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Abstract In this paper we focus on a class of polling systems encountered while modeling
the ferry based wireless local area network (FWLAN). A moving ferry, while walking in a
predetermined cyclic path, communicates with the static nodes (or users) of the network via
a wireless link. The ferry is assumed to stop and communicate with a node that has a packet
to send or to receive, when it is closest to that node. The location distribution of the node
to which or from which a packet arrives is assumed to have a support of positive Lebesgue
measure. These features imply that polling models with finite number of queues cannot be
used to model the system. We study in this paper the continuous polling systems with service
disciplines that model the use of the FWLAN (and that are more complex than the classical
exhaustive or gated services). Our approach is based on discretization of the continuous
polling model. We propose a special way of discretizing the continuous system such that:
(1) the known Pseudo conservation laws can be applied to obtain the stationary expected
workload of the discrete systems; (2) the limit, of these ‘discretized’ expected workloads,
equals the stationary expected workload of the continuous system. Our results rely heavily
on fixed point analysis of infinite dimensional operators.

1 Introduction

Polling systems are a class of queueing systems wherein a single server attends to a number
of queues. Systems with a finite number of queues (called discrete polling systems) have
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been analyzed to a good extent and there is good understanding of their stability conditions
and on the Pseudo conservation laws for a variety of discrete polling systems in Takagi
(1986), Boxma et al. (1992), Boxma (1989), Boxma and Groenendijk (1987), Foss and
Chernova (1996), Khamisy et al. (1992), Sidi et al. (1992), Georgiadis and Szpankowski
(1992), Altman et al. (1992) etc.

Continuous polling systems are the ones in which the location of arrivals as well as
of the service can occur anywhere in a continuum of locations. Continuous polling were
first introduced by Fuhrmann and Copper (1985), further studied, explored by Coffman and
Gilbert (1986, 1987) and Kroese and Schmidt (1992, 1993, 1994, 1996) in a series of works.
Stability of such polling systems is discussed in Altman and Levy (1994), Leskela and Unger
(2010), Robert (2010) and a review of such results are in Rojas-Nandayapa et al. (2011).

It is relatively more complicated to study continuous systems and these are usually ana-
lyzed under simplified conditions, which we refer as ‘symmetric conditions’: every arrival
picks up an uniformly-distributed landing site on the circle, settles down there and awaits
service while the server is moving at a constant speed and in a fixed direction around the
circle. Further the service time requirements of the users do not depend upon the position of
the user.

The work on snowplowing systems in Eliazar (2003, 2005) generalizes many of the
above assumptions and studies a more general continuous system. For example, the incom-
ing work-flow to the system is taken to be a general Levy random measure and the walking
times are assumed to be random.

In previous literature so far, the continuous polling systems have been mostly analyzed
with standard gated/exhaustive service. In such systems, the server, while moving in a cyclic
path, attends the users waiting anywhere on its path the first time it encounters them. But
there are other important service disciplines (e.g., globally gated, elevator service etc.) which
are studied in a discrete polling system. In a globally gated service discipline (Boxma et al.
1992), the server attends the users the first time it encounters them after they are tagged and
all the users are tagged whenever the ferry reaches a global point. Elevator service (Altman
et al. 1992) is similar to globally gated service except that the server reverses its direction at
the end of every cycle. There can be applications, wherein the users need to be supported via
a mixture of the above service disciplines in a continuous polling system. For example, in
a Ferry assisted Wireless LAN all uplink transmissions (data uploaded to BS via the Ferry
from static sources) use an exhaustive discipline while all downlink transmissions (data
downloaded to a sink from the Ferry which had earlier received the same data from BS)
have to be modeled using a globally gated or an elevator regime.

The central idea of this paper is to use the known Pseudo conservation laws (known for
a discrete system) for obtaining the stationary expected virtual workload of a continuous
system (which supports mixture of services) via discretization. We discretize the continu-
ous polling system in a special way such that the known Pseudo conservation laws can be
applied for the resulting discrete systems and the limit, of these ‘discrete’ stationary work-
loads, equal that of the continuous system. We achieved this by utilizing the fixed point
equations that can result because of stationarity. We basically utilize the periodic behavior
in the system, identify certain quantities whose moments must be equal at the beginning and
at the end of a cycle because of stationarity (stationarity implies palm stationarity) and hence
obtain fixed point equations for the stationary moments. We identify those quantities, which
can further be utilized for expressing the stationary expected workload in the system. We
obtained the required limit majorly via continuous parameter (the number of discretization
levels is the parameter here) dependence of the fixed points. Further, we obtain an expres-
sion for the expected stationary virtual workload abandoning the standard symmetric as-
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sumptions. Discretization approach is used for mixed service systems, while, the stationary
workload for Globally gated and elevator service disciplines is obtained directly.

In this paper, incoming jobs arrive to the system following a Poisson process. Our ap-
proach can be used for studying other types of continuous polling whenever one can solve
the related discrete problem and use similar limiting arguments. In Kavitha (2011) we used
the same approach to study a continuous system with rerouting.

Polling systems are used to obtain analysis in variety of applications (see for example a
recent survey paper (Boona et al. 2011) and the references therein). The second part of the
paper applies the Polling system results to study a Ferry assisted Wireless Local Area Net-
work (FWLAN). Message Ferry is a mobile relay station that serves as “postman” to deliver
(collect) messages to (from) the static or dynamic wireless nodes in a sparse network, where
direct connectivity is not possible. Mobile BS have been proposed in the context of Mobile
Ad Hoc Networks (Tariq et al. 2006), Vehicular Ad-Hoc Networks (Vanets) (Yousefi et al.
2007) and in Wireless (static) Sensor Networks (Shi and Hou 2008). In the UmassDiesel
project, computers have been installed in 30 out of 40 buses and these then serve as Mes-
sage Ferry to deliver messages to throw boxes.! In a related paper (Tariq et al. 2006), the
message ferry serves some fixed finite number of nodes and the routes are designed based on
the mobility models of those finite number of nodes. In contrast, in our work the ferry serves
all the nodes that arrive anywhere in the given area as and when they arrive and the optimal
routes are designed based on the arrival process, service requirements, network architecture,
radio conditions, etc.

The ferry moves periodically in the cyclic route and either halts at predetermined finite
number of stops or halts on its way only when it encounters a user with a request. We refer
the former as BUS mode while the later one as TAXI mode. BUS mode has been studied
using discrete polling systems in Kavitha and Altman (2009, 2010a, 2010b), while this paper
focuses on TAXI mode, using the continuous polling results. In the TAXI mode, every point
on the ferry path is a potential stop and each stop is assigned an area that contains all points
closer to that stop than to other stops. Upon reaching a stop, the ferry collects (uplink) and
dumps (downlink) data from or to the area assigned to it.

An important performance measure for FWLAN design is the expected waiting time, i.e.,
the average time an arrival has to wait before it’s service starts. The waiting time depends on:
(1) the over-all service times (the time required to complete an uplink or downlink request
using wireless medium); (2) the walking time, i.e., the time taken by the ferry to traverse the
cyclic path once. The over-all service times reduce if one uses longer ferry routes as, then,
the users can be served by the ferry standing relatively at a shorter distance. However the
walking time increases with longer routes. The objective of this paper is to study these trade-
offs using stationary expected workload performance. By this, we minimize the expected
waiting times at all users in the Pareto sense.

One of the important contributions of this paper is to show how theory of polling systems
can be mapped to obtain interesting performance measures for some interesting configura-
tions of FWLAN. These performance measures are used for designing optimal ferry routes
(in a given class of routes) or for designing optimal number of stops (for a given type of
ferry route Kavitha and Altman 2009) and or for designing the location of base station(s).
However one can think of many more applications of this mapping. For example, in Saad et
al. (2009) the authors consider a wireless scenario with many ferries and user groups. Their
aim was to group ferries and users into coalitions in a optimal way. Each coalition in their

1Umassdieselnet. http://prisms.cs.umass.edu/diesel/.
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paper was a simple example of ferry based wireless LAN. Our results can probably be used
to form these optimal coalitions for more complicated architectures.

The continuous polling models are studied in Sect. 2 while ferry based wireless LAN
examples are analyzed in Sects. 3 and 4. Some proofs are available in Appendices.

2 Continuous polling systems

In a continuous polling system, the server moves continuously and stops at point g only
when it finds a user with a request. The server is moving continuously on a circle C of
radius y with speed «. The arrival process is modeled by a Poisson process with intensity
A and every arrival is associated with two marks, the position Q e C distributed as Py and
the service times B. The service times in general can depend upon the position Q of the
arrival. Let b(q) b® (q) represent the conditional first two moments of the service time B
conditioned on the event that the position of arrival is at point g. However the service times
of different users are independent of each other.

