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Abstract— We study an Adaptive Window Protocol (AWP) with
a general increase and decrease profile in the presence of window
dependent random losses. We derive a steady-state Kolmogorov
equation and obtain its solution in analytic form. We obtain
some stochastic ordering relations for a protocol with different
bounds on window. A closed form necessary and sufficient
stability condition using the stochastic ordering for the window
process is established. Finally, we apply the general results to
particular TCP versions such as New Reno TCP, Scalable TCP
and HighSpeed TCP. We observe that HighSpeed TCP can be
used to approximate almost any kind of window behavior by
varying only one design parameter.

I. INTRODUCTION

Most of the performance studies of Adaptive Window Pro-
tocols (AWP) consider specific instances of the problem (for
example [3], [2], [6] study Additive Increase Multiplicative
Decrease (AIMD) protocols). However, various modifications
to TCP are frequently proposed to address specific problems
arising in various types of networks; recent examples include
HighSpeed TCP [5] and Scalable TCP [4] proposed for very
high bandwidth-delay product networks. These new proposals
can also be viewed in the framework of Additive Increase
protocols so that now the additive increase in a round-trip
time is function of the current window size (it is constant in
the case of standard TCP). Performance related analysis of
any such protocol has always been an important issue. It is
thus desirable to have a general framework (and its solution)
for performance analysis of an AWP.

The loss process seen by a TCP sender may have its origin
in deliberate marking/dropping owing to some active queue
management (AQM) scheme employed in the network, or
could be due to congestion losses or link errors, in general
the rate of receiving a loss signal will depend on the window
process itself (see [6] for related discussion). In this study, we
consider a general state dependent loss rate.

It is clear that the stability of window process of a general
AWP will depend on the rate at which it receives loss
signals. For example, an aggressive protocol may result in
very high windows for moderate loss rates and vice versa.
Stability of the window process is thus interesting to study.
We address the problem of finding conditions for stability of
a general AWP controlled window evolution under a general
state-dependent loss rate. The contributions (and organization)
of this work is as follows:
Section II: We give a characterization of a general AWP and

identify the various quantities that determine the performance
of such protocols. The window evolution under a general
AWP is mapped to that under an AWP with a linear increase
profile (like in standard TCP). Kolmogorov equations satisfied
by the stationary probability measure is then derived.
Section III: Gives conditions under which two AWPs have
related stationary distribution. Furthermore, we demonstrate
that the window process under multiplicative decrease
protocol is also related to the workload process in a queueing
system.
Section IV: We give a general methodology for analysis
of any such protocol while allowing for a general window
dependent drop rate. The stationary distribution of a general
AWP with a general loss rate is related to that of an AWP
with linear increase profile and a constant loss rate. This
observation is important as the latter system is easier to
analyse. An analytic expression for the stationary distribution
of the system with an AWP with linear increase profile and a
constant loss rate is provided.
Section V and VI: We apply the results of Section IV to study
the performance of recently proposed TCP modifications
(Scalable TCP [4] and HighSpeed TCP [5]). We also refine
an existing result on the standard AIMD protocol of TCP.
We obtain some results of independent interest of queueing
systems theory by relating the window process under a
multiplicative increase multiplicative decrease (MIMD)
protocol to the workload process in an M/D/1 queue. This
provides us with a closed form expression for the workload
process in an M/D/1 queue with bounded workload process.
We also obtain a duality relation between the customer
averages in a D/M/1 queue and time average in an M/D/1
queue (both queues with bounded workload capacity).
Section VII: We obtain some stochastic ordering relations
for a protocol with different bounds on window. A closed
form necessary and sufficient stability condition using the
stochastic ordering for the window process is established.

The proofs of all the results of this paper can be found
in [13]. The report [13] also contains some additional results.
Since the paper addresses many issues, for sake of making
clear the context of discussion, we decided to spread the
discussion on related literature across the paper instead of
mentioning them together. An extensive literature survey on
TCP modeling can be found in [6].



II. THE MODEL

We consider an AWP controlled persistent file transfer over an
Internet (bottleneck) link. For applications using HighSpeed
and Scalable TCP, this link will typically be a very high
bandwidth-delay product link. We assume that the connec-
tion is long enough to see a stationary regime and that
its throughput performance is governed by the steady state
regime (see [3] for justification of this assumption). Required
conditions for existence of such a regime are provided in a
later section. Recent applications using HighSpeed TCP and
Scalable TCP typically transfer very large volume files and
hence studying persistent transfers is justified in such cases.
We model the process of losses as a Poisson process with
a time varying intensity that depends on the instantaneous
window size of the AWP [6]. These losses could be owing
to congestion losses, random link losses or some deliberate
packet marking/dropping by the router buffer using an AQM.

As is common in related studies ([2], [3], [6]), we consider
the evolution of window as an infinitely divisible fluid. Let xt

denote the window size of the AWP at time instant t (note
that we are not specifying the initial window size x0, thus
assuming a stationary window process). Incase of no loss in
the time interval [t, t + ∆], the window increase is given by,

xt+∆ = xt + f(xt)∆ + o(∆), (1)

where f(·) is a Lipschitz continuous function bounded below
by some positive quantity. We also assume that there is a lower
bound on the window size, denoted xmin.

The increase in window size can not continue for ever
because drops owing to congestion or channel losses or AQM
marking can occur at random instants in time1. Let N(t) be the
counting process corresponding to the loss events, i.e., N(t)−
N(t−u) is the number of losses in time interval (t−u, t]. In
what follows, we assume that N(t) is a Poisson process with
time varying intensity. Further, we assume that the instanta-
neous rate of the N(t) process depends only on the current
window size xt of the connection. Let λ(x) be the rate of N(t)
process when window size xt = x. The assumptions imply that
P{N(t+∆)−N(t)=1}=1−P{N(t+∆)−N(t)=0}=λ(xt)∆+o(∆). Each
loss results in a window reduction (this is because TCP
assumes that each packet drop/mark corresponds to a con-
gestion event in the network). Under the fluid model, it is
standard to assume that this window reduction is reflected as
an instantaneous jump in the xt process. Thus for small ∆, if
N(t+∆)−N(t) = 1, the window is instantaneously reduced
as

xt+∆ = g(xt) + o(∆), (2)

for some function g(·) such that g(x) < x and g(xmin) =
xmin. Additionally, g(·) is such that if x1 < x2 then either

1Congestion losses occur also when the window size reaches the practical
limit of the total round trip pipe size (sum of the link bandwidth-delay product
and the router buffer). This aspect of congestion losses will be addressed later
in this section. For presentation of the basic model, we assume here that there
is no upper bound on xt.

g(x1) < g(x2) or g(x1) = g(x2) = xmin. This implies that
the set s(x) = {u ≥ x : g(u) ≤ x} is connected. Define

h(x) = sup{u ≥ x : g(u) ≤ x} = sup s(x).

