical results are given and support the results of the analysis. Finally, we perform extensive
simulation and verify that the analytical results closely match the results obtained from simulations.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

A multi-hop wireless ad-hoc network is a collec-
tion of nodes that communicate with each other
without any established infrastructure or centralized
control. Each of these nodes is a wireless transceiver
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that transmits and receives at a single frequency
band which is common to all the nodes. These nodes
can communicate with each other, however, they
are limited by their transmitting and receiving capa-
bilities. Therefore, they cannot directly reach all of
the nodes in the network as most of the nodes are
outside of direct range. In such a scenario, one of
the possibilities for the information transmission
between two nodes that are not in position to have
a direct communication is to use other nodes in the
network. To be precise, the source device transmits
its information to one of the devices which is within
.
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transmission range of the source device. The
network operates in a multi-hop fashion. Nodes
route traffic for each other. Therefore, in a con-
nected ad-hoc network, a packet can travel from
any source to its destination either directly, or
through some set of intermediate packet forwarding
nodes.

Clearly, a judicious choice is required to decide on
the set of devices to be used to assist in the commu-
nication between any two given pair of devices. This
is the standard problem of routing in communica-
tion networks. The problem of optimal routing has
been extensively studied in the context of wire-line
networks where usually a shortest-path routing algo-
rithm is used: Each link in the network has a weight
associated with it and the objective of the routing
algorithm is to find a path that achieves the mini-
mum weight between two given nodes. Clearly, the
outcome of such an algorithm depends on the
assignment of the weights associated to each link in
the network. In the wire-line context, there are many
well-studied criteria to select these weights for links,
such as delays. In the context of wireless ad-hoc net-
works, however, not many attempts have been made
to (i) identify the characteristics of the quantities
that one would like to associate to a link as its
weight, and in particular (ii) to understand the
resulting network performance and resource utiliza-
tion (in particular, the stability region and the
achievable throughput regions). Some simple heuris-
tics have been frequently reported to improve
performance of applications in mobile ad-hoc net-
works (see [12] and reference therein).

To study this problem, we consider in this paper
the framework of random access mechanism for the
wireless channel where the nodes having packets to
transmit in their transmit buffers attempt transmis-
sions by delaying the transmission by a random
amount of time. This mechanism acts as a way to
avoid collisions of transmissions of nearby nodes
in the case where nodes cannot sense the channel
while transmitting (hence, are not aware of other
ongoing transmissions). We assume that time is slot-
ted into fixed length time frames. In any slot, a node
having a packet to be transmitted to one of its
neighboring devices decides with some fixed (possi-
bly node dependent) probability in favor of a trans-
mission attempt. If there is no other transmission by
the other devices whose transmission can interfere
with the node under consideration, the transmission
is successful. As examples of this mechanism, we
find Aloha-type [14] and IEEE 802.11 CSMA/CA-
based mechanism. With these mechanisms, each
node determines its transmission times [2,24].

At any instant in time, a device may have two
kinds of packets to be transmitted:

1. Packets generated by the device itself. This can be
sensed data if we are considering a sensor
network.

2. Packets from other neighboring devices that need
to be forwarded.

Clearly, a device needs to have some scheduling
policy to decide on which of these types it wants to
transmit, given that it decided to transmit. Having
a first come first served scheduling is one simple
option. Yet another option is to have two separate
queues for these two types and do a weighted fair
queueing (WFQ) for these two queues. In this paper
we consider the second option.

Working with the above mentioned system
model, we study the impact of routing, channel
access rates and weights of the weighted fair queue-
ing on throughput, stability and fairness properties
of the network.

It is worth mentioning that the above scenario
may also be studied in the perspective of game theory
in which case the nodes are assumed to be rational
and need some incentive to forward data from other
nodes. Two queues allow to model the selfish behav-
ior or on the contrary to give higher priority to con-
nections that traverse many hops that could
otherwise suffer from large loss rates. Since ad-hoc
networks do not have a centralized base-station that
coordinates between them, an important question
that has been addressed is to know whether we may
indeed expect nodes to collaborate in such forward-
ing. Typically in such scenario, a Nash equilibrium
determines the operating point (routing, channel
access rates and WFQ weights). Thus, the results of
this paper may be helpful in comparing various oper-
ating points based on criteria of throughput, stability
and fairness in the cases where Nash equilibrium is
not unique. Many papers in the literature, have stud-
ied the incentive for cooperation in ad-hoc networks,
see [7–10]. Almost all previous papers, however, only
considered utilities related to successful transmission
of a node’s packet to its neighbor. In practice, the
utility function should depend on the forwarding
behavior of all nodes (see [19]).

The main contribution of this paper is to provide
approximation expressions of stability. Our main
result is concerned with the stability of the forward-
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ing queues at the devices. It states that whether or
not the forwarding queues can be stabilized (by
appropriate choice of WFQ weights) depends only
on the routing and the channel access rates of the
devices. Further, the weights of the WFQs play a
role in determining the tradeoff between the power
allocated for forwarding and the stability of its
queue. The end-to-end throughput achieved by the
nodes are independent of the choice of the WFQ
weight.

1.1. Related literature

Several studies have focused on wireless network
capacity and stability. The network capacity prob-
lem deals with finding the fundamental limits on
achievable communication rates in wireless net-
works. The closure of the set of achievable rates is
the capacity region of the network. In recent year,
there has been a considerable effort on trying to
compute the capacity region and improve the per-
formance of wireless ad-hoc networks since Gupta
and Kumar [6] showed that the capacity of a fixed
wireless network decreases as the number of nodes
increases. Grossglauser and Tse [5] presented a
two-phase packet forwarding technique for mobile
ad-hoc networks, utilizing the multiuser diversity,
in which a source node transmits a packet to the
destination when this destination becomes the clos-
est neighbors of the relay. This scheme was shown
to increase the capacity of the MANET, such that
it remains constant as the number of users in the
MANET increases.

The stability region is the closure of the set of
arrivals rates at which the network can be stabilized.
Stability depends both on the rate of packet arrivals
and the rate of packet departure from the network.
The network stability has been studied extensively
both for networks with centralized scheduling
[15,17] and the Aloha protocol [18,1,20,21]. Among
the most studied stability problems are scheduling
[15,16] as well as for the Aloha protocol [1,13,23].
Tassiulas and Ephremides [15] obtain a scheduling
policy for the nodes that maximizes the stability
region. Their approach inherently avoids collisions
which allows to maximize the throughput. Radu-
novic and Le Boudec [3] suggest that considering
the total throughput as a performance objective
may not be a good objective. Moreover, most of
the related studies do not consider the problem of
forwarding and each flow is treated similarly (except
for [3,11,22]). Our setting is different than the men-
tioned ones in the following: the number of trans-
missions is finite, and therefore, in our setting, the
output and the input rates need not be the same.