The server either provides pure or mixed type of service to the users. In a pure globally
gated service system, the server closes a fictitious gate each time it arrives at a fixed point in
the circle (we refer it as 0) and tags all the users that arrived before the closure of the gate.
The time period between two consequent arrivals of the server at O is referred as cycle. In
every cycle, the server moves along the circular path and serves only the tagged users as and
when it encounters one. Note here that some times an user may be served only the second
time the server encounters it after it’s arrival. On the contrary in a pure gated/exhaustive
service polling system, the users are served more immediately after their birth: they are
served the first time, the server encounters them. In a discrete polling system, there is a
difference between gated service (the server closes a local gate at every queue and leaves
the queue only after serving the users that appeared before the gate closure) and exhaustive
service (the server also attends the users that arrived during the service of already existing
users and it leaves the queue only when the queue is empty). But the two converge to the
same service in a continuous polling system with Py continuous: at any queue (which is a
point in the continuous case), the probability of a new user appearing at the same point is
ZEeTO0.

In a mixed service polling system, the server attends some of the users with globally
gated service and the rest with exhaustive/gated service. Let p,,, p, =1 — p,, respectively
represent the probability that an arrival is a globally gated user and a gated user. Let b,(q),
b;z) (g) represent the conditional first and second moments of the service time given that

the arrival is at point ¢ and further given that the arrival is a gated user. Let b,,(g), b(g? (q)

represent same quantities for a globally gated user. Let b:= E[b(O)], ng = E[bg(Q)] and
l;g := E[b,(Q)] (expectations are with respect to? Py) represent the unconditional moments.
Note that b = b py + bggpg,. Similarly define the second moments, b := E[b@(Q)],
b2 := E[b?(Q)] and b@ := E[b@(Q)].

Notations The variables like b, b, b, fo, T, v represent the functions on interval [0, |C]]
while terms like b(q) or t(g) represent the function values at a point ¢ € [0, |C|]. The bar
of the same variable, like Bg represent the average w.r.t. to the position distribution P,

2Right now the position of arrival is distributed the same way for gated as well as globally gated users. But
the results can easily be generalized to separate Pp o and Py g¢-
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ie., by = E[b,(Q)]. Similarly variables like t®, 7 etc. are functions on [0, |C|] x [0, |C|]
while 7 (g, ¢’) represents the function value at (g, ¢'). Let ¢ A |C| represent the minimum
value, min{q, |C|}. The expectation with respect to the stationary measure of the process
under consideration is given by E while E° represents the expectation with respect to Palm
stationary measure.

Virtual workload of a polling system is defined as the total workload corresponding to all
the waiting users, i.e., the sum of the service times of all the waiting users. It is an important
performance measure and will be used in later sections for analyzing interesting application
in delay tolerant networks. Not much theory is available for calculating the expected virtual
workload of polling systems with arrivals in a continuum. In this section we derive new
(stationary expected workload) results related to continuous polling systems. Throughout we
consider stationary and ergodic systems. An exhaustive/gated continuous polling system is
analyzed in Kroese and Schmidt (1992) under symmetric conditions and we summarize the
same in Sect. 2.1. The main contribution of this paper towards polling systems are available
in Sects. 2.2, 2.3 and 2.4 in the form of stationary expected virtual workload derivations for
polling system respectively with a globally gated service, elevator and mixed service. These
results also cover the gated/exhaustive service system under asymmetric conditions.

2.1 Exhaustive/gated service

An exhaustive service continuous polling system under symmetric conditions is analyzed in
Kroese and Schmidt (1992). They have many more results but we only present the ones rel-
evant to this paper, i.e., the expression for expected virtual workload under stationarity. The
users arrive uniformly on the circumference with |C| = 1 as a Poisson process with intensity
X, i.e., Pp is uniform. Further the service time moments b,(q), bé,z’ (g) are assumed to be
same at all points ¢ and are equal to Eg and 152,2) respectively. Then the stationary expected
number of customers on the circle is given by Kroese and Schmidt (1992, Theorem 5.1)

AMa™! +1bP)

E[N], =\b, + _
LVl 201 —aby)

In this case they also considered the user under service. Excluding the user under service,
i.e., the stationary expected number of waiting customers equal:

Mo~ +2bP)

E[N]Y = -
W =54 — Aby)

ey

From (1), by Wald’s lemma the virtual workload, the workload due to the waiting customers,
equals:

sym A w )\.E;;(Olil +)\'[;£(>’2))
VO = b E[N]Y = —————=F%—. )
& 8 2(1 = Aby)

2.2 Globally gated service
In this subsection we derive the corresponding results for a globally gated service. Further
we don’t assume symmetric conditions and work under more general conditions as explained

before. We map the circumference to a line of length |C| := 2wy with the starting point (the
point at which the global gate is closed) mapped to O.
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2.2.1 Computation of the moments of the Cycle time in stationary regime

Let C,, represent the time taken to complete the nth cycle. Let A'(C) represent the number
of Poisson arrivals in time C. With B} representing the service time of the ith user arrived
during the n — 1th cycle, the adjacent cycles times can be related using

N(Cy-1)
C, = Z B!+ |Cla".

By first conditioning on N'(C,,_;) and then on C,_1, it is easy to see that,

N(Cp_y) il
E| Y B |=2E[C,] / bee (@) Po(dq).
i 0

Thus under (Palm) stationarity,’

ICla”!

¢.:=E’[C,]= —.
* [Cu] T

3

From the above it is clear that the system is stable only if the factor p := AEgg is strictly
less than 1. This is the usual condition for stability and throughout this paper we assume
stability. In a similar way as,

2
N(Cp_1) N(Cy—1)

> = X (B +BE;

i i#j
and because E[N(C,)? — N(C,)] = A2E°[C?] (with ¢? := E°[C?)),
¢® =re, bl +22cPby, 4 1CPa ™ 4+ 2/Cla heyby,.
Thus,

@ _ Cle;! ICla™" +Ab@ + |Cla ™' Abgg .

T 1= Abg, 1 — 252

88

“

3 Let ¢y represent the time at which the server visits the global gate, 0, in the nth cycle. Then C,, =
¢n — ¢p—1. For any stationary point process, for example in our case {¢;}, there will be two associated
probabilities: Stationary and Palm Stationary (Baccelli and Brémaud 1991). In general, {¢; } are defined such
that ¢g < 0 < ¢. Palm probabilities are the stationary probabilities obtained after conditioning on the event
that {¢g = 0} (see Baccelli and Brémaud 1991). Throughout the paper, the expectation under Palm stationary
measure is represented by EY and the corresponding moments are usually denoted with a % as sub-script. In
Baccelli and Brémaud (1991), the stationary moment of the residual cycle C (which we refer as Cg) as well
as the past cycle Cq (which we refer as Cp) is obtained in terms of Palm probabilities as

E%[c?)
E[CR]=E[Cp]= 2E°—[C1]

This result is also explicitly derived specifically for cycle times in a special polling system in Sect. 3.1 of
Boxma et al. (2008). This result is used throughout.
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2.2.2 Stationary expected virtual workload

An user arriving at ¢ and at an arbitrary time epoch (which is modeled as occurred at time
(0) has to wait, for his service to start, on average for a time equal to the sum of three
components: (1) the average residual cycle time of the ongoing cycle Cg; (2) the time taken
by the server to reach the point g from 0, ga~'; (3) the average time taken by the server to
attend the users belong to the segment [0, ¢] that arrived in the entire ongoing cycle Cg + Cp
(Cp represents the past cycle time of the ongoing cycle), ZlN(C” +er) g, Lig,e0,q7y- Thus the
stationary expected waiting time of a user given that the user arrives at point g equals (see
footnote 3),

E[W1(q) = E[Crl + ga™" +1Po(Q € [0,gDE[Cg + Cp]E[B|Q € [0,4]]

@ R
=X a ' +A2b,,
2, +q + . gg(Q)

"N q
where by, (q) ::/(; beo (y) Po(dy).

By Little’s law (Whitt 1991) the stationary expected number of waiting users that belong to
infinitesimal segment [¢ — dq, g + dq] equals,

E[N](dq) = LE[W](q) Po(dq)

and thus by Wald’s Lemma, the stationary expected virtual workload (by virtue of indepen-
dence) due to users that belong to infinitesimal segment [¢ — dq, g + dq] equals

Voo (dq) = beg ()AE[W1(q) Po(dq).