We will use the notation g−1(x) to mean h(x).

A. Transformation to AWP with Linear Increase Profile

For a function F (x) such that dF (x)
dx = 1

f(x) , let us define
a new process

yt = F (xt).

Then the transformed process {yt} is such that, when the
window {xt} is increasing, we have

yt+∆ − yt =
xt+∆ − xt

f(xt)
+ o(∆) = ∆ + o(∆).

The reason for introducing this transformation is that it sim-
plifies the analysis and visualisation of the window evolution
process since now the transformed process has a linear in-
crease profile (yt+∆ − yt = ∆ + o(∆)). Since f(·) > 0, it is
seen that F (·) is strictly increasing and hence invertible. Thus
there is a one to one correspondence between an AWP and
its linearly increasing counterpart. A detailed justification of
the above transformation is given in [13]. Under the above
transformation, the loss process has an intensity λ̃(y) ∆=
λ(F−1(y)) when yt = y. In case of a loss event in interval
[t, t+∆] the decrease profile of this transformed protocol will
be determined by F (·) and g(·) as,

yt+∆ = G(yt) + o(∆),

where G(·) ∆= F (g(F−1(·))) is assumed to have same prop-
erties as g(·).

The map F : W �→ Y is actually a transformation from a
general increase protocol to an additive increase protocol (like
the standard TCP’s congestion avoidance algorithm). Thus, it
is enough to study protocols following an additive increase
general decrease algorithm. In the rest of this section we will
only work with an AWP that has a linear increase profile and
a general decrease profile in the presence of a general window
dependent loss rate λ(·).

Let ymin
∆= F (xmin) be the lower bound on the transformed

window size. Then G(ymin) = ymin Let

S(y) ∆= {u ≥ y : G(u) ≤ y},
H(y) ∆= supS(y).

Since the set s(x) is connected and compact for each x with
inf s(x) = x, the set S(y) is also connected and compact for
any given y and inf S(y) = y. Note that the above definitions
imply that G(H(y)) = y. The interpretation of these quantities
are as follows: S(y) is the set of all possible window sizes,
greater than or equal to y, such that an occurrence of a loss
event at these window sizes results in a window size of at
most y, and H(y) is the maximum such window size.

We now give the quantities defining an AWP, and the
transformation introduced above for some standard examples.



1) For the case of an additive increase multiplicative de-
crease protocol like the congestion avoidance algorithm
of standard TCP,

f(x) = 1, g(x) =
x

2
,

F (x) = x, G(y) =
y

2
,

S(y) = [y, 2y], H(y) = 2y.

2) For the case of an MIMD protocol like the slow start
algorithm of standard TCP or Scalable TCP [4],

f(x) = αx, g(x) = βx,

F (x) =
log(x)

α
, G(y) = y − θ,

S(y) = [y, y + θ], H(y) = y + θ,

for some α > 0, β < 1 and θ = − log β
α .

B. Incorporating a Bound on the Window Size

The window evolution process described above does not
incorporate any bound on the maximum allowed window size.
In practice, however, there will be an upper bound M on
the window size that the AWP is allowed to use. This bound
usually is either the receiver’s advertised window (which is the
maximum number of packets that the receiving entity’s receive
buffer can accommodate) or the total round trip pipe size.
The behavior of the AWP under these two bounds are very
different. In the first case where the window is restricted by
the receiver’s advertised window M , the window size stays at
this value till another loss event takes place. While in the case
where M represents the round trip pipe size, reaching this limit
results in an instantaneous congestion loss and the window
size is reduced. However, since the loss rate is assumed to be
function of window size alone, it follows that we can study
the second case via the first case (for details, see [3] which
also addresses this issue for a constant loss rate). Hence in
what follows we will restrict ourselves to the case where
M represents the window limitation owing to the receiver’s
advertised window.

Assume that the range of the values of the win-
dow process is divided into the intervals between points
[Hj(ymin),Hj+1(ymin)] where Hj is j−fold composition
of H(·) with H0(ymin) ∆= ymin. Consider an M such that
M = Hm(ymin) for some m ≥ 1. Note that, under our

choice of M , Hj(ymin) = Gm−j(M) with G0 ∆= M and
Gi = G(Gi−1). Let li

∆= Gi−1 − Gi. Under the above
definitions, y ∈ [Gi, Gi−1] ⇒ H(y) ∈ [Gi−1, Gi−2]. The case
where such an m does not exist, i.e., Hm−1 < M < Hm for
some m, is not possible since the definition of G(·) depends on
ymin and M implicitly, and it ensures that G(Gm−1) = ymin

so that Hm = M .
We consider a further modification in the evolution of the

window process yt. For this modified process, the window size
is unbounded. However, when y > G0, we assume that the loss
rate is constant and equal to λ(G0). We also assume that if a
loss event takes place when y ≥ G0, the window is dropped to

G1 = G(M) = Hm−1(ymin). The evolution of the modified
process for y < G0 is unchanged, i.e., a loss event occurs with
rate λ(yt) and the window is dropped to G(yt) in case of a
loss event when yt < G0. Note that we are assuming a linear
increase of yt for any value of y. Thus, the modified process
has the following evolution: the increase profile is given by
yt+∆ = yt + ∆ + o(∆). Losses occur according to a Poisson
process of rate λ(yt∧G0) and the window reduction in case of
a loss event in time interval [t, t + ∆) is yt+∆ = G(yt ∧G0).

C. The Kolmogorov Equations

Let π(x) be the density function and Π(x) be the distri-
bution function of the xt process with an increase profile
f(·), decrease profile G(·) and loss rate λ(·). The Kolmogorov
equations satisfied by π(·) is derived in [13] as f(x)π(x) =

∫∞

u=x
π(u)λ(G0)du = λ(G0)Πc(x), x ≥ G0,∫ G0

u=x
π(u)λ(u)du + λ(G0)Πc(G0), G1 < x ≤ G0,∫H(x)

u=x
π(u)λ(u)du, xmin ≤ x < G1.

III. RELATIONS BETWEEN WINDOW EVOLUTIONS OF

TWO SYSTEMS

We now consider two systems, 1 and 2, having their own
increase and decrease profiles and loss rates, denoted by
fi(·), gi(·), λi(·), i ∈ {1, 2}. We provide a condition under
which these two systems have related stationary probability
distribution. Assuming that g1(x) = g2(x) = g(x), ∀ x, and
that in both the systems the upper bound on the window is
the same (and is equal to M ), the Kolmogorov equations for
the two systems are

fi(x)πi(x) =
∫ g−1(x)

u=x

λi(u)πi(u)du,

i.e.,

fi(x)
λi(x)

λi(x)πi(x)
E[λi(X)]

=
∫ g−1(x)

u=x

λi(u)πi(u)
E[λi(X)]

du

where
E[λi(X)] =

∫
x

λi(x)πi(x)dx

is the expected loss rate in the ith system. It is clear from
the above set of equations that if f1(x)

λ1(x) = f2(x)
λ2(x) , ∀x, the

functions λ1(x)π1(x)
E[λ1(X)] and λ2(x)π2(x)

E[λ2(X)] , both being probability
density functions integrating to unity, are equal for each x.
Thus,

Theorem 1: If two AWP controlled window evolution are
such that (i) both have same drop profile, and (ii) both have
the same ratio of increase profile to loss rate for each x, then

π1(x)
π2(x)

= C
λ2(x)
λ1(x)

= C
f2(x)
f1(x)

where C = E[λ1(X)]
E[λ2(X)] .