1.2. Main contributions

The main contributions of this paper are (i) Pro-
viding a framework for cross-layer study of stabil-
ity–throughput performance of ad-hoc networks.
It has the flexibility for managing at each node for-
warded packets and its own packets differently. (ii)
Design routing in a way that stabilizes the system.
(iii) The context of the stability that we study is
new as it takes into account the possibility of a lim-
ited number of transmissions of a packet at each
node after which it is dropped.

The paper is structured as follows. In Section 2,
we present the cross-layer network model. In Sec-
tion 3, the network stability and the performance
are characterized by using a balance equation. The
effect of routing and the stability condition of for-
warding queues are introduced in Section 4. The
validation of analytical results is done with a dis-
crete time simulator in Section 5. Some special cases
as linear networks are also studied in Section 6.

2. Network model

In this section, we describe the operation of the
network in detail and introduce various quantities
that determine the overall performance. We provide
also the assumptions underlying this study and
introduce appropriate notations.

2.1. Assumptions and definitions

Consider a wireless ad-hoc network consisting of
N nodes (we allow N ¼ 1 to study some simple
symmetric cases without boundary effects). When
N is finite, we number the nodes using integers
1; . . . ;N .

We assume the following:

� Simple channel: nodes use the same frequency for
transmitting with an omni-directional antenna. A
node j receives successfully a packet from a node
i if and only if there is no interference at the node
j due to another transmission. A node cannot
receive and transmit at the same time.
� Two types of queues: two queues are associated

with each node. The first one is the forward
queue F i (proper to the node i), which carries
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all the packets originated from a given source
and destined to a given destination. The second
is Qi which carries the proper packets of the node
i (in this case i � s where s designates a source
node). We assume that each node has an infinite
capacity of storage for the two queues. Packets
are served with a first in first served fashion.
When F i has a packet to be sent, the node
chooses to send it from F i with a probability fi.
In other terms, it chooses to send from Qi with
probability 1� fi. When one of these queues is
empty then we choose to send a packet from
the non empty queue with probability 1. When
node i decides to transmit from the queue Qi, it
sends a packet destined for node d, d 6¼ i, with
probability P i;d .
� Saturated network: each node has always packets

to be sent from queue Qi, whereas F i can be
empty. Consequently, the network is considered
saturated and depends on the channel access
mechanism.

This model allows us to define a neighborhood
relation between any two nodes: node i is neighbor
of node j if node i can receive transmission from
node j. We use the function Að�; �Þ : ½1;N ��
½1;N � ! f0; 1g to denote the neighborhood relation:
Aði; jÞ ¼ 1 if and only if i is neighbor of j. We
assume that the (binary) neighborhood relation is
symmetric, i.e., Aði; jÞ ¼ Aðj; iÞ. Let NðiÞ denote
the nodes which are neighbors of node i, i.e.,
NðiÞ ¼ fj : Aðj; iÞ ¼ 1g.

2.2. Network layer

The network layer handles the two queues Qi

and F i using the WFQ scheme, as described previ-
ously. Each node acts as a router, it permits to relay
packets originated from a source s to a destination
d. It must carries a routing information which per-
mits sending of packets to a destination via a neigh-
bor. In this paper, we assume that nodes form a
static network where routes between any source s

and destination d are invariant in the saturated net-
work case. Proactive routing protocols as OLSR [4]
(Optimized Link State Routing), construct and
maintain a routing table that carries routes to all
nodes on the network. These kind of protocols
correspond well to our model. We use the notation
Rs;d to denote the set of nodes between a node s and
d (s and d not included). Let Ri;s;d be the set of
nodes Rs;i

S
i.
2.3. MAC layer

We assume a channel access mechanism only
based on a probability to access the network, i.e.,
when a node i has a packet to transmit from the
queue Qi or F i, it accesses the channel with a prob-
ability P i. It can be similar to CSMA/CA or any
other mechanism to access the channel. For exam-
ple, in IEEE 802.11 DCF, the transmission proba-
bility or attempt rate is given by [24]

P ¼ 2ð1� 2P cÞ
ð1� 2P cÞðCW min þ 1Þ þ P cCW minð1� ð2P cÞmÞ

;

ð1Þ

where P c is the conditional collision probability gi-
ven that a transmission attempt is made, and
m ¼ log2ðCW max

CW min
Þ is the maximum of backoff stage.

The scheduler of transmission overall the net-
work depends on P i. We assume that each node is
notified about the success or failure of its transmit-
ted packets. A packet is failure only when there is a
collision on the intended receiver. We assume that in
any slot, a node having a packet to be transmitted to
one of its neighboring nodes decides with some fixed
(possibly node dependent) probability in favor of a
transmission attempt. If there is no other transmis-
sion by the other nodes whose transmission can
interfere with the node under consideration, the
transmission is successful. We have considered pre-
viously infinite buffer size, therefore, there is no
packet loss due to overflow at the queues. The only
source of packet loss is due to collisions. For a reli-
able communication, we allow a limited number, of
successive transmissions of a packet, after that it
will be dropped definitively. We denote Ki;s;d the
maximum number of transmissions allowed for a
packet of connection ðs; dÞ at node i.

2.4. Cross-layer representation of the model

The model of Fig. 1 represents our model in this
paper. The Network layer and MAC layer are
clearly separated. Attempting the channel begins
by choosing the queue from which a packet must
be selected. And then, this packet is moved from
the corresponding queue from the network layer
to the MAC layer where it will be transmitted and
retransmitted, if needed, until its success or drop.
In this manner, when a packet is in the MAC layer,
it is itself attempted successively until it is removed
from the node.



Fig. 1. Network layer and MAC layer of node i.

A. Kherani et al. / Computer Networks 52 (2008) 1365–1389 1369
In this paper, we define the cycle as number of
slots needed to transmit a single packet until its suc-
cess or drop (see Fig. 2). We distinguish two types of
cycles: The forwarding cycles in which a packet from
queue F i is transmitted during this cycle, and the
source cycles in which a packet from queue Qi is
transmitted during this cycle. Also, each cycle is
affected to a connection. The beginning of each
cycle represents the choice of the queue from which
we choose a packet and the choice of the connection
where to send it. Whereas, the slots that constitute
the cycle represents the attempts of the packet itself
to the channel, including its retransmissions.