Hence the stationary expected virtual workload in the entire system equals

ICl
Veg = )‘/- E[W1(q)be(q) Po(dq)
0

c®

b —~
=X (— (% + kE[bgg(Q)bgg(Q)]) +0F'E[ngg(Q)]) :

Cx

By interchanging the order of the two integrals in £ [@;g(Q)bgg(Q)],
el rq’ Icl rlcl )
/ / beo(q) Po(dq)bee(q)) Po(dq’) = / / by (q")Po(dq)bgy(q) Po(dq)
0 0 0 q
el s q
= / (bgg _f bgg(q/)PQ(dq/)> bee(q)Po(dq)
0 0

_ ICl ra
= bﬁg _/0 /0 bgg(q,)PQ(dq,)bgg(q)PQ(dq)

and so, E[bgg(Q)Egg(Q)] = I;Eg/Z. From (3), (4) the virtual workload simplifies to:

Vig =2

<|C|a—1(1 + Abge) + 102 b

i 88 288 L o 'E )
[~ by, , ta [ngg(Q)]) ()
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Symmetric Case: We specialize to the symmetric case where b(q) = b, b (¢) = b and
Py (dq) is uniform with |C| = 1. In this case E[Qb,,(Q)] =b/2 and

) Pye) -
VM = Abyge 88 4 o _ )
88 2(1 = Abge) 1 — Abg,

2.3 Elevator service

This polling system is similar to that in Sect. 2.2 except that the server moves in the op-
posite direction every time it reaches the point at which the global gate closes. That is, the
server moves in counter clockwise direction in alternate, say odd numbered cycles and in
the reverse direction in the even numbered cycles. In Altman et al. (1992), authors describe
the scheme for discrete polling system. The analysis of the continuous counterpart will be
similar to that in Sect. 2.2 and we mention only the points of difference.

Stationary moments of the Cycle time: The adjacent cycles times can once again be re-
lated using

N(Cp-1) N(Cy—2)
Ci= Y B'+[Cle”’ and C,y= Y B'+[Cla".

1

Under stationarity C, will be distributed same as C,_, and C,_; as C,_3. Because of the
IID nature of the services times {B/'} across any cycle, for the above relations to hold C,
should be distributed same as C,,_;. Thus again under stationarity,

ICla™!
Cy = ——,
1 — Abg,

Lo e’ ICla™ +Ab%) + [Cla ™ Aby,
* 1— AEgg 1— Azggg .

Expected waiting time for a random user: Here again the time the user arriving at g has
to wait for his service will be equal to the sum of three components as in Sect. 2.2 but the
server will be moving either in clockwise direction or in anticlockwise direction with half
probability. Thus the expected waiting time at any point g equals:

1
E[W1(g) = EICx]+ 5 (ge™" +2.Po(Q € 10.qDEICk + CrIEIB|Q €10, q1])

1
+ 5((|C| — @)~ +1Po(Q €lq. ICI)E[Cr + CpIE[B|Q € [q, |C[1])

@ Cla-! @ _ PyAe)
_ Cy + [Cler + C ggziggg__i_lC'a—l
2¢, 2 2¢, 2(1 — Abgg)

which is independent of the position q. As anticipated, the expected waiting times are in-
dependent of the position at which the user waits. The stationary expected workload can be
derived as before and equals

Velevamr = )“ng L‘gi’)_ + |C|a,1 ) (6)
2(1 — Abgy)
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2.4 Mixed service

This is a system in which the server attends some of the users with globally gated service and
the rest with exhaustive service. For users with globally gated service the server closes the
gate when it touches upon 0 and serves in the current cycle only those which arrived before
the gate closure as in Sect. 2.2. The rest of the users will be served, immediately, as in
Sect. 2.1. We obtain the stationary expected virtual workload of the mixed system as a limit
of the same for a ‘certain’ set of the discrete polling systems, under an extra assumption: the
service times are bounded with probability one by a constant that is less than infinity.

Theorem 1 Assume Py(dq) = fo(q)dq, i.e., fo is the density of Po. Assume further that
b,, by, and fo are continuous. Also, there exists a B < 00 such that, the service times
(irrespective of the position of the arrival) are bounded by B with probability one, i.e.,
P(B < é) = 1. Then there exists a threshold B (discussed in the proof) and for all service
times with upper bound B <B, the expected stationary virtual workload for the mixed ser-
vice continuous polling system, V., is given by the limit of the corresponding one, V.., .,
for a “certain” discrete polling system with 20 number of queues:*

S YAS) Ab|Cla?
Vipir = lim VO =Ab———— A" E[Ob Sihd
A0 Vmix =05 gy TPt ElOPa (O T
AClat - _ - =
m (b2 + (Peghee)” + ngl’gbggbg) ) )
where |C| =21y, by(q) := E[by(Q)1(0<q)] and by := E[by(Q)]. 0

Before we proceed with proving the above theorem we compare the formula (7) with
the special cases considered so far. We note that, the general formula (7) matches with (2)
of Sect. 2.1, when specialized to the symmetric conditions and to the pure gated service
(i.e., with p, =1 =1 — pg,). It also matches with globally gated workload (5) derived in
Sect. 2.2, when specialized to this pure service (i.e., p =0=1— pg,).

The proof of Theorem 1 is obtained using the following 3 major steps:

(1) Discretization: Continuous polling system is converted to an appropriate discrete polling
system in Sect. 2.4.1, for which the Pseudo conservation laws and hence the expected
virtual workload is known (see Boxma et al. 1992; Boxma 1989 etc.).

Let §°(g) for every point g on C represent the point, in the discrete system with o
discretization levels, standing at which the server attends the possible users of point g.
Let § represent the same for continuous system. Note that §*°(q) = ¢ for all g, i.e.,
that §*° is the identity map.

(2) Fixed point equations: We express the stationary moments of the time to reach §° (¢),
for every g on the circumference C, starting from 0 (global gate point) as a fixed point
(in the space of left continuous and right limit functions) of an affine linear operator in
Sect. 2.4.2. We obtain a common operator (F defined in Sect. 2.4.2), which is further
parametrized by a map, § : [0, |C|] — [0, |C|]. The fixed point of the common operator

4The formula (7) was conjectured in Kavitha and Altman (2010a, 2010b) itself. However its proof is derived
in this paper. Further, we note that there is a small error in the formula published in Kavitha and Altman

(20104, 2010b) (in the last term Zg is wrongly misplaced with Eg) and is corrected here.
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at § = 7 gives the required stationary first moments for the discrete system while that
at § = 8 (the identity map) corresponds to the continuous system. We show the conti-
nuity of these fixed points with respect to § via contraction mapping theorem and hence
show that the stationary moments of the discrete system converge to that of the con-
tinuous system. We obtain the convergence of second moments using similar but more
complicated logic.

(3) Alternate expression for Virtual Workload: We express the expected virtual workload
in terms of the stationary moments of the step (2). Note, that this common expression
(given by (19) in Sect. 2.4.3) cannot be computed easily and is used only for the proof.
Using this common expression, we show the convergence of the stationary expected
virtual workload of the discrete system to that of the continuous system in Sect. 2.4.3.

2.4.1 Discretization

For each integer o, consider a discrete polling system with 2o queues, half of which experi-
ence globally gated service while the rest half experience gated service. The circumference
IC| is divided to o equal segments {/;}7_, with I} =[0, C/o). All the users arriving in area /;
are treated as though arriving in queue numbered 2i — 1 (for gated users) or 2i (for globally
gated users). Note that the globally gated users are the tagged ones, i.e., the ones that arrived
before the server reached 0 in the current cycle. For every i, the server stops upon reaching
the starting point, i := (i — 1)|C| /o, of I; and serves the users of I; (that arrived/tagged be-
fore the server reached the stop i”) before moving further. Hence, §° (¢), the point standing
at which the server attends the users at g, equals

8% (q) =

:ZLI i%lygery with I; :=[i7, (i +1)7),i7 := _(i—(17>|CI ifo < o0, ®

if o = 0.

Within a queue, the server attends the users in a special order which we call as arrival
position order. In this special order, the users within a queue are served in the order of their
distance from the stop i of the server, i.e., the user at minimum distance is served first.
So, the users are almost served in the same order as done in a continuous system. The main
difference b/w the continuous system and the discretized system is that some of the users
are postponed to the next cycle in the discretized system. This is mainly because of the
combined effect of discretization and the gated service. But we will see that the effect of the
users, whose service is postponed, reduces to zero as ¢ tends to co.

Define the following terms related to each stop and or each queue with obvious meanings
as below:

E[by(Q)1(ger)] o _ EDZ(O)gen)]

b', = F[B 1', td: N b'7 = s
2i—1 [ |Qe i, gate ] PQ(II) 2i—1 PQ([I)
b ElbQligen] o _ EI0 (D Ligery)]
=, ;= ,
Po(l;) g Po(l)
li == Po (), Adi—1:=M;pg, Ao = Al pgg,

20
pi :=A;b; and ,0:=Z,o,~.