This result is important as it gives us a way to analyse one sys-
tem using the analysis of the other related system. We use this
result in Section VI-B where we use the observation that an
AIMD protocol with constant loss rate and an MIMD protocol



with linear loss rate satisfy the requirement of Theorem 1 as
for the first (AIMD) system f(x) = α and λ(x) = λ while
for the second (MIMD) system f(x) = αx and λ(x) = λx,
and both have same multiplicative decrease factor. Since the
analysis for the first system is known from [3], we use it to
find stationary distribution for the MIMD protocol with linear
loss rate.

In the special case where both the system use multiplicative
decrease profile with a constant decrease factor β, we can get
some more detailed equivalence between the two systems. This
is done next.

A. A Queueing Model for Multiplicative Decrease

Consider an AWP with a constant multiplicative decrease
factor β. Introduce the transformation zt = lnM − lnxt. We
are assuming that xmin = 0, i.e., zt is unbounded. We can
do this since we can use standard approach ([1, Chapter 14])
to analyse the case where zt is bounded by ln M − ln xmin

from that where zt is unbounded. From the transformation,
it is evident that the multiplicative decrease of the process
xt transforms to a constant increase of ln β in the evolution
of zt process (see [13] for a pictorial representation of the
transformation). The evolution of zt process suggests that zt

can be thought of as workload process of a queue for which
the service requirement of the customers is constant (− ln β).
If the increase profile and loss rate for xt process are f(·)
and λ(·), then in the zt process, the customer arrival rate is
λ(Me−zt) and service rate is f(Me−zt )

Me−zt
, both depending on

the workload process zt. Thus we get a queueing system with
constant service requirements and state dependent service rates
and arrival rates. We get

Theorem 2: Consider window evolutions in the two systems
1 and 2 introduced above, both with same multiplicative
decrease profile. If f1(x)

λ1(x) = f2(x)
λ2(x) then the distribution of

window size just before loss instants is same in both the
systems.

Applying this result to the two systems satisfying the above
condition where the first one is AIMD with constant loss rate
and the second one is MIMD with linear loss rate, we see that
the stationary distribution of the window process just before
(and hence just after) loss instants is same. Thus, the standard
AIMD protocol with constant loss rate is same as MIMD
protocol with linear loss rate in the sense that the distribution
of the window sizes just before losses are the same for the
two.

Further, since Theorem 2 is valid for any two AWPs
satisfying the required conditions, it is seen that if for one
of the AWPs the loss rate is constant, the PASTA property
implies that the stationary (time average) distribution of the
window size in the system with constant loss rate is same as
the window size distribution just before losses in either of the
system.

Now we specialize Theorem 1 to the case of multiplicative
decrease protocols and provide a stronger result.

Theorem 3: Consider window evolutions in the two systems
1 and 2 introduced above, both with same multiplicative

decrease profile. If f1(x)
λ1(x) = f2(x)

λ2(x) then the time average
distribution of window size πi(·) in the two systems is related
by

π1(x)
π2(x)

= C
f2(x)
f1(x)

= C
λ2(x)
λ1(x)

where C = λ1(M)Πc
1(M)

λ2(M)Πc
2(M) with Πc

i (·) denoting the complemen-
tary distribution function.

Corollary 1: Consider the scenario of Theorem 3. Then

E[λ1(X)]
E[λ2(X)]

=
λ1(M)Πc

1(M)
λ2(M)Πc

2(M)
.

Proof Follows from Theorem 1 and Theorem 3. •
Application of this result to the running example of the two
systems where the first one is AIMD with constant loss rate
and other is MIMD with linear loss rate, we see that the
expected window size in the MIMD case is

E[X] =
MΠc

2(M)
Πc

1(M)
.

Remark It is important to note that the window process with
a lower bound of 1 and an upper bound of M < ∞ is always
ergodic in the case of multiplicative decrease algorithm. This is
because for any bounded loss rate and positive increase profile,
the window process {xt} is irreducible. However, if we assume
xmin = 0, then the corresponding unbounded transformed
queueing process need not always be ergodic. Thus, we can
not always use the truncation method of [1] mentioned above.
Hence it becomes necessary to solve the detailed Kolmogorov
equations for each case. This remark is, in particular, relevant
for the case where the AWP is MIMD and the loss rate is
constant. For this case the transformed process zt is just the
workload process of an M/D/1 queue. However we can not use
this approach for λ > − ln β owing to the above mentioned
reason.
Remark The process zt

∆= M − xt always represents the
workload process in a queue with state dependent arrival rate,
service rate and service requirement.
Remark The results of this section indicate that if the losses
come from an AQM scheme, then there are many AWP-
AQM pairs (i.e., f(·) and λ(·)) which have the same drop
profile (g(·)) and have similar performance (in the sense of
Theorem 1). Moreover, if the decrease profile is fixed to be a
multiplicative one, we see that all these AWP-AQM pairs have
same window distribution before drop instants (Theorem 2).

IV. SOLUTION TO THE KOLMOGOROV EQUATIONS

The general Kolmogorov equation for the stationary distri-
bution of an AWP with increase profile f(·), decrease profile
g(·) and loss rate λ(·) is rewritten as

f(x)
λ(x)

λ(x)π(x)
E[λ(X)]

=
∫ g−1(x)

u=x

λ(u)π(u)
E[λ(X)]

du,

where E[λ(X)] =
∫∞

x=xmin
λ(x)π(x)dx. Note that E[λ(X)]

always exists if the window process is bounded by a quantity



M . Introducing the transformation π̃(x) = λ(x)π(x)
E[λ(X)] , we get

f(x)
λ(x)

π̃(x) =
∫ g−1(x)

u=x

π̃(u)du,

which is the Kolmogorov equation of an AWP whose increase
profile is f(x)

λ(x) and decrease profile is g(x) while the loss rate
now is a state-independent constant, equal to unity; We will
see an example of such an approach in Section VI-B. We
can further introduce a transformation of the new protocol
(having increase profile f(x)

λ(x) ) to another AWP with a linear
increase profile as indicated in Section II-A. Thus, without
loss of generality, we can assume that the protocol under
consideration has a linear increase profile and the loss rate
is unity. Now we provide an expression for the stationary
probability distribution for the bounded process with linear
increase, a unit loss rate and a general decrease profile G(·).