We need to define formally the model, so we will
be able to derive some formulas in the next sections.
For that, we consider the following counters:

� Ct;i is the number of cycles of the node i, till the
tth slot (including the tth slot).
� CF

t;i (resp. CQ
t;i) is the number of all forwarding

cycles (resp. source cycles) of the node i, till the
tth slot (including the tth slot).
� CF

t;i;s;d (resp. CQ
t;i;s;d) is the number of forwarding

cycles (resp. source cycles) corresponding to the
path Rs;d of the node i till the tth slot (including
the tth slot).
Fig. 2. Illustrative example of node i with cycles approach.
� T t;i;s;d is the number of times we found at the first
slot of a cycle and at the first position in the
queue F i a packet for the path Rs;d of the node
i, till the tth slot (including the tth slot).
� I t;i;s;d is the number of cycles corresponding to the

path Rs;d of the node i, and where a cycle ends by
a success of the transmitted packed, till the tth
slot (including the tth slot).
� At;i;s;d is the number of arrival packets to node i

on the path Rs;d , till the tth slot (including the
tth slot).

Fig. 2 shows a simple example with some numer-
ical values of the previous counters for a single node
i.

3. Stability properties of the forwarding queues

Our main objective in this section is to derive the
rate balance equations from which some properties
of the forwarding queues can be deduced. For that
we need to write the departure rate from each node
i and the end-to-end throughput between a couple
of node.

From a practical point of view, each node owns
three main parameters P i, Ki;s;d and fi, that can be
managed and set in such a way that each node can
maintain stability, or the end-to-end throughput
on a path can be optimized. In this paper, by fixing
the routing paths (from Rs;d) and route choice (from
P s;d), we will obtain forwarding queue stability func-
tion of these three main parameters.

For a given routing, let pi denote the probability
that the queue F i has at least one packet to be for-
warded in the beginning of each cycle. pi;s;d is the
probability that the queue F i has a packet at the first
position ready to be forwarded to the path Rs;d in
the beginning of each cycle. Let ni be the number
of neighboring nodes of node i.
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Given a saturated network case where each node
has a packet on its queue Qi and attempts transmit-
ting all the time to the channel, the forwarding
queue F i of each node will have a pi load when it
tries to forward packets to its neighbors.

3.1. The rate balance equations

The forwarding queue F i is stable if the departure
rate of packets from F i is equal to the arrival rate
into it. This is a simple definition of stability that
can be written with a rate balance equation. In this
paper, we are going to derive this equation for each
node i using the cycle approach. In fact, it is judi-
cious to write the rate balance equation of node i

for each connection and then do the summation
for all others.

For any given nodes i, s and d, let ji;s;d be the
entry in the set Rs;d just after i. It is possible that
there is no such entry, i.e., node i is the last entry
in the set Rs;d . In that case ji;s;d ¼ d. Let P i;s;d ¼
Pj2ji;s;d[Nðji;s;d Þnið1� P jÞ be the probability that a
transmission from node i on route from node s to
node d is successful. Also, let

Li;s;d ¼
XKi;s;d

l¼1

lð1� P i;s;dÞl�1P i;s;d þ Ki;s;dð1� P i;s;dÞKi;s;d

¼ 1� ð1� P i;s;dÞKi;s;d

P i;s;d
ð2Þ

be the expected number of attempts till success or
consecutive Ki;s;d failures of a packet from node i

on route Rs;d .
The probability that a packet is removed from a

node i by a successful transmission or a drop (i.e.,
a successive Ki;s;d failure) is the departure rate from
F i. We denote it by di. The departure rate concern-
ing only the packets sent on the path Rs;d is
denoted by di;s;d which is given by the following
lemma:

Lemma 3.1. For any node i; s and d such that P s;d > 0
and i 2 Rs;d , the long term average rate of departure

of packets from node i on route from node s to node d
is

pi;s;d P ifi

Li
: The total departure rate is given by
di ¼
X

s;d:i2Rs;d

di;s;d ¼ pifi
P i

Li
: ð3Þ

Proof. For any node i, s and d such that P s;d > 0
and i 2 Rs;d , the long term departure rate of packets
from node i on the route from s to d is
di;s;d ¼ lim
t!1

CF
t;i;s;d

t
¼ lim

t!1

CF
t;i;s;d

T t;i;s;d
lim
t!1

T t;i;s;d

Ct;i
� lim

t!1

Ct;i

t
;

ð4Þ
� limt!1
T t;i;s;d

Ct;i
is exactly the probability that F i car-
ried a packet to the path Rs;d in the beginning of
each cycle. Therefore, limt!1

T t;i;s;d

Ct;i
¼ pi;s;d .

� limt!1
CF

t;i;s;d

T t;i;s;d
is exactly the probability that we have

chosen a packet from F i to be sent when F i car-
ried a packet to the path Rs;d in the first position
and in the beginning of a forwarding cycle.

Therefore, limt!1
CF

t;i;s;d

T t;i;s;d
¼ fi.

� limt!1
t

Ct;i
is the average length in slots of a cycle

of the node i. A cycle length on the path Rs;d is
formed by the attempt slots that does not lead
to a channel access and the transmission and
retransmissions of the same packet until a success
or a drop. Thus an average cycle length for a one
path Rs;d of a node i is given by

Li;s;d

P i
. When a node

transmits to several paths, we need to know the
average cycle length. This is given by Li

P i
where Li

is the average of Li;s;ds of these paths. Li is given by

Li ¼
X

s;d:i2Rs;d

pi;s;dfiLi;s;d þ
X

d

ð1� pifiÞP i;dLi;i;d :

ð5Þ

Therefore, limt!1
Ct;i

t ¼
P i

Li
. Consequently, di;s;d ¼

pi;s;dfi
P i

Li
.

It is clear that the departure rate di;s;d on a path
Rs;d of a node i does not depend on the parameters
of only one path but it is also related to the expected
number of transmissions to all other paths used by
node i. This dependency appears in Li. Moreover, it
is easy to derive the total departure rate di on all
paths

di ¼
X

s;d:i2Rs;d

di;s;d ¼ pifi
P i

Li
: � ð6Þ

In the following lemma, we calculate the arrival
rate on an intermediate node in ad-hoc networks.
The probability that a packet arrives to the queue
F i of the node i, is denoted by ai. When this rate
concerns only packets sent on the path Rs;d , we
denoted it by ai;s;d .