In the above, {Ay_(}{_;, {b2i—1}, {bg)_l} respectively represent the arrival rates, the first and
the second moments of the service times at the gated queues while {A,;}7_;, {b2}, {bg)

i=1°
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represent the same for globally gated queues. Factor p represents the total work load in the
system, note that p is same for all o and equals Ab. The discrete system is stable only when
p < 1. The continuous system is assumed to be stable and hence the stationary moments of
Theorem 2 (given in later subsections) exist and hence by the same theorem p < 1. Thus the
discrete systems are stable for all o.

e Expected Virtual Workload for discretized polling system:

This type of a mixed service stable discrete polling system is considered in Boxma et al.
(1992), Boxma (1989), Boxma and Groenendijk (1987). By Pseudo Conservation Laws of
Boxma and Groenendijk (1987), Boxma (1989) the expected stationary virtual workload of
the o -polling model with mixed (globally gated and gated) services is:

T e
Vmix =p 2(1 _ ,O) + 25D + p +Zp’

(1)
: Zp,zp, +> o) s

legg Jj<i iegg Jj<i

In the above, s, s® represent the first and the second moment of the total walking time,
{s;} represent the first moments of the walking times between consecutive queues and the re-
maining terms have similar definitions as before. The results of Boxma et al. (1992), Boxma
(1989), Boxma and Groenendijk (1987) are valid for any work conserving order at each
queue and hence the results are also valid for our arrival position order.

In our case we have a 20 stable polling system with even numbered queues experiencing
the globally gated service and the odd numbered queues experiencing the gated service.
Further we have fixed walking times between queues, that between the queues of the same
stop is zero, sy,_; =0 and sy = |Cla~!/o. Thus the expression for expected stationary
virtual workload for our discrete polling system is:

YA pcla! |C|a
VG' — J= J
=P S0y T T +Zp,

'Cm ZpZ,Zp,JrZ pai————— ’_1)|C|a : ©)

i J=<2i

We will prove that the limit of the ‘discrete’ expected stationary virtual workload, V. ,
indeed equals that of the continuous system. This basically forms the proof of the Theo-
rem 1 and this proof is given in the next two subsections. We conclude this subsection by
computing the limit of (9) (proof in Appendix A):

Lemma 1 The limit of V7. (9) equals V,,;, given by (7) of Theorem 1.

mix

2.4.2 Fixed point equations

Let T,? (q) represent the time to reach the point, §7 (g) of (8), starting from the global point
0, during the nth cycle. Let V7 ([a, c]) represent the workload present at the beginning of
the nth cycle in the segment [a, c] C [0, |C|]. Let T, ([a, c], T) (or T4, ([a, c], T) in case of
globally gated system) represent the total workload of the gated (or globally gated) Poisson
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arrivals that arrived in segment [a, c] C [0, |C|], such that a user at point g € [a, c] can arrive
during a period of time 7 (g). They are related in a continuous polling system by (i.e., with
o =00):

T7(q) = ga ' + V7 (10,9) + T, (10, 9), T,)), (10)
Vila,cl) =Tg(a, cl, T, (ICD) + Ty(la, c], T, (ICD) = T,7). an

In the above, the first term of (10) represents the time taken to walk the distance g. The
second term, V,” ([0, g]), represents the time taken to complete service of the globally gated
and gated users (placed geographically before ¢) that arrived before the server reached 0.
The third term represents the time taken to complete service of the gated users (placed before
q) that arrived during the current cycle, before the server reached their respective §° points.

In a discrete polling system, 7,7 (¢) is the time till the server attends all the users belong-
ing to the line segments placed before the point g, {I;};<40/|c|, and hence is same for all the
points of the same line segment and is given by:

T7(q) =T, (87 (9)) = 8 ()™ + V7 (10,87 (9)]) + T, (10,87 (@), TY). (1)

Note that the same equation at § = §°° matches with the continuous time equation (10). The
equation (11) remains the same for the discrete system also.

First moments By the lemma below, we obtain integral representation of the first moments
of the workloads like, 7, ([0, g1, T,7) using which we obtain the integral presentation of the
first moments of 7,7 (proof in Appendix B).

Lemma 2 Let T : [a,c]— R* be either monotone (increasing or decreasing) or constant
nonnegative random function on interval [a, c]. Assume that for any g € [a, c], the service
times of the new arrivals and the arrival process at around point q is independent of the
system evolution before® time T(q). Let T ([a,c],T) represent the total workload of the
Poisson arrivals that arrived in segment [a, c] C [0, |C|], such that a user at point q € [a, c]
can arrive during a period of time T (q). Then with t(q) := E[T (q)] for any q,

E[T(a,cl, T)] = f b(@) fo(@)T(q)dg.

a

Let N:={1,2,...,00}. Let tJ(q) := E[T, (q)] represent the first moment of 7,7 (q)
when the number of stops equal o and let 7,°(g) represent the same for continuous system.
Substituting (11) in (12) and then applying Lemma 2, we get for any n € N:

8(q) 3(q)
7 (q) = 8(g)a + / o ()dy + Apg /O be() fo)Tl (1)dy
0

where V7 (q) = APgebee (@)t (IC)) fo(q)
+ apebg (@) (7 (ICD) — T7_1 (@) fo (@) (13)

SNote that this assumption is satisfied by our polling systems (discrete as well as continuous ones) because
the system evolution is effected by an arrival only after it is served and here 7,7 (¢) (for which this lemma
would be applied) represents the time instance at which it starts serving the users of the segment in which ¢
resides.
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Let D represent the space of left continuous functions with right limits on [0, |C|]
equipped with supremum norm:

forany 1 € D, |tlleo:= sup |t(q)].
q€l0,|Cl]

Consider a parametrized function F : D x D + D defined point-wise as below:

AN
F(r:8)(q) = 8(@a~ +22(C)) / b() foy)dy forallgec.  (14)
0

Let 77 (g), for o € N, represent the (Palm) stationary moment corresponding to 7.7 (g).
By stationarity® from (13) the stationary first moments, t7, of the discrete system is a
fixed point of the parametrized function F, at §° with ¢ < oo, while that of the contin-
uous system is fixed point of the same function at §°°. Note here that b(q) = p,b,(q) +
Pegbgg(9).

We obtain the continuity of the stationary moments
following (proof in Appendix B):

o
* 9

in uniform/sup norm, in the

Theorem 2 Assume by, byg, fo are continuous in q. For any § € D the map F has an unique
fixed point, T2, if and only if p < 1. Further these fixed points are continuous in supremum
norm w.r.t. to parameter §. From this continuity we get that, tJ = rfa, the stationary mo-
ments corresponding to discrete system with o stops, converge to that of the continuous

system as o increases to infinity:
sup |t (q) — 7,.°(q)] — 0.
geC

s(cha!
1—p(ch AlCh

72(q) =8(g)a” " + T2(CHDGS(q) AICD)  forall g

Indeed: 7!(IC|) =

q
where p(q) := k/ b(y) fo(y)dy.
0

Second moments Let C; (q) represent the time taken between the nth and n — Ith visit of
the point ¢ (67 (¢) in case of discrete systems), i.e., the cycle time w.r.t. to the point g. Note
that

Cl(q@) =T (q) + (T, (CD — T,",(g)). (15)

These cycle times are the most important quantities required for further analysis and in this
subsection we study its moments. We obtain the convergence of stationary second moments
corresponding to C7 (q) as o — oo. Let ci" (g) represent the (Palm) stationary moments
corresponding to E[C? (g)?]. We obtain their convergence and the exact result is given in
the following theorem (proof in Appendix B):

6In Palm stationary regime, 7} are same for all n, the common values are represented by t and hence we
get a fixed point operator, F, to represent (13).
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Theorem 3 Assume by, bg,, fo are continuous. Then there exists a threshold B on the

workload threshold B, i.e., for service time requirements satisfying B < B with probability
one, as 0 — 00 the stationary second moments converge uniformly:

sup [c?7(q) — P (g)| — 0.
q€l[0,]C[]

2.4.3 Proof of Theorem 1

By Theorems 2 and 3, the first stationary moments of 7,” and the second order stationary
moments of C?, of the discretized polling system, converge towards the corresponding ones
of the continuous polling system. The convergence is in supremum norm, i.e., uniformly
of the positions g on the circle. We obtain the expression for the expected virtual work-
load using these moments for both the discrete and continuous polling systems and then
using the convergence results of the Theorems 2 and 3 we complete the proof of Theo-
rem 1.

The first two (Palm) stationary moments EO[Cg (¢)] and EO(C;7 (9))? of C; defined in
(15) are:

7 (q) = E°[C (q)] =2 (IC]),
(@)= E°(C2 (@)’

Convergence of 7 (|C|) is obtained in Theorem 2 while that of csz") is obtained in The-
orem 3. Thus the stationary first moment of the residual of the cycle C; (¢) as seen by a
random user in terms of the two Palm moments is given by (see footnote 3),

oo ENCI(@)? ()
FlC@DI= 3 moics (12 = 2z (e (16)

Workload due to Globally Gated users A randomly arriving globally gated user, arriving
at point ¢, will have to wait on average for a sum of the following three:

(1) the residual of the current cycle (w.r.t. to the globally gated point 0), E[C&(IC])];

(2) t{(g), average time taken by the server to travel from 0 to §7 (g);

(3) in a discretized system the user has to wait an extra amount of time to complete service
of:” (a) the other globally gated users in [56°(g), ¢) (that would be served before him
while the server is standing at §° (¢)) and (b) the service of all the gated users belonging
to the same segment [5° (¢), §° (¢) + |C|/o ], which by Lemma 2 equals:

C
e[n([r @@+ ).c) ]+ £17 (5 @.a). 72 000)
C
=7/ (ICD (Pg <30(l]), §%(q) + %) + pgg (87 (). L]))

with p,,(a, ¢) := Apy, / bn(y) fo(y)dy form = g or gg.