Theorem 4: For M > x > G1, Πc(x) = c1e
−x. For x ∈

Ik = [Gk, Gk−1], k ≥ 2,

exΠc(x) =
k∑

j=1

cjJk,k−j(x),

where
ck = eGk

Πc(Gk),

with

c1 = [
m−1∑
j1=1

j1−1∑
j2=1

. . .

jm−3−1∑
jm−2=1

qm,j1qj1,j2 . . . qjm−2,1]−1

and the constants qk,j are defined as

qk,j = [Jk−1,k−1−j(Gk−1) − Jk,k−j(Gk−1)],

with

J2,1(x) =
∫ x

u=G2
eu−H(u)du,

Jk,l(x) =
∫ x

Gk

eu−H(x)Jk−1,l−1(H(u))du (for x ∈ Ik)

M = Hm(xmin).
Remark It is worth noting that Theorem 4 gives the work-
load process distribution in a queue with Poisson arrival
process, state dependent deterministic service requirements
and bounded workload process (this is because the process
M −xt corresponds to the workload process in the mentioned
queueing system). In Proposition 2 we give details for the
standard M/D/1 queue with finite workload capacity.
Remark As mentioned in the beginning of this section, the
stationary distribution for the transformed system of AWP with
linear increase profile and constant loss rate with a bounded
window also gives the distribution of the original window
process with state dependent loss rate and general increase
profile upto a multiplicative constant. Hence Theorem 4 gives
the solution to the Kolmogorov equation for a general AWP
with a general loss rate (upto a multiplicative constant of
E[λ(X)]).

Till now the development did not consider exact form of loss
rate λ(·) for the original process. In the following sections we
consider specific forms of λ(·) to find the stationary window
size distribution and work out the solution of Kolmogorov
equation for several available TCP versions. We start with the
case where λ(x) ≡ λ, independent of the current window
size in Section V. We then consider the situation of a linearly
increasing loss rate, i.e., λ(x) = λx in Section VI.

V. CONSTANT LOSS RATES: λ(x) = λ

We give a method of solving the Kolmogorov equations
for a general AWP with constant loss rate. This method has
been used in Section IV and we briefly mention it here for
sake of completeness. First observe that any transformation
applied to the window size does not affect the loss rate. Thus
for any given AWP, we can always apply the transformation
introduced in Section II-A to get a linear increase profile.
For the evolution of this transformed process, we see that the
jump rate (loss rate) is still λ, independent of anything else.
Thus we need only study the case of linear increase general
decrease protocols. In this section we first identify the special
structure of the Kolmogorov equation for window evolution
with constant loss rate with a general decrease profile. We
then work out the details for Scalable TCP [4].

Here we do not dwell into the issue of lower bound xmin

on the window size of the original process. This is because the
lower bound on the transformed process is ymin = F (xmin)
can take very different values depending on F (·). For example,
if the original AWP is MIMD, the function F (·) turns out to
be logarithmic and hence the lower bound ymin can be −∞
or 0 depending on whether xmin = 0 or 1, respectively.

For this case the Kolmogorov equations are

π(y) =
∫ ∞

u=y

π(u)λdu, G1 < y,

π(y) =
∫ H(y)

u=y

π(u)λdu, ymin ≤ y < G1.

Using integrating factor method for the Kolmogorov equation
for y ≥ G1, we get

Πc(y) = Πc(G1)e−λ(y−G1), y ≥ G1.

For x ∈ [Gk, Gk−1], k ≥ 1, let Πk(x) ∆= Π(x). Thus,

d

dy
Πk(y) = Π(H(y))λ − Π(y)λ, k ≥ 2.

Assuming that H(·) are such that Π(·) is continuous at Gi,∀i,
we have Πk(Gk−1) = Πk−1(Gk−1), k ≥ 2. For k ≥ 2, this
gives us Πk(·) recursively as

Πk(x)=Πk−1(G
k−1)eλ(Gk−1−x)−λe−λx

∫ Gk−1

u=x
eλuΠk−1(H(u))du.

Similar approach has also been used in [3] which considers
an AIMD protocol with constant loss rate.



A. Application to MIMD Protocols with Bounded Window

Once again our approach will be to transform the MIMD
window evolution to the case of a linear increase profile.
For the case of MIMD protocols, the window evolution is
described as follows. In case of no loss in interval [t, t + ∆],
the window increases to xt+∆ = (xt+αxt∆+o(∆))∧M, for
some α > 0 and an upper bound M on the window size. In
case of a loss in interval [t, t + ∆], the window decreases
to xt+∆ = (βxt) ∨ 1 + o(∆), where 1 > β > 0 is the
multiplicative decrease constant. The natural lower bound of
xt ≥ 1 packet applies. It is clear now that the transformation
xt �→ log xt

α

∆= yt results in the process {yt} having linear
increase profile. The transformed window after a loss event
in interval [t, t + ∆] is given by yt+∆ = (yt − θ)+ + o(∆),
where θ

∆= − log(β)
α > 0. Thus for this case, ymin = 0 and

H(y) = y + θ. Hence, G0 = M = mθ and Gl = (m − l)θ,
G(u) = (u − θ)+. Let Π(y) be the probability distribution of
the process {yt}. Defining, Πk(y) = Π(kθ+y) for 0 ≤ y ≤ θ,
we have

Proposition 1: For 0 ≤ k ≤ m − 1 and 0 ≤ x ≤ θ,

Πc
k(x) =

m−k−1∑
j=0

Πc
k+j(0)

(λx)j

j!
.

Proposition 2: The constants Πc
k(0) are given by

Πc
m−1(0) = [(am−1 − φ1(m − 1)) +

m−3∑
s=1

(−1)s
m−2∑
l=s

φs(l)

(am−l−1−φ1(m−l−1)) + (−1)m−2(a − b)φm−2(m − 2)]−1

and for 0 ≤ k ≤ m − 2,

Πc
k(0) = Πc

m−1(0)[(am−k−1 − φ1(m − k − 1))

+(−1)m−k−2(a − b)φm−k−2(m − k − 2)

+
m−k−3∑

s=1

(−1)s
m−k−2∑

l=s

φs(l)(am−k−l−1 − φ1(m − k − l − 1))],

with a = eλθ and φj(l) defined recursively as, φ0(0) = 0 and

φj+1(l) =
l−j∑
s=1

φ1(s)φj(l − s), j ≥ 1.