Lemma 3.2. For any fixed choice of nodes i; s and d

such that P s;d > 0 and i 2 Rs;d , the long term average

rate of arrival of packets into F i for Rs;d is
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ai;s;d ¼ ð1� psfsÞ � P s;d �
P s

Ls
�
"
ð1� ð1� P s;s;dÞKs;s;d Þ

�
Y

k2Ri;s;dni
ð1� ð1� P k;s;dÞKk;s;d Þ

#
: ð7Þ

Proof. For any node i, s and d such that P s;d > 0
and i 2 Rs;d , the long term arrival rate of packets
into F i for Rs;d is

ai;s;d ¼ lim
t!1

At;i;s;d

t
ð8Þ

¼ lim
t!1

At;i;s;d

I t;s;s;d
� lim

t!1

I t;s;s;d

CQ
t;s;s;d

� lim
t!1

CQ
t;s;s;d

CQ
t;s

� lim
t!1

CQ
t;s

Ct;s
� lim

t!1

Ct;s

t
: ð9Þ
� limt!1
CQ

t;s

Ct;s
¼ 1� CF

t;s

Ct;s
¼ 1� psfs, this is exactly the
probability to get a source cycle, i.e., to send a
packet from the queue Qs.

� limt!1
CQ

t;s;s;d

CQ
t;s

is the probability to choose the path

Rs;d to send a packet from Qs. Therefore,

limt!1
CQ

t;s;s;d

CQ
t;s
¼ P s;d .

� limt!1
Ct;s

t ¼
P s

Ls
.

� limt!1
I t;s;s;d

CQ
t;s;s;d

is the probability that a source cycle

on the path Rs;d ends with a success, i.e., the packet
sent from Qs is received on the queue F js;s;d

. There-
fore, limt!1

It;s;s;d

CQ
t;s;s;d

¼ ð1� ð1� P s;s;dÞKs;s;d Þ.
� limt!1

At;i;s;d

It;s;s;d
is the probability that a packet

received on the node js;s;d is also received on the
queue F i of the node i. For that, this packet needs
to be received by all the nodes in the set Ri;s;d .
Therefore, limt!1

At;i;s;d

It;s;s;d
¼
Q

k2Ri;s;dnið1� ð1�
P k;s;dÞKk;s;d Þ.

Consequently

ai;s;d ¼ð1� psfsÞ � P s;d �
P s

Ls
�
"
ð1� ð1� P s;s;dÞKs;s;d Þ

�
Y

k2Ri;s;dni
ð1� ð1� P k;s;dÞKk;s;d Þ

#
: ð10Þ

Remark that when the node i is the destination of a
path Rs;d , then ad;s;d represents the end-to-end
average throughput of a connection from s to d.
Also, note that the global arrival rate is:
ai ¼

P
s;d:i2Rs;d

ai;s;d . h
Finally, in the steady state if all the queues in the
network are stable, then for each i, s and d such that
i 2 Rs;d we get di;s;d ¼ ai;s;d , which is the rate balance
equation on the path Rs;d .

Theorem 3.1. In the steady state, if all the queues in

the network are stable, then for each i, s and d such

that i 2 Rs;d

pi;s;dP ifi

Li
¼ ð1� psfsÞ � P s;d �

P s

Ls
�
"
ð1� ð1� P s;s;dÞKs;s;d Þ

�
Y

k2Ri;s;dni
ð1� ð1� P k;s;dÞKk;s;d Þ

#
: ð11Þ

Let yi ¼ 1� pifi and zi;s;d ¼ pi;s;dfi. Thus yi ¼
1�

P
s;d:i2Rs;d

zi;s;d . Then rate balance equation
becomes

X
d:i2Rs;d

zi;s;d ¼
ys

P
s0 ;d 0zi;s0 ;d 0Li;s0 ;d 0 þ

P
d 00yiP i;d 00Li;i;d 00

� �
ws;iP

s0;d 0zs;s0;d 0Ls;s0 ;d 0 þ
P

d 00ysP s;d 00Ls;s;d 00

� � ;

ð12Þ
where

ws;i ¼
X

d:i2Rs;d

P s;dP s

P i

Y
k2Ri;s;d[sni

ð1� ð1� P k;s;dÞKk;s;d Þ:

ð13Þ
3.2. Interpretation and applications

The relation of Eq. (12) has many interesting
interpretation and applications. Some of these are:

� The effect of fi: At the heart of all the following
points is the observation that the quantities zi;s;d

and yi are independent of the choice of fj;
1 6 j 6 N . It only depends on the routing and
the value of P j.
� Stability: Since the values of yi are independent of

the values of fj, j ¼ 1; . . . ;N , and since we need
pi < 1 for the forwarding queue of node i to be
stable, we see that for any value of fi 2
ð1� yi; 1Þ, the forwarding queue of node i will
be stable. Thus we obtain a lower bound on the
weights given to the forwarding queues at each
node in order to guarantee stability of these
queues. To ensure that these lower bounds are
all feasible, i.e., are less than 1, we need that
0 < yi 6 1; yi ¼ 0 corresponds to the case where
F i is unstable. Hence, if the routing, P s;d and
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P js are such that all the yi are in the interval
ð0; 1�, then all the forwarding queues in the net-
work can be made stable by appropriate choice

of fis. Now, since yi is determined only by routing
and the probabilities P js and P s;d , we can then
choose fi (thereby also fixing pi, hence the for-
warding delay) to satisfy some further optimiza-
tion criteria so that this extra degree of freedom
can be exploited effectively.
� Throughput: We see that the long term rate at

which node s can serve its own data meant for
destination d is P s;dP sð1� psfsÞ ¼ P s;dP sys which
is independent of fs. The throughput, i.e., the rate
at which data from node s reaches their destina-
tion d which is given by ad;s;d , turns out to be
independent of the choice of fj; 1 6 j 6 N . Simi-
larly, the long term rate at which the packets
from the forwarding queue at any node i are
attempted transmission is P ipifi ¼ P ið1� yiÞ,
which is also independent of the choice of
fj; 1 6 j 6 N .
� Choice of fi: Assume that we restrict ourselves to

the case where fi ¼ f for all the nodes. Then, for
stability of all the nodes we need that

f > 1�min
i

yi:

Since the length of the interval that fi is allowed
to take is equal to yi, we will also refer to yi as
stability region.
� Throughput–delay tradeoff: For a given set of P js,

P s;d and routing, the throughput obtained by any
route Rl;m is fixed, independent of the forwarding
probabilities fi. Hence there is no throughput–

delay tradeoff that can be obtained by changing
the forwarding probabilities. A real tradeoff is
caused by the maximum number of attempts:
the throughput is ameliorated when reattempting
many times on a path, while the service rate on a
forwarding queue is slowed down causing low
stability region and delay will be increased.
� Energy consumption of forwarding packets: Note

that the value pifiEr represents the energy con-
sumption used by node i to forward the packets
of other connections where Er is the energy spent
for transmission of one packet. This quantity
turns out to be independent of the choice of fi.
Hence, the node can use fi to improve the expected
delay without affecting the energy consumption.
� Per-route behavior: Note that the above observa-

tions are based on the global rate balance equa-
tion for forwarding queue F i of node i. Similar
observations can be made when considering the
detailed balance equation for queue F i for some
fixed source destination pair s; d such that i 2 Rs;d .
3.3. Special cases