7See arrival position order discussed in Sect. 2.4.1 and further note that the gated users are served before the
globally gated ones.
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Thus the expected waiting time of such a user for any o € N is

E[Wg,1(q) = E[CR(CD]+ 7/ (q)

C
+ Lo <o) T, (IC]) <pg <5”(q), 87(q) + L—') + Pgg (5”(q),q)> .

a7

Hence, by Little’s law (Whitt 1991) the density of the stationary number of waiting
globally gated users is Ap,, fo(q) E[W(,1(¢) and by Wald’s lemma the density of the
expected stationary workload corresponding to globally gated users is

ADge o (@ EIW,1(q)bge (q).
Workload due to Gated users A randomly arriving gated user, arriving at g, has to wait on
average for:

(1) residual of his own cycle, E[C%(g)];
(2) in case of the discretized system till the users placed geographically above him are
served which equals (by calculating as done for a globally gated user) 7 (|C|) X

pg(87(q), q)-
Therefore the expected waiting time of a gated user is:

E[W;1(q) = E[CR(]+ Lig<o)T (ICD pg (87(q), @) - (18)

Thus by Little’s law (Whitt 1991) and Wald’s lemma the expected stationary workload
due to gated users is:

ici
/ Apg fo (@) EIWS 1(q)be(q)dq.
0

Total expected stationary virtual workload Therefore, the total expected stationary virtual
workload is given by:

IC|
Vo=2 /0 ((z2 (@) + EICZUCD) beg (@) Pgg + ELCH(@)be (@) pe) fo(g)dgq

IC]
+ L eohz?(ICD) f v, fol@)dg
0

C
with v, := pg (67(q), q) pgbe(q) + <pg (8”(61), 5% (q) + la—l) + 0ge 87 (q), q))

X Pogbee(q). (19)

In the above V*° represents the expected virtual workload of the random user for the con-
tinuous system while V7 with o < oo represents the same for a discrete system. By the
Theorems 2 and 3 the terms inside the first integral of (19) (see also (16), (17) and (18)),
defining the expected virtual workload, converge towards that of the continuous polling sys-
tem point-wise and uniformly in g. Terms inside the second integral, v,, converge to zero
point-wise and uniformly in g as 0 — oo:

IC|
supvy <A (Pellbelise + Pes PallbglloclIbyglloo + Py bgl20) Hl folloo—
ge
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Thus by bounded convergence theorem, the expected stationary virtual workload of the dis-
cretized polling system converges towards that of the continuous polling system as ¢ — oo.

Thus the limit of the discrete stationary expected virtual workload, V7, of (9), given
by (7) represents the expected stationary virtual workload corresponding to the continuous
system. This completes the proof of Theorem 1.

In the coming sections, we analyze an FWLAN using the results of this section.

3 Ferry based wireless local area network (FWLAN)

Static users are scattered in a geographical area A. The network is sparse, there is no direct
global connectivity and a message ferry facilitates the basic communication. FWLAN can
operate in various architectures (in Kavitha and Altman 2009 various architectures are dis-
cussed) and we consider here a basic architecture, referred as Sensor Area Network (SAN)
in Kavitha and Altman (2009). This configuration® supports only data transfer between the
users of the area and the outer world via a static gateway, base station (BS). The data trans-
fer from the users of the area to the outer world is called uplink, while that from the outside
world to the users of A is called downlink. Every cycle begins at the BS where: (1) it dumps
to BS the uplink data, collected from the users of LAN in the previous cycle; (2) collects
the downlink data from BS, to transfer in the ongoing cycle to the destined users (when it
reaches a point on its path near the intended user).

The ferry “serves” the users: by “serves” a message we mean that the ferry transmits it
if the connection is downlink (i.e. the message is destined to a user), or receives it if it is an
uplink message.

Ferry’s route  The ferry moves in a closed cyclic path C repeatedly with constant speed «.
It stops as and when it encounters an user with a request. Every time it stops and restarts it
spends an extra time ¢, for acceleration. The shuttle continues with its journey after serving
the encountered user. Each point in the cyclic path is a potential stop and every stop ¢ in
the path is assigned with a set of points /(g) C A. These sets are assigned based on nearest
point basis.

Arrival process  Uplink/Downlink traffic arrives according to an independent marked point
processes {7,, M, }, where 7, is the arrival time of the nth point and M, = [X,, n,] are the
corresponding i.i.d. marks:

— 7, is a Poisson point process with parameter A,

— X, is the location of an arrival. It’s distribution is given by Py,

— n, is the size of the message. Its distribution can depend upon X the position of arrival
and also on whether it is a uplink or a downlink arrival. It is finite with probability one
and its first and second moments (conditioned on the arrival being at point x and further

for uplink and downlink arrivals) are given by 1} (x), ¢ (x), n,gz”) (x), nfd) (x).

81n a more complicated architecture (referred as Autonomous Network, AUN, in Kavitha and Altman (2009)),
wherein the ferry also supports the local communication, i.e., the data transfers between users of A, is ana-
lyzed using continuous polling systems with rerouting in our paper (Kavitha 2011).
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These arrivals® can be uplink, downlink with probabilities p,;, p, = 1 — p, respectively.
That is, an uplink request arrives at rate A* := p, A while the downlink at rate A¢ := pyA.
We use the following notations. The points in the two dimensional area A are represented
by x (if it is a sample point) or X (if it is a random position). The points on the cyclic path C
are represented by ¢ or Q. We shall use the superscript u or d to denote uplink or downlink.

Radio channel and service time The Ferry uses a wireless link to serve the users. It can
receive/transmit the messages from/to the users at a distance of d from it at a rate « (d) for
some decreasing function «(.). Thus the total time required for transmitting a message of
size 1, when the user is located at x € A and is associated with ¢(x) € C is equal to its size
divided by the service rate:

I
k(llg() —xID”

The point x € A is mostly associated with the closest point on the circular path C, i.e.,
q(x) :=argmingec |lg — x||, with || || representing the Euclidean distance.

The ferry standing at g € C has to serve all the users arriving in /(g). Thus the first two
moments of the overall time required for uplink service at a point g € C, b,(g) and bl(lz) (@)
are given by (for all g € C):

B(x)

b,(q) :== E[B(X)|X € I1(g), uplink],

bP(q) :== E[B(X)*|X € 1(q), uplink].
The corresponding for downlink, b,(q) and bf) (g), can be defined in a similar way.

Fareto optimality ~ All the users are served as the ferry moves on C. Any arrival at a point
x € I(q) C A has to wait for time W (g) and the stationary expected values of these waiting
times E[W](g) in general can depend upon the point g € C standing at which the ferry serves
them. We are interested in designing an optimal route (among a given class of trajectories)
which minimizes integral of the weighted expected waiting times at all the points in the
cyclic path C, as this would give a Pareto optimal solution (see definition of Pareto optimality
and other details in Appendix C). Towards this we consider the problem of minimizing

IC|
/0 EIW1(@)¢(q)dq

where ¢ (g) is a positive weight.

We need to choose appropriate weights {¢(g)}. If £(g) is chosen to be the arrival density
to the points that are handled by ¢, i.e. AP;(,), then the integral corresponds to the total
expected number of waiting users (by Little’s Theorem). If we further multiply the integrand
at each point g by the expected service time at that point then we obtain the total expected
virtual workload in the system. In this paper the objective function to be minimized will
always be the expected virtual workload (which is obtained in Sect. 2 as Theorem 1) and a
ferry path which minimized the expected virtual workload is a Pareto optimal path for the
multi-objective problem where the expected waiting times at different locations are to be
minimized.

9The analysis of Sect. 2.4 requires that at any time there can be at maximum one user waiting at a point.
The examples considered in this section satisfy this assumption because of two reasons: (i) Py is continuous,
(ii) The paths considered are sufficiently smooth and hence (iii) we will have (will be seen in the coming
paragraphs) a Pg that would be continuous.
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Optimizers We discuss design of optimal ferry paths C and optimal partitioning of the
area into line segments {/,; g € C}. The aim of this subsection is to obtain these objects
in an optimal way that minimizes the virtual workload. Solving this problem in complete
generality will be a very difficult task. Hence we instead obtain optimal ferry path among a
special class of ferry paths.