Proof: See [13]. •
Remark For the above case where xmin = 1, the evolution of
process log M

α − log xt

α = log M
α −yt corresponds to the workload

process of an M/D/1 queue with a bounded workload capacity
of log M

α and service requirement of θ for each customer. This
is a system similar to that of [7] with a difference that the
model of [7] assumes that the customer that can make the
workload to exceed a certain fixed threshold is lost. While
in our case such a customer is not completely lost but is
admitted with a service that makes the workload process equal
to the threshold. Our result is thus of independent interest in
queueing theory.
Remark We can also easily incorporate another value of 0 <
xmin �= 1 in the above analysis. As mentioned in Section III-
A, if we assume that xmin = 0, the transformation log M

α −

log xt

α corresponds to the workload process of a classical M/D/1
queue. For this case the moments and the stationary window
size distribution are well known.

B. MIMD with Unbounded Window: A D/M/1 Queue

Assuming that M = ∞, i.e., there is no bound on the
window size, we can not use the results from above directly
in this case. Another approach to obtain the stationary distri-
bution Π(·) is to look at the process {yn, n ≥ 0} embedded
just after the loss instants of the transformed process with
linear increase profile, {yt}. Let {an, n ≥ 0} denote the time
between two successive losses. Then, {yn} is a continuous
state space Markov chain which is given by the recursive
equation

yn+1 = (yn + an − θ)+. (3)

We note that the loss process an is exponentially distributed
with rate λ. Equation 3 is the same as the recursive equation
for the workload in a D/M/1 queue with interarrival time θ
and mean service time 1

λ . The steady state distribution of y,
P (yn ≤ y) can be obtained as [10]

P (yn > y) =
(
1 − s1

λ

)
e−s1y, (4)

where s1 is the root of the equation s+λ = λes/θ in Re(s) <
0. The stability condition for the workload process of this
D/M/1 queue (and, equivalently, for the window size process
{yt}) is θ > 1

λ .
In order to obtain the distribution at a random arrival instant,

we note that the window size just before loss instant, y−
n+1,

is given by y−
n+1 = yn + an. Since ans are exponentially

distributed with parameter λ,

P (y−
n+1 > y) = λ

∫ ∞

0

P (yn > y − a)e−λada

= λ

∫ ∞

y

e−λada + λ

∫ y

0

P (yn > y − a)e−λada

= e−λy + λ(1 − s1

λ
)e−s1y

∫ y

0

e−(λ−s1)ada = e−s1y.

Using PASTA property, the window size distribution at a
random time is the same as that seen by the loss arrivals.
Since y = log x

α , the window distribution at any random time
is

P (xt > x) = x− s1
α (5)

Remark This approach can also be used for bounded window
process when loss rate is large enough so that the bound is
attained with negligible probability.
Remark If the window size in the original process {xt} is
bounded by a value of M then the evolution of the process
{yn} (now embedded just before loss instants in the process
{yt}) is

yn+1 = min
(
(yn − θ)+ + an,

log M

α

)
,

which is the workload just after an arrival in a D/M/1 queue
with a bounded workload capacity of log M

α . The connection



to M/D/1 queue implies that this is also the residual workload
seen by arriving customers in an M/D/1 queue with finite
workload capacity. We have, using the PASTA property in the
M/D/1 system,

Theorem 5: The distribution of workload process just after
arrivals in a D/M/1 queue with a finite workload capacity is
same as that of the residual workload in an M/D/1 queue with
same bound on the workload capacity.
This phenomenon can be viewed as a duality between the time
averages in an M/D/1 queue and the customer averages in a
D/M/1 system.

VI. LINEAR LOSS RATE: λ(x) = λx

In this section we give a general expression for the sta-
tionary distribution of the window size process with a linear
increase profile under a linear loss rate assumption for general
window decrease profile. We then provide the stationary dis-
tribution for Scalable TCP and HighSpeed TCP under linearly
increasing loss rates. This is of practical interest as a linear loss
rate is seen by the connection when each packet is dropped
with a fixed probability p (see [6]).

A. Additive Increase General Decrease AWP

We now consider an AWP with a linear increase profile
and assume that the loss rate is linearly increasing with the
window size, i.e., λ(u) = λu for some λ > 0. This is
the case of practical interest because the standard congestion
avoidance phase of TCP is linearly increasing. Moreover,
recently proposed HighSpeed TCP [5] opens up a possibility
of wide range of protocols where the window increase is
approximately linear (with a larger additive increase constant
as compared to the standard TCP) and the decrease is given
by some window dependent factor. As mentioned already, loss
rates in cases where each packet is dropped with a fixed
probability and TCP drops its window at most once in a round-
trip time indeed increase linearly with the window size of the
AWP. In the following we assume that the increase profile is
same as that in standard TCP, i.e., window increases by one
unit per unit time; this can be assumed because an increase
profile with a different (constant) slope can be mapped to
that of unit slope while keeping the loss rate linear using the
transformation introduced in Section II-A.

Proposition 3: For x such that G1 < x < G0, the stationary

distribution is, for c1 = λG0[1 − Π(G0)]e
λG02

2 ,

π(x) = c1e
−λx2

2 (6)

For x ∈ (Gl, Gl−1), m ≥ l > 1,

π(x)eλ x2
2 =

l−1∑
j=0

cl−jλ
j

∫
u1=H(x)

. . .

∫
uj=H(uj−1)

u1e
λ

G(u1)2−u1
2

2

. . . uje
λ

G(uj)2−uj
2

2 duj . . . du1, (7)

where cj are some constants to be computed using the exact
form of G(·).

For numerical computations, we can use continuity of Π(·) at
the boundaries Gi to compute cj’s like done in Section V-A.
Now we work out the above expression for the case of AIMD
protocol.

1) The Case of Standard TCP: AIMD: For the case of
standard TCP with linear window dependent loss rate, [6]
has obtained an expression for the stationary window size
distribution. Their method however requires guessing the
expression for the stationary distribution and then proving
it inductively. Our approach is to directly determine the
distribution without need for guessing. This is a considerable
amount of simplification for the case of a general AWP as we
will see in section VI-B that the distribution can in general be
not straightforward to guess. We will also see in the present
section that the very nature of AIMD makes it (relatively)
easier to predict the structure of the stationary distribution.

Proposition 4: For x ∈ [Gl, Gl−1],

π(x) =
l−1∑
j=0

cl−jbje
ajx2

where

bj = Πj
n=1

λ

2K
∑n

κ=0 β−2κ
,

K = λ
β2 − 1

2
,

aj = (
K

β2
(
j−1∑
κ=0

β−2κ) − 0.5λ),

with b0 = 1. Here cl are integration constants.
Proof See [13] for proof and closed form expression for cjs
in terms of Gamma functions. •

A similar expression has been obtained in [6]. However, [6]
provides only the recursion for the integration constants ap-
pearing in their expressions. They need to compute the value of
these constants using numerical integration at the end, whereas
we have a closed form expression for these constants. The
model of [6] allows for the window size of 0 packets (during
time-out periods) and also allows multiplicative decrease while
window size is less than one packet, this makes their recursion
of infinite length. This also results in a large discrepancy in
the distributions for small window sizes. As we pointed out
in Section III-A, allowing for a window size of less than
one packet may result in a model that is stable in only a
restricted set of parameter values. Further, [6] also accounts for
timeout periods and also distinguishes between triple dupack
losses and timeout based loss recovery. It is seen that our
model is easily extended to consider these possibilities (though
we believe that these phenomenon are rare, hence not of
significant importance, when the TCP-SACK version is used).