In this part, we discuss some special case when the
system of equation (12) is linear. It can be obtained
when for each node i (0 6 i 6 N ), we have that Li

is independent from the unknowns yi and zi;s;d . In
other terms, we need Li ¼ Li;s;d for all s; d : i 2 Rs;d

and for all 0 6 i 6 N . A symmetric network with
ni ¼ n, P i ¼ P and Ki;s;d ¼ K is an example of this
case. In asymmetric network, this condition is satis-
fied when each node in the network, uses the same
neighbor as a next hop to forward all its packets or
Ki;s;d ¼ 1 for all 0 6 i 6 N . Consequently, the system
from Eq. (12) can be written as

1� yi ¼
X

s

ys �ws;i; ð14Þ

where

�ws;i ¼
X

d:i2Rs;d

P sP s;dP s;s;dLi;s;d

P i

Y
k2Ri;s;dni

ð1�ð1� P k;s;dÞKk;s;d Þ:

ð15Þ

Therefore, the system of equations (14) can be writ-
ten in a matrix form as following and resolved
easily:

yðI þ W Þ ¼ 1; ð16Þ

where W is an N � N matrix whose ðs; iÞth entry is
�ws;i (independent on yi) and y is an N-dimensional
row vector.

3.4. Balance equations under unlimited attempts:

Ki;s;d � 1

In this subsection, we consider an extreme case in
which a node attempts forwarding of a packet until
the transmission is successful. This case provides
some further important observations while keeping
the expressions simple. The detailed balance equa-
tion for queue F i on route from node s to node d is

pi;s;dfiP i=Li ¼ P s;dP sð1� psfsÞ=Ls: ð17Þ

By assuming that all nodes have same channel
access rate P i ¼ P ; 8i, we have

pifi ¼
X

s;d:i2Rs;d

P s;dð1� psfsÞLi

Ls
: ð18Þ
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Observe that if a source has at most one destina-
tion, i.e, P s;d 2 f0; 1g, and if the number of neighbor
is same for all the nodes so that Li;s;d ¼ Ls;s;d , then
the rate balance equations become

yi þ
X

s;d:i2Rs;d

ys ¼ 1: ð19Þ

Thus

�pifi þ
X

s;d:i2Rs;d

ð1� psfsÞ ¼ 0: ð20Þ

The above relation has many interesting interpreta-
tions/implications. Some of these are

Stability: if a node s0 which is also a source for
some destination d 0 does not forward packets of
any other connection, i.e., if ps0 ¼ 0 then for any
i 2 Rs0 ;d 0 , the rate balance equation (20) becomes

pifi ¼
X

s;d:i2Rs;d ;s 6¼s0
ð1� psfsÞ þ 1 ð21Þ

implying that the forwarding queues of all the nodes
in Rs0;d 0 are unstable since the above requirement re-
quires pi P 1 as fi is bounded by 1. This implies that
a necessary condition for the forwarding queues in the

network to be stable is that all the sources must also

forward data. This can have serious implications in
case of ad-hoc networks. There is also an advantage
of the above result as it reduces the allowed set of
routes and thus makes the search for the optimal
route easier. From the above rate balance equation
it follows that, for a given P and f, the stability of
the forwarding queue of node i depends in an inverse

manner on the stability of the forwarding queues of
the source nodes of the routes that pass through
node i. Precisely, observe that the value of pi in-
creases with a decrease in value of ps. This implies
that if the routing is such that node i carries traffic
of a source s which does not forward any route’s
packet, i.e., ps ¼ 0, then the value of pi is more as
compared to the case where, keeping everything else
fixed, now node s forwards traffic from some route.

4. Stability of forwarding queues and routing for some

special cases

In the following we will restrict ourselves to sym-
metric networks, i.e., we will assume that P i ¼ P ;8i
and fi ¼ f ; 8i. Hence the balance rate becomes lin-
ear and the solution yi for all i is given by

1� yi ¼
X

s

ys �ws;i; ð22Þ
where

�ws;i ¼
X

d:i2Rs;d

P sP s;dP s;s;dLi;s;d

P i

Y
k2Ri;s;dni

ð1�ð1�P k;s;dÞKk;s;d Þ:

ð23Þ
However, we allow for general source–destination
pair combinations and general routing. We will also
assume that the number of neighbors of all the
nodes are same, i.e., ni ¼ n; 8i. Also, we will be
assuming that Ki;s;d � 1. Note that assuming a sym-
metric network need not imply that the number of
nodes is infinite. We mention that the restriction to

symmetric case is only to simplify the presentation

and all the following development will work for a gen-

eral network as well.
We give some necessary and some sufficient con-

ditions for stability of the forwarding queues. These
stability conditions can be grouped into two catego-
ries: (i) stability conditions specific to a particular
routing, and (ii) stability conditions independent
of the routing.

Clearly, the stability conditions which account
for routing will give tighter conditions. However,
obtaining stability conditions that do not depend
on the routing is in itself significant simplification
in tuning the network parameters. For example,
suppose that we are deploying a grid (or, mesh) net-
work for which ni ¼ 4. In this case, if we can find a
pair of values P and f such that all the forwarding

queues are guaranteed to be stable, then one can
decouple the problem of finding an optimal route
and that of stability. We will use this decoupling
later in the paper.

Let r , ð1� P Þn. Note that P i;s;d ¼ r. Also, for a
given routing, let dði; s; dÞ be the number of ele-
ments in the set Ri;s;d n i.

4.1. Stability conditions

Proposition 4.1. (1) A necessary condition for stabil-

ity of F i for a given routing is that
Pf P
X

s;d:i2Rs;d

ð1� f ÞP s;dPð1� rÞdði;s;dÞþ1
: ð24Þ

(2) A sufficient condition for stability of F i, irrespec-

tive of routing is that

Pf P ð1� P Þn:

Proof. (1) For a given routing, the input rate into
the forwarding queue F i is
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X
s;d:i2Rs;d

ysPP s;dð1� rÞdði;s;dÞþ1
: ð25Þ

Now, ys ¼ 1� psf P 1� f . Hence, the mini-
mum rate at which packets can arrive to F i isX
s;d:i2Rs;d

ð1� f ÞPP s;dð1� rÞdði;s;dÞþ1
: ð26Þ

The maximum rate at which F i can be served is
clearly Pf . The proof is complete for 1.