Prior to discussing the optimality issues one first needs to map the FWLAN to a contin-
uous polling system, so that Theorem 1 can be used. This task is taken up immediately.

3.1 Mapping to a Mixed service Continuous polling system

We begin with identifying the components of the continuous polling system.

Server and path of the polling system: The ferry represents the server of the polling sys-
tem. The ferry stops at a point g in its path only when there is a user with a (downlink/uplink)
request anywhere on the segment / (¢). Thus the entire segment / (¢) is modeled as a point
on the server’s path, in an equivalent continuous polling system.

Service times: The time ¢, for acceleration is required only when the ferry stops and
hence is added to the equivalent service time. An arrival (1, X) is associated with the point
q(X) := q of the ferry route if X lies in the corresponding segment, i.e., if X € I(g). Thus
service time of an arrival (5, X) is given by:

n

B = x—qo0p T

The expected service times (and the corresponding second moment), for example, for uplink
arrivals corresponding to a point g € C is

bu(@) = EIB(X. ))|q(X) = q] = E Xel. uplink] 1,

[ ‘

2
—Ey [m Xel(), uplink] — 12+ 21,b,(q).

Service types: Ferry collects all the downlink messages from the BS and distributes the
same in the current cycle. Thus the downlink arrivals experience globally gated service,
with BS being the global gate point, 0. On the other hand, the ferry collects uplink data
from the users as and when it encounters one on its path. Thus the uplink arrivals experience
exhaustive/gated service and therefore pg, = py, py = pu.

Position of arrival in the ‘polling system’: The position of arrival in FWLAN is given by
Py which is a distribution over A. Every arrival in the segment 7 (g) marks the arrival at
point g of C in the equivalent polling system. The probability distribution,

Py(A) := Py (U I(q)) for any Borel set A C C,

qeA

represents this arrival distribution. For example, if A :={x € R* : h3 < |x| <h3},C={q:
llgll =1} for some hy <1 < h; as in Fig. 1, Py ~U(A) (Uniform distribution) and /(g) =
{x : ZLx = Zq} (with Zx representing the angle made by the line joining 0, x with the x
axis), then Py will be uniform distribution on C.
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Fig. 1 One Ferry in an annular
ring

Fig. 2 Two Ferries in an annular
ring

Thus the FWLAN can be modeled by a mixed service continuous polling system, Theo-
rem 1 can be applied and the stationary expected virtual workload of the ferry with combined
uplink and downlink arrivals can be calculated using (7) for any given cyclic path C and the
corresponding line segments {1, },<c. The theorem can be applied only for those cases which
satisfy the hypothesis of the theorem, like for example the service times should be bounded
with probability one by B of Theorem 1. The service times will be bounded as required
if: (1) the function « is continuous in d (which usually is the case) and hence its image
of a bounded set will be bounded; (2) we will need P(n < i) = 1 with an 7 that satisfies,
n/mink(d) + 1, < B of Theorem 1.

In the following subsections, we design optimal FWLAN for a simple example. The ferry
moves inside an annular ring A := {x € R?: h? < |x| < h3} of Figs. 1 and 2. Ferry moves in
a predefined closed cyclic path C and each point g in the cyclic path is assigned with a line
segment / (q) C A, which is either obtained using the nearest point basis (in Sect. 3.2) or is
computed in some optimal sense (in Sect. 3.3). In Sect. 3.3, we consider N circular paths
with N ferries each moving in its own circular path. All the paths are optimized jointly so
as to further obtain the segments {/(g)} optimally.

3.2 SAN-TAXI example 1: Ferry moving in one circular path
The ferry moves on one concentric circle of radius / in the annular ring (Fig. 1), i.e., C; =
{g € R?: |||l =1}. In this case, the best possible thing is to associate every arrival (5, X)

with the nearest point of the ferry route, i.e., with the point Q(X) := argmingec, |9 — X|
of ferry route. Hence the line segments will be angular segments, I(g) ={x € A: ZL(x) =
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Z(q)} for all g € Cy, (see Fig. 1). We would now like to find the optimal radius of this circle.
The variable to be optimized, the radius, takes any value in [/, &;] and we are interested in
I*= in V| L hy,h
arglegzlll.%z] SAN-TAXI( s 1, 2)
where Vi, rax;(L; B, ha) Tepresents the stationary expected workload in FWLAN when

ferry moves in C;, which can be computed using (7). To simplify the computations, in this
section, we restrict ourselves to symmetric conditions, i.e.,

— uniform arrivals in annular area, Py ~U(A),

— the rate function resulting from the losses in wireless medium considers only the direct
path for attenuation (assuming a height difference of 1 unit between the transmitting and
the receiving antennae and with path loss factor 8):

K(d)=(1+d*)~"2,

— the distribution of 5 is independent of the location of arrival and the type of arrival (uplink
or downlink) with E[n|X] =, and E[n*|X] = ;7,(,2) and such that P(n < ) = 1 with an
/K (dax) + 1o < B, where dyr := (hy = h1)/2,

— The uplink and downlink arrivals occur with equal probabilities pges = pos = 1/2.

We note that the hypothesis of the Theorem 1 are satisfied under the symmetric conditions.
Since the line segments {7 (¢)} in this case are angular segments, for calculating the moments
of the equivalent expected service times of a polling system {b(g; [)},<c, one will require the
radius R = || X || of the arrival. Under the assumptions of this section, radius R is distributed
as R ~ 2rdr/(h3 — h?) and further it is easy to see that the moments of the overall service
time will be independent of the position g € C; but depend upon the ferry path radius /. The
service moments are:

h
2 2 2rdr
bl=b(q;l)=77b/ (1+(V_l)2)ﬁ/ ﬁﬁ‘fm
hy h2 _hl
h2 g 2rdr

b =b?(q: 1) = n,ﬁ”/ (1+ =07

hy

2 hz—t3+2tabl, for all g € C;.
2~ M

For example for 8 =2 the above can be computed as,

1 41(h* + hh h2
b1=ﬂb(§(h%+h§+2)+lz— (it hiha 2))+ta,

3(hy +h2)

2)
@ _ My
LS —hD)

+ h3(5hy — 2431 + 15h5(31% + 1) — 40hy (P + 1) + 15(1* + 1)%)) — 12 + 2t,b;.

(=5h + 2471 — 15hT(31% + 1) + 400 (P + 1) — 157 (1> + 1)*

Under the simplified assumptions of this section the stationary expected workload for this
example can be calculated using (7):'°

AbAbLY  Aby|Crla (12 — Aby)
2(1 — Aby) 16(1 — Aby)

VSIAN.TAx[(l;hls h2)= (20)

10The equation below is different from the one in Kavitha and Altman (2010a), because of the correction
in (7).

@ Springer



Ann Oper Res
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Fig. 3 Optimal orbit radius for a ferry moving continuously in a annular ring (Uplink and Downlink)

One has to perform numerical computations using the above formula to obtain the optimal
radius and this is done below. However one can get the following asymptotic characteristics
of [* from the formula itself: (1) as the propagation coefficient 8 tends to zero, both the ser-
vice moments b; and bl(z) become independent of /, stationary expected workload essentially
depends upon / only via |C;| and hence /* tends to /,, i.e., the optimal path for the ferry is
the inner circle; (2) as the speed of the ferry, «, increases to infinity, the second term in the
formula becomes negligible and hence optimal radius will be determined only by the service
time moments and so the optimal radius will be above the middle of the ring, i.e., larger than
(hy 4+ hy)/2.