B. MIMD Protocols with Linear Loss Rates

Recall the evolution of window process {xt} for MIMD
protocol from Section V-A. The window is bounded below by
a constraint of xmin = 1 packet. The window evolution under
such scenario is depicted in Figure 1. The figure shows that the
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Fig. 1. Window evolution under MIMD protocol like Scalable TCP with a
lower bound on window size.

window starts evolving from an initial value of 1 packet. There
are some multiplicative decrease of window owing to random
losses. The vertical axis is shown to be divided into various
intervals Ik

∆= (β−k, β−k−1]. Here β < 1 is the multiplicative
decrease factor. The significance of these regions is that if a
loss event occurs when the window size is in interval Ik+1

then the reduced window is in region Ik. We remark here
that we are not working with the transformed window having
a linear increase profile as introduced in Section II-A. The
upper bound on x is M = β−m for some m.

For this case the Kolmogorov equations can be obtained for
x < β−m+1, as

π(x)αx =
∫ u= x

β

u=x

π(u)λudu.

Denote now, by an abuse of notation, λ = λ
α . The above

Kolmogorov equation is then

π(x)x =
∫ u= x

β

u=x

π(u)λudu.

Proposition 5: The steady state probability density function
of the window size under linear loss rate is given by, if x ∈
Im−k, k ≥ 2,

π(x) = MPM

k∑
j=1

c
(k)
i

λ

xβi−1
e

λx

βi−1 .

Here c
(k)
i are constants obtained by normalising π(·) to get

probability measure and PM is probability mass at M .
Proof: See [13] for expressions for PM and c

(k)
i . •

One is often interested in finding the moments of the
window process. This can be obtained easily without need
to compute the coefficients c

(k)
i as follows. We assume here

that xmin = 0 and M = ∞; this is expected to approximate
the case when the upper and lower bounds are not attained

frequently. The Kolmogorov equation obtained above is mul-
tiplied by xj−1, j ≥ 0 to obtain

π(x)xj = xj−1

∫ u= x
β

u=x

π(u)λudu∫ ∞

x=0

π(x)xjdx =
∫ ∞

x=0

xj−1

∫ u= x
β

u=x

π(u)λududx

E[X]j =
∫ ∞

u=0

∫ u

x=βu

xj−1dxπ(u)λudu

⇒ E[X] =
1

−λ ln(β)

E[X]j+1 = j
λ(1−βj)E[X]j = j!

λjΠj
i=1(1−βi)

E[X], j ≥ 1, thus
we get all the moments of the window size distribution. We
see from the above that the tail of the window size distribution
is exponentially decaying and that all the moments exist.

C. HighSpeed TCP

HighSpeed TCP (HSTCP, [5]) updates the window in a
round-trip time according to the following rules: In case of no
loss in a round-trip time during which the window size was w,
the window is incremented by a window dependent quantity,
denoted a(w), so that the new window size is w + a(w), and
in case of a packet drop on a round-trip time, the window is
decremented by a window dependent factor b(w) so that the
new window size is (1−b(w))w. The window size is bounded
by two values wl and wh and

a(w) =
2w2b(w)p(w)

2 − b(w)
,

b(w) =
log( w

wl
)

log(wh

wl
)
(bh − bl) + bl,

p(w) = exp

(
log( w

wl
)

log(wh

wl
)

log(
ph

pl
) + log(pl)

)
,

where bh = b(wh), bl = b(wl), pl = p(wl) and ph = p(wh)
are design parameters.

It is suggested in [5] to set wl = 31 and pl = 1.5
w2

l
. Note that

p(w) = νwµ

where

µ =
log(ph

pl
)

log(wh

wl
)
, and ν =

pl

wµ
l

and b(w) = A log(w) + B with

A =
bh − bl

log(wh

wl
)

and B = bl − A log(wl).

Since bh < bl, A < 0 and since wh ≥ wl, ph ≤ pl ⇒ µ < 0.
We observe that, if R represents the round-trip time, then

w(t + R) = w(t) + a(w(t)) = w(t) +
2w2+µb(w)ν

2 − b(w)
.

This equation shows the importance of parameter µ in under-
standing the behavior of HSTCP. For example, µ = −2 implies
that HSTCP is similar to the standard AIMD algorithm of



TCP where in each round-trip time, the window is incremented
by a small value (in this case 2b(w)ν

2−b(w) ≈ νb(w)). If we take
µ > −2, then we get a protocol whose window increment
increases with the window, for example, taking µ = −1
implies that HSTCP is similar to Scalable TCP in behavior
since now the increment is approximately linear in window
size. This observation suggests need for care in tuning the
HSTCP parameters. It also implies the possibility of existence
of a choice of µ ∈ (−2,−1) which is neither as aggressive
as Scalable TCP nor conservative as standard TCP. Now we
analyse HSTCP assuming that A ≈ 0 so that the decrease
factor is constant. Since the form of function b(w) is a design
choice (see [5]), this form of b(w) can be chosen for simplicity
of implementation. Further, for this choice of b(w) we can
find the stationary window size distribution for the protocol
for different values of µ as follows: First observe that for
b(w) = B, the increase profile of the protocol is

f(w) =
2νBw2+µ

2 − B

and assuming a linear loss rate λ(w) = λw, the Kolmogorov
equation can be transformed to the case of unit loss rate as in
Section III to get,

2νBw1+µ

λ(2 − B)
π(w) =

∫ w
1−B

u=w

π(u)du.

Now, this Kolmogorov equation, when transformed to the case
of AWP with linear increase profile, becomes

π̃(y) =
∫ y

(1−B)−µ

u=y

π̃(u)du.

The closed form solution for this equation is known from [3] as
this corresponds to the case of AIMD protocol with constant
loss rate (here we have used the fact that −µ > 0 so that
(1 − B)−µ < 1).

VII. STABILITY RESULTS

An important problem now is to study the stability of the
process {xt} for a given AQM or loss profile (λ(·)) and a given
AWP increase/decrease profile (the functions f(·) and g(·)).
Alternatively, for a given AWP, one would like to design an
AQM profile; this design process must obviously address the
issue of the stability of the window process under the chosen
AQM profile. By stability here we mean that the window size
(or the buffer occupancy) should, with large probability, take
values in compact sets. In the following we give necessary and
sufficient conditions for stability of the {xt} process; these
condition can then be used in the design of AQM profile.