(2) The maximum arrival rate of packets into the
queue F i is ð1� P Þn ¼ r, because in any slot F i can
receive packet only if the node i and ðn� 1Þ of its
neighbors are not transmitting. Similarly, the max-
imum rate at which the queue F i is served is Pf . For
stability we need the service rate to be at least the
arrival rate. The proof is complete. h
4.2. Effect of routing

Assume a symmetric network and assume that
the condition of Proposition 4.1 is satisfied so that
all the forwarding queues are always stable, irre-
spective of the routing of packets.

Under the present situation where stability is
guaranteed irrespective of the routing used, we can
change routing to obtain better throughput for the
various routes while maintaining stability of the for-
warding queues.

The probability that a packet on route Rs;d

reaches its destination is rdðd;s;dÞ. Here, the quantity
dðd; s; dÞ depends on the routing used. We then have
the following easy result:

Lemma 4.1. Shortest-path routing maximizes the

probability of success of a packet between a source–

destination pair.

Proof. From the expression of probability of suc-
cess of a packet on a route, we need minimum value
of dðd; s; dÞ to maximize the probability. h

The above result was fairly straightforward to
obtain and is also intuitive. It is similarly easily
shown that

Corollary 4.1. If the number of neighbors is not the

same for all the nodes then a route with shortest

number of interfering nodes achieves maximum prob-

ability of success of packet.

Even though we are able to ensure that the for-
warding queues are stable independent of the rout-
ing used, it is clear that maximizing the
probability of success of a packet on any route does
not necessarily maximize the throughput on that
route. This is because the throughput on a route
Rs;d is ysPrP s;drdðd;s;dÞ, so that it is possible that the
probability of success on a route increases but the
forwarding queue of the source itself is loaded so
much that the throughput that the source decreases.

However, we know that the minimum rate at
which queue Qs is served is P sð1� fsÞ ¼ P ð1� f Þ,
independent of the load on queue F s. Hence, by
maximizing the probability of success for each
source–destination pair by using shortest-path rout-
ing maximizes the minimum guaranteed throughput
for the source–destination pair. This in itself is
important consequence of Lemma 4.1.

Remark 4.1. The results of this section deal with the
effect of routing on the minimum guaranteed
throughput. We assumed that the system is always
stable, independent of the routing used (we also
gave a sufficient condition for this to happen).
However, we have not answered the question of
maximizing the throughput itself. This is a hard
problem in general as can be seen by the complex
dependence of ys on the routing. Moreover, assum-
ing a shortest-path routing does not always
uniquely determine the routing in a network. This
is because in a network there may be many paths
between a given source–destination pair which
qualify to be shortest path. A simple example is a
Grid network. In our ongoing research work we are
looking at the problem where we restrict ourselves
to the space of shortest-path routing and then aim
at maximizing the throughput obtained by the
routes. This amounts to maximizing ys for each
value of s. This also amounts to minimizing the
value of ps for each s. Clearly, this need not always
be possible since two vectors need not always be
component-wise comparable.
5. Numerical results and simulations

In this section, we present some numerical results
and validate the expressions found in the previous
sections with a discrete time network simulator.
We have implemented this simulator according to
the model of Section 2. Hence, it appears to be a
valuable tool of measurement. We deploy an asym-
metric static wireless network with 11 nodes as
shown in Fig. 3.

Five connections are established a, b, c, d and e as
indicated in the same figure (a dashed or complete
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line between two nodes in this figure means that
there is a neighboring relation). These connections
choose the shortest-path in terms of hops to route
their packets. We choose the parameters Ki;s;d � K,
fi � f and P i in a manner of enabling stability, for
all i, s and d. We fix f ¼ 0:8 except contraindication.
Let P 2 ¼ 0:3; P 3 ¼ 0:3; P 4 ¼ 0:4; P 5 ¼ 0:5; P 7 ¼ 0:3;
P 8 ¼ 0:3; P 10 ¼ 0:4 be the fixed transmission proba-
bilities for nodes 2, 3, 4, 5, 7, 8 and 10 while P i � P
for all other i. Many nodes need to have fix trans-
mission probabilities so as to get a stable queues
for all nodes.
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Fig. 3. Wireless network.
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Fig. 4. Throughput from analytical
First, we validate the analysis results via simula-
tion. A simulated ad-hoc network scenario is config-
ured to study our analytical model. In Figs. 4 and 6
(resp. 5 and 7), we plot the throughput computed by
analytical model (resp. simulation) on various routes
and the quantities pi versus the channel access prob-
ability for K ¼ 4. We observe that the analytical
results match closely the simulator result.

In Figs. 8 and 9, we plot the throughput on var-
ious routes and the probability pi versus the trans-
mission probability. The existence of an optimal
channel access rate (or, the transmission probabil-
ity) is evident from the figures. Moreover, as
expected, the optimal transmission probability
increases with K. The Figs. 4–9 show that increasing
the parameter K significantly improves the through-
put but the region of stability decreases. It is, there-
fore, clear, there is a throughput–stability tradeoff
which can be obtained by changing the maximum
number of transmission ðKÞ.

From Figs. 11 and 12, we vary the load of the
forwarding queues by changing the forwarding
probability of each node. The parameter of the net-
work are as follow: K ¼ 4, P 2 ¼ 0:5; P 3 ¼ 0:3; P 4 ¼
0:45; P 5 ¼ 0:5; P 7 ¼ 0:3; P 8 ¼ 0:3; P 10 ¼ 0:4 and the
rest of the nodes have P ¼ 0:2. We observe that
when f is small the system is not stable, more pre-
cisely nodes 2, 4, 5, 8 and 10 are suffering from a
congestion as shown in Fig. 10. They need to deliver
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 Probability
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model for K ¼ 4 and f ¼ 0:8.
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Fig. 5. Throughput from simulation for K ¼ 4 and f ¼ 0:8.
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more packets from the forwarding queue in a faster
manner. In this unstable case, the throughput of all
connections is sensitive with the f variation. As we
see in Fig. 11, it increases with f until the system
becomes stable around f ¼ 0:4. The yi as shown in
Fig. 12 remains independent of f in the stability
region. Consequently, the throughput that does
depend on y, is also independent of f, thus it is inde-
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Fig. 8. Throughput from simulation for K ¼ 5 and f ¼ 0:8.
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pendent of the load pi of the nodes engaged in a
connection.