Mixed (Uplink + Downlink) service example: In Fig. 3 we consider a FWLAN which
supports both uplink and downlink services. The parameters of the FWLAN are mentioned
in the figure itself and we plot the optimal radius as a function of the outer radius /, of the
annular ring. We notice again that the optimal radius tends towards the inner circle either as
the speed of the ferry decreases or as &, reduces. We also plot the optimizer of the expected
service time,

Iy = argle{}llliEZJ by,
in the same figure and we note that the optimal radius is close to this optimizer whenever
either the annular ring is large or whenever the speed of the ferry is large. This can also be
understood by studying the expression for virtual workload (20). Hence in these scenarios
one can obtain the optimal radius as (for 8 = 2)

1 s 2(h3 + h3 + hihy)
3(hy + hy)

3.3 SAN-TAXI example 2: N servers moving simultaneously in the annular area

When the annular ring spans over a large area, a ferry moving in one circular path may
not be optimal. Hence we would like to consider a ferry moving in N circular paths be-
fore completing the area. To make things simpler we assume that there will be N ferries
moving simultaneously (but independent of each other) with the same speed « respectively
on circular paths of radii /, [, ..., Iy (see Fig. 2). Without loss of generality we also as-
sume that the BS is placed on the entire segment {x : Zx = 0}, i.e., any ferry communicates
with the BS instantaneously the moment it touches the angle 0. Throughout this paper we
are neglecting the time taken for communication (e.g., the communication happens at high
speed using a wired link) between the BS and the ferry(ies). Let C, :={q : |l¢|| = [,} and let
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Table 1 Example: 2 Ferries

moving in annular area with ha o =100 a=10 a=1
B=2h1=5,1a=10,n5=2, i, p*. 15 a1, p*.13) a1, p*.13)
0 =44, 0=1e2
10 6.3,7.7,8.8 6.1,7.7,8.6 6,78, 8.6
15 7.9,10.4, 12.7 7.8,10.6, 12.7 7.8,10.8,12.8
20 9.5,13.1, 16.7 9.6, 13.5,16.8 9.6,13.8,16.9
25 11.1, 15.8, 20.6 11.3,16.3,20.8 11.4,16.7,20.9
30 12.8, 18.5,24.6 13, 19,24.7 13.2,19.5,24.9
35 14.4,21.1,28.5 14.6,21.5,28.6 14.9,22.1,28.8

B(x, p) :={y : |y — x|| < p} represent the open ball, while B(x, p) represent its closure.
The first ferry caters to the users in the annular ring B(0, p1) — B(0, h;) while the last one
covers the annular ring B(0, hy) — B(0, pwn—1). Any intermediate nth ferry covers the area
B(O, p,) — B(0, p,_1). Let po:=h; and py := h,. In this subsection we choose optimally
p:=I[pi,pss ..., pn—1]T and 1:=[I,, L5, ...,Iy]7, which in turn optimally defines the line
segments {1,(q); g € C,, for all n} as

L(q) ={x € BO, p,) — BO, py_1) : Lg = /x}.

‘We map each ferry by a separate continuous polling system. With these, the moments of the
overall service times for the nth ferry is

pn 2rdr
by py1 = le/ (14— l)2)ﬂ/2 —— 5+t and
Pn—1 pn - pn_]
2rdr )

Pn
b =y f (14 -0%)" a—pr a T Habup.
P

n—1 n n—1

Using these moments one can estimate {VSI An-Tax1 Uns Pn—1, Pn)}, the N virtual workloads
as a function of the vectors p, . We now propose to choose the optimal ferry paths (and line
segments {/ (q)}) by:

Pr— i

N
(p*, I") = argrr;ilnz /:% 2 VSIAN_TAXI(ln; Dn—1, Dn)-
’ 1

n=I1

In the following we consider an example with 2 ferries moving in the annular area and
supporting mixed service. The results are in Table 1. We obtain the optimal I*, p* for differ-
ent values of the outer radius %, and the common speed of the ferries o while the rest of the
parameters are kept constant. We see again that the optimal radii of the ferry routes move
towards the inner circle as the speed of the vehicle reduces and this effect is pronounced
as the radius of the outer circle, &,, decreases. This effect is also seen in the case of single
server and can be partially explained using the expression Vsay.rax; (20) for the virtual
workload:

— Vsan-rax: depends upon the radius / via the moments of the effective service times b1,
b®@ and the circumference |C|. Virtual workload Vgsn.7ax; (20) is directly proportional
to all three factors.

— The influence of / on the two moments depends upon the path loss factor . If 8 is close to
zero the moments are almost independent of / while the optimal / (optimal for the service
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moments) will be above the center of the annular ring for practical path loss factors. For
practical values of path loss factors, the two moments reduce as / increases from the inner
radius.

— However the circumference |C| has a contrast effect, it increases linearly with /.

— For large values of speed «, the influence of |C| on Vgan.rax; reduces and hence the
optimal radii will be above the center of the annular ring.

— For smaller values of speed o, we see the reverse effect.

— The area of the annular ring also influences, with larger areas the moments (especially the
second) will be large and hence the influence of the moments on Vgsn.74x; Will be larger
than that of the circumference |C|. And so, we see from the bottom rows of the table that,
the optimal radii are away from the inner circle even for lower speeds.

4 FWLAN with two base stations

We now consider a LAN equipped with two base stations and a moving ferry. These base
stations have also to be placed in optimal locations along with the design of optimal ferry
routes. In this section, we consider downlink service alone. Before we proceed with FWLAN
examples with two base stations, we note here that many of the two base station examples
can result in a special case of service called elevator polling (see Altman et al. 1992 which
describes the scheme for discrete polling system). This polling system will have ‘fair’ behav-
ior: the expected waiting times at all the points in the server route will be equal irrespective
of whether the arrivals are symmetric or non symmetric. This ‘fair’ behavior is a welcome
feature and it might be advantageous to consider the paths and the BS locations that can
result in this behavior. In the Sect. 2.3 we derived the expression for the stationary expected
waiting time in a continuous polling system with elevator gating. These results are applied
to some interesting FWLAN examples with two base stations in the following.

4.1 Ferry moving in a straight line in Rectangular area

We consider a rectangular area A = [—[,[] x [—d, d]. A ferry moves in the horizontal
straight line as shown in Fig. 4. There are two base stations, each one of them is located
at the end of the ferry path. The ferry, say, starts its cycle by collecting all the downlink data
from the BS on the left, tags the users for whom the downlink data has to be distributed,
moves towards right with speed «, distributes the data to all the tagged users. Once reaching
the BS on the right it collects all the data from the BS and then moves left. This procedure
repeats. We analyze this FWLAN using the elevator polling system of Sect. 2.3.

Fig.4 One Ferry in Rectangular
area with two base stations

(p1,0) (p2,0)
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Let the base stations be placed respectively at (p;, 0), (p2,0). Let p := (py, p2). In this
case the ferry path is given by C, = {(¢,0) : pi < g < p»}. The partitions are calculated
based on the nearest distance criterion.

{q} x [—d,d] P1 <4 < p2,
I(q)=1(q,0) =[], ;1] x[-d,d] q=p,
[p2. 11 x[—-d,d] q=ps.

Note in this case that, both the ends of the ferry path cover not just a line segment but a rect-
angular segment. We make simplifying assumptions as in Sect. 3. Under these assumptions

1
m [, (1+ y)PPL 4, pL<q<pa,

bgip) = [ [ A+ 4 (pr =)D g g =py,
o [, [ (L4 4 (pr = 0)PPEL g g =p,,
)[40+ )P L P1<q<p,
b@(q:p) —2b(gi Pta + 12 = {0 [T [4 A+ + (1 — )LD g =py,

) d xdy
) [ a0+ 32+ (=D LR g =p.

Note here that even under symmetric assumptions the overall service moments are not equal
at all points, thus resulting in an asymmetrical polling system. With the above the overall
service moments are given by,

by =2d(I — p2)b(p1; p) +2d(p1 + Db(p2; p) + 2d(p2 — p)b(p1+: p),
b2 =2d(l — p)b® (p1) +2d(pi + Db (p2) +2d(p2 — p)b® (pr-+: p).-
In the above by b(p;+; p) we meant the expected value at any point with its X component

greater than p;. As the expected weighting times in this case are equal at all the points, it
will be Pareto optimal to optimize the expected weighting times themselves. Further in this

symmetric case it is easy to see that p} = —pj3. Thus,
2)
py=arg min ——22P2 4 2p7 !,

0<pa=d 2(1 — Ab_p, ,)

Note here that optimal choice of p; optimally places the two base stations as well as opti-
mally designs the ferry path. In this example, it is easy to see that: (1) As the speed of the
ferry o increases, the p; moves towards [, i.e., if the ferry can move at large speeds, it is
optimal to place the base stations at both the edges of the area and allow the ferry to traverse
the entire width of A. This conclusion is also true whenever the path loss factor g is large.
(2) If the ferry moves at moderate speeds and or the path loss factor is small p; reduces.
Thus for small path loss factors, the ferry can move in shorter line segments and cover the
entire area optimally.

We simplified the problem substantially by considering that the ferry moves in a hori-
zontal line placed at the center of the area. This simplification is good as long as the arrivals
are uniform and the file sizes are distributed the same way at all points. For asymmetrical
arrivals this choice of ferry route may not be good. In this case it might be better to consider
any general straight line passing through points (p;, p;) and (ps, p4) as ferry path. The base
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Fig. 5 More general paths for
the ferry with two base stations
Y (pl, p2)

stations are placed once again at both ends of the ferry path. One can estimate the expected
waiting time in terms of the parameter p := (p;, p2, p3, p4) in a similar way and choose p*
optimally. This p* places the base stations optimally and designs the ferry routes optimally
in more generality. If the breadth of A, 2d, is large it might be better to consider zig zag
ferry paths (Fig. 5) with two base stations placed at (p;, p2) and (p3, ps).