We first provide a stochastic ordering result which says that
the steady-state window process with a larger upper bound
is stochastically larger than the process with a smaller upper
bound. We then give a necessary and sufficient condition
for existence and uniqueness of an invariant measure for
the window process such that this measure has most of
its mass concentrated on compact sets. We then provide a
transformation from a process with state-dependent loss rate

to one with state-independent loss rate. The necessary and
sufficient stability condition for state-independent loss rate is
then seen to apply to a general AWP with a general loss rate.
Since the loss rate λ(·) can take very different forms if an
Active Queue Management (AQM) scheme is used, the study
of this section also applies to the interaction of an AQM and
AWP.

A. Construction of Bounded Processes

Throughout in this section we will assume that the deter-
ministic increase of the {xt} process is linear. We have already
seen that an AWP with a general increase profile can be
continuously transformed to the one with linear increase. The
assumption on {xt} process made above is then justified by the
fact that a continuous transformation preserves compactness of
sets and hence will also preserve stability property.

Consider the sequence {xM
t } of window processes bounded

above by a constant M . Between jumps, the process {xM
t }

increases linearly. However, if the process achieves the level
M , it stays there until next jump (which occurs at rate λ(M)).
For each such M , let πM (·) and ΠM (·) denote, respectively,
the stationary density and distribution for the bounded process
{xM

t } (we assume existence of these). Let PM denote the point
mass at M of the stationary probability for {xM

t }. The steady
state Kolmogorov equation satisfied by πM (·) is

πM (y) = PMλ(M)B(M,y) +
∫ M−

x=y

λ(x)B(x, y)dΠM (x),

(8)
here B(x, y) denotes the probability that a jump is to point
less than or equal to y given that a downward jump occurred
when xt = x. For evolution of the window process {xt}, we
see that B(x, ·) is a unit step function since the jumps are
deterministic, i.e., B(x, y) = I{y > g(x)}.

B. Limit of the Bounded Processes

It is to be noted here that the convergence of the process
{xM

t } to {xt} as M → ∞ follows from arguments similar
to those in [8]. Now, if a stationary distribution Π(·) exists
for the original process {xt}, it must satisfy the steady state
Kolmogorov equation

π(y) =
∫ ∞

x=y

λ(x)B(x, y)dΠ(x) (9)

Proposition 6: The process {xt} is stable and has an invari-
ant measure π(·) if ΠM (·) forms a tight family of probability
measures.
Proof: See [13]. (See [9] for definition of tight family of
probability measures.) •

Above we showed, via a weakly convergent subsequence,
that an invariant probability measure exists if the sequence
{ΠM (·)} is tight. However, it may be possible that there are
many subsequences of {ΠM (·)} converging to different weak
limits. In that case each of these weak limits is an invariant
measure. Below we give sufficient conditions under which
such a situation does not arise. This condition is satisfied by



AWP controlled window evolution with state-independent loss
rate.

Lemma 1: If B(·, y) is a unit step function that is strictly
decreasing for each y and if λ(x) is independent of state x,
then the sequence {ΠM (x)} is monotone non-increasing in M
for each fixed x, i.e., xM1 ≤st xM2 for M1 ≤ M2.
Remark The monotonicity property obtained above is not an
intuitive result. This is because for the bounded processes,
though the solution to the Kolmogorov equations can be mono-
tone, the normalization required to make them probability
measures can have an unpredictable effect in general. In our
case, however, it turns out that monotonicity is preserved by
the required normalisation.
Remark Since the proof of Lemma 1 is sample-path wise and
does not use the exact form of the increase profile, we see that
it applies also to the system with a general increase profile and
a constant loss rate.

We have shown above that the sequence {ΠM (x)} is
monotone non-increasing for specific structure of B(·, ·).
Monotonicity of {ΠM (x)} for each x implies that there is
a unique pointwise limit of the sequence {ΠM (x)} for each
x. This remains valid whether or not {ΠM (·)} is tight. It is
now easy to see that if {ΠM (·)} is tight then there exists a
unique weak limit of {ΠM (·)}. If, however, {ΠM (·)} is not
tight then it follows that there exists a value 0 < r < 1 such
that limM→∞ ΠM (x) > r for all x. We have thus

Proposition 7: Under the conditions of Lemma 1, the pro-
cess {xt} is stable and has a unique invariant measure iff
{ΠM (·)} forms a tight family of probability measures.

Now we state an important result which will be used in
study of stability of an AWP under a general loss rate.

Theorem 6: The process {xt} is unstable iff
limM→∞ PM > 0.
Proof: Since if limM→∞ PM > 0, the sequence of probability
measures ΠM (·) can not be tight, the proof follows from
Proposition 7.
If the sequence ΠM (·) is tight then it is easily seen, using
monotonicity of ΠM (·), that limM→∞ PM = 0. Thus the
reverse implication also follows. •
Remark Results relating stability and tightness of probabil-
ity measures are known in context of Markov chains also
(see [11]). The results of this section are for Markov processes
of a specific kind and the criteria for checking the tightness
as in Theorem 6, obtained from establishing monotonicity
probability measure over constrained state spaces is new.

We now make the following conjecture,
Conjecture 1: For the case of state dependent loss rate λ(·),

the if part of Theorem 6 remains valid, i.e., if limM→∞ PM >
0 then the process {xt} is unstable.

C. Application of the Stability Result

We now establish a necessary and sufficient criteria for sta-
bility of a general AWP (general increase and decrease profile)
under a general loss rate. Using a transformation introduced
in Section IV brings us in the framework of Theorem 6 which
assumes that the loss rate is constant and the AWP has a

linear increase profile. Thus, without loss of generality, we
can assume that the protocol under consideration has a linear
increase profile and the loss rate is unity. It is clear that the
original system is stable if this transformed system is stable.
Now we use Theorem 4 that provides an expression for the
probability mass at the bound M for the bounded process with
linear increase and unit loss rate and obtain (recall the notation
of Theorem 4)

Theorem 7: A general AWP controlled window evolution
is stable under a general loss rate iff

e−M∑m−1
j1=1

∑j1−1
j2=1 . . .

∑jm−3−1
jm−2=1 qm,j1qj1,j2 . . . qjm−2,1

−→
m→∞ 0.

Proof Follows from Theorem 4 since we know that the AWP
is stable if and only if PM → 0 as M → ∞. •
Remark Recall that Lemma 1 applies also to the system with
a general increase profile and constant loss rate. Since, for the
window evolution under a general increase profile f(·) and a
general loss rate λ(·), its stationary probability measure π(·)
is such that π(x)λ(x)

E[λ(X)] satisfies the Kolmogorov equation for a

system with increase profile f(x)
λ(x) (see Section IV), the function

ΠM (x) =
∫ x

u=xmin

π(u)λ(u)
E[λ(X)]

du

is monotone in M for each x. This result carries over to the
corresponding queueing system with finite workload capacity
in a natural way.