All the above analysis and simulations were
done in the saturated case where each node has
always a packet to transmit from its queue Q. We
were wondering if the forwarding probability has
an impact in the unsaturated case. For that, we
consider that packets generated in each node arrive
to the queue Q following a Bernoulli process with
mean k. We show in Fig. 13 the connection a
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throughput as function of the forwarding probabil-
ity for different k. It appears that the throughput
reaction is similar to the saturated case. It is inde-
pendent of the weight given to the forwarding
queue when the stability is reached for a given f.
Moreover, it exists an optimal k in the interval
½0:01; 0:1� as shown in the same figure that maxi-
mizes the throughput. For a very small k the suc-
cess probability of packets is very high and for
high k there are many collisions.
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Fig. 11. Throughput from simulation for K ¼ 4 as function of the forwarding probability.
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Now, we use the shortest-path routing (based on
the number of interferers on a path as defined in
Section 4) under the present situation where the sta-
bility of all the forwarding queues in the network
is guaranteed. The routes for all connections
under this shortest-path routing are R1;11 ¼
f2; 3; 7g, R9;3 ¼ f10; 7g and R6;7 ¼ f8; 10g.

In Figs. 14a and b, we compare the throughput of
all connections under the old and new routings. We
observe that the throughput of all connections
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(except that of connection b), is better with new rout-
ing than those obtained under the old routing. The
reason of decreasing the throughput of connection
b is the change in quantity y3. In old routing,
y3 ¼ 1 (node 3 with old routing, does not forward
packets of any connections). With the new routing,
node 3 forwards the packets of connection a. How-
ever, the value of y3 decreases with new routing,
explaining the decrease of throughput of connection
b (because now the source node of connection b, i.e.,
node 3 gives some of its resources to forwarding of
packets on route a). In conclusion, the question of
maximizing the throughput uniformly for all nodes

is a hard problem. The complexity of this problem
comes from the dependence of throughput and the
quantity y. In Fig. 14c, we plot the probability of
success of a packet on all connections versus the
transmission probability P. We observe that, as pre-
dicted already in Section 4, the new routing improves
the probability of success of all connections.

Remark 5.1. Studying an asymmetric network
numerically requires one to consider all possible
combinations of the network parameters. Since the
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degree of freedom (the parameters to choose) are
usually very large in asymmetric networks, such a
numerical study is not carried out generally. In a
symmetric network we have nj ¼ n for all nodes;
some examples are a grid network, a circular
network or a linear network. Moreover, for the
symmetric networks, we can simplify the expres-
sions in the detailed balance equation (Proposition
3.1) while getting important insights into the work-
ing of the network.
6. Linear networks

We now study the observations made in Section 3
in detail for some symmetric networks. In a sym-
metric network we have nj ¼ n for all nodes; some
examples are a grid network, a circular network or
a linear network. Moreover, for the symmetric net-
works, we can simplify the expressions in the
detailed balance equation (Proposition 3.1) while
getting important insights into the working of the
network.

In this section we will restrict ourselves to the
study of linear networks only. We have chosen lin-
ear network because in these networks there is only
one route between any two given nodes, thus avoid-
ing the issue of routing.

Hence the numerical results for the networks
where there is possibility of multiple routes between
two nodes will be presented in Section 4. Moreover,
studying the linear network is like studying a gen-
eral network with a pre-specified routing.

Consider a symmetric linear network with infi-
nitely many nodes so that n ¼ 2 with fi ¼ f and
P i ¼ P . We number the nodes from �1 to þ1
and use the number of a node to refer to that node.
The probability that a node s sends a new packet to
a given destination d, depends only on the distance
between nodes s and d, i.e., P s;d ¼ Pðjs� djÞ.

6.1. Unlimited attempts Ki;s;d � 1

Here, we assume that each node attempts a for-
warding of a packet until the transmission is suc-
cessful. Because of symmetry, and since there is
only one possible routing, it is seen that yi ¼ y for
all the nodes. Hence the global rate balance equa-
tions becomes

1� y ¼ 2
X1
j¼1

y
X1

h¼jþ1

P ðhÞ; ð27Þ
so that

y ¼ 1

1þ 2
P1

j¼1

P1
h¼jþ1P ðhÞ ¼

1

1þ E½H � ; ð28Þ

where E½H � is the expected hop length. Thus

p ¼ E½H �
f ð1þ E½H �Þ ð29Þ

This indicates that as E½H � ! 1, pi ! 1 and
y ! 0, i.e., the forwarding queues become unstable
and the source throughput, Pð1� P Þ2y ! 0. For
this reason, we focus on the case when the number
of hops between a source and a destination is
bounded. Each node is a source of packets that have
destination which are h hops away (left or right)
with the probability P ðhÞ=2, h 6 B <1. Here, we
consider two forms of the probability distribution
P ðhÞ; 1 6 h 6 B:

1. The destinations are uniformly distributed, i.e.,
P ðhÞ ¼ 1

2B. This choice is referred to as Fixed
probability (FP).

2. The values P ðhÞ increase with h. We refer to this
case as higher probability for long hops (HPLH).

3. The values P ðhÞ decrease with h. This choice is
referred to as Lower probability for long hops
(LPLH).
P ðhÞ
 y
 p
 Throughput
FP: P ðhÞ ¼ 1
2B
2
Bþ1
B�1
f ðBþ1Þ
2Pð1�PÞ2
Bþ1
HPLH: P ðhÞ ¼ h
2
Px

k¼1
k

3
1þ2B
2ðB�1Þ
f ð1þ2BÞ
3Pð1�PÞ2
1þ2B
LPLH: P ðhÞ ¼ B�hþ1
BðBþ1Þ
3
2þB
B�1
f ðBþ2Þ
3Pð1�PÞ2
Bþ2
By comparing these cases, we observe that the
LPLH has larger stability region (lower bound on
the values of f is smaller) as compared to other sce-
narii. Also, for a given value of P, LPLH achieves
the maximum throughput. Moreover, the optimal
throughput for all cases is obtained when P ¼ 1=3.