VIII. NUMERICAL RESULTS

We obtained time average density of the window process
from ns-2 [14] simulations for AIMD protocol with constant
loss rate and MIMD protocol with linear loss rate. The
multiplicative decrease factor β = 0.5 for both the protocols
and the loss rate, λa, for AIMD protocol was set to either
0.005 or 0.008. The MIMD protocol had an increase profile
of fm(x) = 1.01x as in Scalable TCP while the AIMD
protocol had fa(x) = 1. The loss rate for MIMD protocol
was λ(x) = λmx where λm was chosen so that the conditions
of Theorem 1 were satisfied. This requirement is satisfied if
λm = 0.01λa, i.e., λm = 0.00005 or 0.00008. Figure 2 gives
the function πm(x) for MIMD and Cfa(x)πa(x)

fm(x) where C is
λmEm[X]

λa
with Em[X] being the expected window size for

MIMD protocol obtained from simulation. The results are as
predicted by Theorem 1, i.e., πm(x) = λmEm[X]

λa
, ∀x. For

the same experimental setup, we also obtained the distribution
of window sizes just before losses. The results are plotted in
Figure 3 which shows that, in agreement with Theorem 2, this
distribution is same for the two systems. Now, we compute
the numerical values from our analysis of Section VI-B and
compare it with simulation results of Figure 2 for MIMD
with linear loss rate. Figure 4 gives the comparison between
analysis and simulations. Since the density function is already
plotted in Figure 2, here we plot the (E[Xn])

1
n vs. n for

1 ≤ n ≤ 10. The analysis and simulations are seen to match
well for smaller values of n (≤ 6); the small discrepancy for
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large values of n could be owing to finite simulation run-
length.

Figure 5 gives results from simulation and numerical com-
putation of analysis of Section VI-A.1 for TCP’s standard
AIMD protocol with linear loss rate for different values of
λ = 1e−5, 2e−5 and 5e−5. The slight discrepancy between
simulation and analytical results could be owing to numerical
problems involved in solving the required recursions (see [3]
for discussion on similar lines).

Figure 6 gives complementary distribution function of the
stationary window process for HSTCP assuming that the
multiplicative decrease factor b(w) is fixed to a constant value
B. Recall the parameters A, B, µ and ν of Section VI-C. We
fix A = 0, B = 0.125 and ν so that 2Bν

2−B = 0.01 so that
the case of µ = −1 corresponds to the Scalable TCP [4].
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The plot shows results for values of the parameter µ =
−0.9,−1.0,−1.2. In order to do this, we varied the parameters
pl and ph accordingly. The figure also gives numerical results
from the analysis of Section VI-C. It is observed from the
figure that one can approximate any increase function only
by varying µ while keeping the multiplicative drop factor
b(w) constant. In particular, we note that the distribution is
very sensitive to the value of the parameter µ. This simplifies
the algorithm as now there are not many independent design
choices and, moreover, the analysis of Section VI-C combined
with that of [3] provides closed form result for the stationary
distribution.

IX. CONCLUSION

We considered a general congestion control protocol with
a state dependent loss probability. We obtained closed for
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expression for the stationary window size distribution of a
general AWP with a general loss rate. Various transformations
introduced provided us with many equivalence relations. Most
significant being that of the relation between window evolution
and the workload process in a finite capacity queueing system
with state dependent service and arrival rates and a state
dependent deterministic service requirement. Several results of
independent interest in queueing theory were obtained. Some
monotonicity properties of the stationary window distribution
as well as a necessary and sufficient condition for stability of
the window size process were proved.

We have assumed that the loss λ(·) is a given function.
This may be the case in the applications using AQM schemes
and where congestion losses are rare. However, when most
of the losses are owing to congestion losses, it appears to be
more realistic that the form of λ(·) will itself be determined
by the AWP. Also, it is possible that, like in model of [12],
the loss process λ(·) may itself be a stochastic process. These
considerations are topic of further research.

Theorem 7 may not be easily verifiable for a general AWP
decrease profile (since this involves finding the functions
Jl(·)). A simpler condition to establish the convergence or
divergence of the involved series is yet another further possible
direction.

In the analysis of HSTCP we have chosen a multiplicative
decrease algorithm with window independent decrease factor.
We now aim at using some approximations for the evolution
of the window process using the drop profile suggested in [5].
It is also important to study an optimal choice of the parameter
µ.
Acknowledgement This work was supported by grant from
the Centre Franco-Indien pour la Promotion de la Recherche
Avancee (CEFIPRA) under project no. 2900-IT-1.

REFERENCES

[1] S. Asmussen, “Applied probability and queues,” Springer, 2003.

[2] A. A. Kherani and A. Kumar, “Stochastic Models for Throughput
Analysis of Randomly Arriving Elastic Flows in the Internet,” in
Proceedings of IEEE INFOCOM, New York, June, 2002.

[3] E. Altman, K. Avratchenkov, C. Barakat and R. Nunez Queija, “State-
dependent M/G/1 Type Queueing Analysis for Congestion Control in
Data Networks,” in Proceedings of IEEE INFOCOM, Anchorage, April,
2001.

[4] Tom Kelly, “Scalable TCP: Improving Performance in Highspeed Wide
Area Networks,” Submitted for publication, December 2002. Available
at http://www-lce.eng.cam.ac.uk/˜ctk2/scalable/

[5] S. Floyd, “HighSpeed TCP for Large Congestion Windows”,
RFC 3649, Experimental, December 2003. Available at
www.icir.org/floyd/hstcp.html

[6] A. Budhiraja, F. Hernandez-campos, V. G. Kulkarni and F. D. Smith,
“Stochastic Differential Equation for TCP Window size: Analysis and
Experimental Validation,” Probability in the Engineering and Informa-
tional Sciences, Vol. 18, 2004.

[7] D. Perry, W. Stadje and S. Zacks, “The M/G/1 Queue with Finite
Workload Capacity”, Queueing Systems, Vol 39, 2001.

[8] D. P. Heyman and W. Whitt: Limits for Queues as the Waiting Room
Grows, 1988.

[9] P. Billingsley: Convergence of probability measures, Wiley, New York-
London-Sydney, 1968.

[10] L. Kleinrock, “Queueing systems, Vol 1 : Theory”, J. Wiley and sons ,
1975.

[11] A. A. Borovkov, “Ergodicity and stability of stochastic processes”, J.
Wiley and sons , 1998.

[12] E. Altman, K. E. Avrachenkov and C. Barakat, “A stochastic model
of TCP/IP with stationary random losses”, ACM SIGCOMM 2000,
Stockholm, Sweden, also in Computer Communication Review, v.30,
no.4, October 2000, pp.231-242.

[13] E. Altman, K. E. Avrachenkov, A. A. Kherani and B. J. Prabhu,
“Performance Analysis and Stochastic Stability of Congestion Control
Protocols” INRIA Report No. RR-5262, Sophia-Antipolis, France, July
2004.

[14] NS-2 Network Simulator, available at http://www.isi.edu/
nsnam/ns/