Fig. 15 shows the values of the lower bound f min

on the forwarding probability f for the different
choices of the distribution P ð�Þ studied above. The
parameter that is varied is the bound B on the
lengths of routes. f min is independent of the choice
of the channel access probabilities P s. The first
observation from this figure is that, irrespective of
the choice of P ð�Þ, the forwarding queues tend to
instability as B increases. Also, for a fixed choice



5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B

P fm
in

FP
HPLH
LPLH
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of B, the LPHL policy requires less value forward-
ing probability to ensure the stability of forwarding
queues. In Fig. 16 we plot the throughput against
the channel access probabilities for the stable system
(so that the value of f does not matter). The exis-
tence of an optimal choice of the channel access
probability is evident from the figure. As already
observed, the optimal channel access rate is 1

3
for

all the choices of distribution P ð�Þ. For small values
of P, the number of collision are not significant so
that the throughput increases linearly with P. For
large values of P, however, the collisions become
significant and result in a significant drop in the
throughput.
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Fig. 16. The throughput of a node versu
6.2. Limited attempts

In this subsection we consider the special case
where Ki;s;d � K for all nodes. Because of symmetry
it is seen that yi ¼ y for all the nodes. Also, P i;s;d ¼
ð1� P Þ2 and L , Li;s;d is given by
L ¼ 1� T K

1� T
; ð30Þ
where T ¼ P ð2� P Þ is the probability that a trans-
mission attempt is unsuccessful. The global rate bal-
ance becomes
.5 0.6 0.7 0.8 0.9 1

Fixed probability
 HPLH
HPLHL

s the channel access probability P.
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1� y ¼ 2
X1
j¼1

yð1� T KÞj
X1

h¼jþ1

P ðhÞ;

y ¼ 1

1þ 2
P1

h¼2P ðhÞð1� T KÞ 1�ð1�T K Þh�1

T K

:

ð31Þ

The long term average rate at which data from node
s reach their destinations is given by

thp ¼ 2P ð1� P Þ2y
X1
h¼1

P ðhÞð1� T KÞh�1
: ð32Þ

For a bound B on the maximum number of hops,
we study the effect of parameter B on the stability
of the forwarding queues of the nodes.

Lemma 6.1. If P ðhÞ!B!10; 8h, then we have

ylim , lim
B!1

y ¼ T K : ð33Þ

Proof

y¼ 1

1þ2
P1

h¼2P ðhÞð1�T KÞ 1�ð1�T K Þh�1

T K

ð34Þ

¼ 1

1þð1�T KÞ 1�2Pð1Þ
T K �2

P1
h¼2P ðhÞ ð1�T K Þh�1

T K

h i : ð35Þ

Since P ðhÞ!B!10; 8h, and since 1� T K < 1, the re-
sult follows. h
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Fig. 17. ylim as a function of the c
It is easy to see that the limit ylim is positive and it is
always less than 1. Also, y lim does not depend on the
distribution P ð�Þ as long as the condition of Lemma
6.1 is satisfied. For any finite value of K, the system
is always stable irrespective of the value of B. How-
ever, when K increases, the value of y decreases, so
that the lower bound on the allowed values of f

increases, implying smaller stability region.
In Fig. 17, we plot the values of ylim versus the

channel access probability for different values of
allowed number of transmission attempts, K ¼
1; 4; 20. We observe that, for a fixed value of chan-
nel access probability P < 1, ylim decreases to zero
as the allowed number of attempts K increases.
Also, for a fixed value of K, ylim decreases with a
decrease in the channel access probability decreases
(see Fig. 17). This indicates that the system will be
more stable (the allowed values of forwarding prob-
ability will be more) when the limit on transmission
attempts K decreases or the channel access probabil-
ity P increases.
6.2.1. The FP distribution for route length

We assume that the probability P ðhÞ is constant,
i.e, P ðhÞ ¼ 1

2B for h 6 B and zero otherwise. The
quantity y is given by

y ¼ T 2KB

T KðBþ 1Þ þ ð1� T KÞBþ1 � 1
: ð36Þ
0.5 0.6 0.7 0.8 0.9 1

obability P

hannel access probability P.
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The rate at which data from node s reaches their
destinations d is given by

thp ¼ P ð1� P Þ2yð1� ð1� T KÞBÞ
BT K : ð37Þ

From the above relations, the stability region and
throughput depend on three parameters: transmis-
sion probability P, maximum number of hops B

and limited attempts K.
In Figs. 18–21, the throughput and the quantity y

are plotted versus the transmission probability for
the different values of limit attempts K ¼ 1; 4;
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Fig. 18. The throughput of a packet as function of the tran
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Fig. 19. The region of stability as function of the transm
10; 15 and maximum hops B ¼ 5; 10. Both Figs. 18
and 21 show that increasing the bound on attempts
K significantly improves the throughput but the
region of stability deceases as shown in Figs. 19
and 21. It is, therefore, clear, there is a through-
put–stability tradeoff which can be obtained by
changing the limit of attempts.

By comparing the throughput and the quantity y

for two different values of B ¼ 5 and B ¼ 10, we
observe that the system will be more stable and
the throughput will be better when the bound B

decreases.
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6.2.2. The HPLH distribution for route length

In this scheme, the throughput thp is given by

thp ¼ 2P ð1� P Þ2y
XB

h¼1

h
BðBþ 1Þ ð1� T KÞh�1

: ð38Þ
In Figs. 22 and 23 we plot the quantity y and
throughput versus the channel access probability
for different values of allowed number of transmis-
sion attempts K ¼ 1; 4; 10; 15 and we observe similar
results as shown in (FP) case. An interesting feature
to note is that the optimal transmission probability
in (HPLH) case is more sensitive of limit attempts K
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Fig. 21. The region of stability as function of the transm
comparing with (FP) case. In (FP) the optimal
transmission is almost the same for different values
of K.
6.2.3. The LPLH distribution for route length

In this scheme, the throughput is given by

thp ¼ 2P ð1� P Þ2y
X1
h¼1

B� hþ 1

BðBþ 1Þ ð1� T KÞh�1
:

In Figs. 24 and 25, the throughput and region of
stability are plotted versus the transmission proba-
bility for the different values of limit attempts K ¼
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1; 4; 10; 15 and maximum hops B ¼ 10. Similar
trends are obtained in the (LPLH) case as compar-
ing to other cases (FP) and (HPLH).

By comparing these three cases, we observe that
the LPLH has larger region as compared to other
scenarii. And the throughput obtained in (LPHL)
is better than that of other cases.

7. Conclusion

Considering a simple random access wireless net-
work we obtained important insights into various
tradeoffs that can be achieved by varying certain
network parameters.
Some of the important results are that

1. As long as the intermediate queues in the net-
work are stable, the end-to-end throughput of a
connection does not depend on the load on the
intermediate nodes.

2. Routing can be crucial in determining the sta-
bility properties of the network nodes. We
showed that if the weight of a link originating
from a node is set to the number of neighbors
of this node, then shortest-path routing maxi-
mizes the minimum probability of end-to-end
packet delivery.
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3. Providing a framework for cross-layer study of
stability–throughput performance of ad-hoc net-
works. It has the flexibility for managing at each
node forwarded packets and its own packets
differently.

4. The results of this paper extended in a straight-
forward manner to systems of weighted fair
queues with coupled servers.

5. The context of the stability that we study is new
as it takes into account the possibility of a limited
number of transmissions of a packet at each node
after which it is dropped.
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