5 Conclusions

We study continuous polling systems that cater to non-standard variants of gating disci-
plines like, globally gated service, gated service, mixed service (a mixture of globally gated
and gated service disciplines) and elevator service disciplines. We obtain an expression for
the expected stationary workload. We obtain this result under more general conditions than
the usual symmetric conditions. We come up with a way of discretization such that the
available Pseudo conservation laws of discrete polling systems can be utilized for obtain-
ing the results for the continuous counterparts. We expressed the expected workload as a
parametrized function of moment fixed points. The later are some stationary moments ob-
tained as fixed points of a function defined on spaces of left continuous functions with right
limits equipped with supremum norm and which are further parametrized by the number of
discretization levels. We show the required convergence via the continuous dependence of
the fixed points on the parameter. This way we obtained a common expression, which repre-
sents the expected virtual workload for continuous as well as the discretized polling systems,
at different values of the parameter. We then showed the continuity of the expected virtual
workload with respect to the parameter and hence obtained the expected virtual workload for
the continuous system as the limit of the expected virtual workloads of the discrete systems,
when the levels of discretization tend to infinity. We applied these results to a wireless LAN
in which a ferry assists data transfer between the users of the network and a base station
which acts as a gateway to the external world. We provided the analytical expressions for
the expected virtual workload in a system of FWLAN, taking into account the radio channel
considerations, which allowed us to optimize the trajectories of the Ferry. We covered both
uplink, downlink as well as their combination. Minimizing the virtual workload results in a
Pareto minimization of the expected waiting times in the system. We have further presented
some extensions to the case of several base stations and to routing of several ferries. We ob-
serve that by using two base stations, one can achieve fairness : the expected waiting times
are independent of the positions of arrivals.

In Kavitha (2011), using similar approach we analyzed an FWLAN, in which the ferry
also supports local communication. This FWLAN is analyzed using a continuous polling
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system with rerouting, whose performance is once again obtained using the discretization
approach. One can further explore this discretization approach.

Acknowledgements The reviewers have pointed out a gap in the proof of Theorem 3 (of the revision 1)
and we corrected the same in the final manuscript. We are thankful to the reviewers for pointing out the gap
and allowing us to correct the same.

Appendix A: Limit of the virtual workload, V., (9)
Proof of Lemma I Some terms of (9) are independent of o:

20 ic| ~
p=3 b= A/O b(q) Po(dg) = 15,
i=1

20
> nb? =216 and Q1)

i=1

> p2i = Apgy E[Blglobally gated] = Apqq by
i=1

Recall i = (i — 1)|C|/o, note 6° (¢q) =i’ when g € I; and with these,

7 (i —DICla™!
E Pri ———————
o

=Mge ' D E[bee(D)1(0ery]i”

Z c
= Apgea”! Zbgg(i”)fQ(i”)%i” (22)

ICl
+ Apgea”! /0 (bes (@) fo(q) — bee (8% (@)) fo(87(9))) 87 (q)dgq ~ (23)
T Apgee”! / qbee (@) fo(q)dq = Apggat™ E[Qbyy(O)]. (24)
0

The term (22) is a Riemann sum and hence converges to the integral (24) while the second
term (23) converges to zero by continuity of the functions b,,, fp via Bounded Convergence
Theorem (BCT). Similarly, excluding the terms which converge to zero by BCT as in (23),

o MC
Z | | (pgbé(ia)‘i‘pggb;g(l )fQ(lU)u

i=1

- 0/ (Pesbie (@) + peb (@) f5(q)dg =O0. (25)
0
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Following similar logic, with Zg (@) :== E[bg(Q)1{p<g ] and from (21):

thzpj - Zp212p21+2p212p2/ 1

: =2 =i Jj<i
1 o
~2 (ZPZ:‘) T3 sz, +22 Pgs P ZbZz szl 1l
i=1 =
22 - R
> 5 (e + pee P E [ Q05(Q)]) 6)

By independence E [bgg(Q)Zg(Q)] = 15“35, and hence from limits (21)—(26), the limit of
(9) matches with the formula (7) of the Theorem 1. O

ﬂllx

Appendix B: Proofs

Proof of Lemma 2 Let T(q) =T, with E[T] = t. In this case, 7 ([a, c], T) is sum of the
service times of all the arrivals in the interval [0, T'] that occurred in the segment [a, c] C
[0, |C]]. Let NV represent the number of those Poisson arrivals that belong to segment [a, c]
and that arrived during the [0, 7] interval. In this case,

E[N]1=E[ENIT]1=APo(la,c)E[T M/ fo(q)dq.

Let {B;};<nr represent the service times of these A arrivals. Any arrival can fall in point g
according to distribution Py(dg) = fo(q)dq and the conditional expected service time of
the arrival conditioned on the point of arrival is #(g) and so,

E[B;|Arrival inla, c]] = m/ b(q) fo(g)dq.

Thus by Wald’s lemma,'

a

N c
E[T([a,c],T)]=E |:Z Bi:| =E[NIE[B;]= Af/ b(q) fo(q)dq. 27

i=1

Now we consider the other case, i.e., let every sample path of the random function T be a
monotone increasing function of ¢ € [a, c]. The proof for 7', monotone decreasing, follows

1 For applying Wald’s lemma we need certain independence assumptions. These assumptions are satisfied in
this proof (whenever Wald’s lemma is applied) because of the following: the service times (and the number)
of incoming arrivals are independent of the system evolution till the time stamp at which they are served. For
example, the number of arrivals (or those tagged in case of globally gated service) at around a point say g
(i.e., the users awaiting service in segment [g, g + dg]) does not influence the system evolution till the server
reaches point 87 (¢), standing at which it would serve the awaiting users, i.e., till time 7,7 (¢). To put it the
other way, for example, 7,7 (¢) is a stopping time for that sampled arrival process (sampled from the original
gated Poisson arrival process), in which the users land in segment [g, ¢ + dq] and which originated during
the time interval CJ (q).
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in similar lines. For every M, define step function,

i i i+1
SM = —_ f S -, .
(q)=a+ 5 ifq a+[M M)
Note that by monotonicity of T,

T"(q) =T (8"(q)) <T(q) and

- 1
™(q):=T <5M(q) + ﬁ) =T(q).

In the following the arrivals and their service times are independent'? of 7, 7™ and T™.
More arrivals can occur during more time and hence workload during larger time will be
larger. Hence and further using (27)

E(T(a,cl,T)] < E[T(a,cl, T™)]

M-1 i a+(i+1)/M
=iy T (a + M) / fo(@)b(q)dg
i=0 a

+i/M

= i i i\ 1
A;fQ(a—I—M)b(a—I—M)r(aﬁ-M)ﬁ

Y / T (5" (@) (fo@b@) — b (" @) fo (5" (@))) dg

a

IA

—> k/ fo(@)t(q)b(q)dg as M — oo.

The last limit is obtained because the partial sums define Riemann sums and they converge
to the integral and because the second integral goes to zero by uniform continuity of b, fo
functions (continuous function on compact intervals are uniformly continuous). Similarly
using the lower bound on the time T, ZM , we get,

E[T([a,c], T)] ZMliinooE[T([a,C],ZM)] =k/ Fo(q)T(g)b(g)dq. (28)
Hence,
E[T([a,C],T)]=>»/ Fo(@)t(q)b(q)dq. O

Proof of Theorem 2 The operator F given by (14) is reproduced here.

d(g)nicC]

F(r:8)(@) = 8@~ + Ar(C]) fo b() fo()dy.

12 The independence assumption holds for lower bound TM and the actual time T readily because of the
reasons given in footnote 11. An upper bound is obtained by calculating the independent arrivals that would
have arrived in a bigger interval i.e., ™,
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We are interested in it’s fixed point. The function is clearly jointly continuous in 7, §. Fur-
ther,

s(g)NIC]

F(t1:8)(q) — F(r2;8)(q) =2 (n(IC]) — Tz(ICI))/O b(y) fo(y)dy.

Thus for all §
17 (215 8) — F(72; 8)lloo < pllT1 — T2l 0

Thus whenever p < 1, we have a fixed point of the operator F for all § and hence the
existence of unique stationary first moments. Under this condition, we further see by
parametrized contraction mapping theorem (Berger 1977) that the unique fixed point 7?
is continuous in 4.

In fact from (14), when evaluated at ¢ = |C|, we find that:

8(q)a!
1= 2 20N b3y o (y)dy

(c) =

Note that

s(Ichnlc| IC|
Sup / b(3) foy)dy =1 / b(3) foy)dy = p
0 0

seD

and thus the stationary moments exist if and only if p < 1. Under this condition, one can
solve the fixed point equation and complete the proof of Theorem 2. ]

Proof of Theorem 3 The cycle time C; defined in (15) can be rewritten in the following
fashion and via this expression we obtain the convergence of the required second moments
(note C; (0) = C;_,(IC]) almost surely by continuity arguments):

Cr(q) = ICla™" + U7 (9) + T, (10,8°(9)), ) + T (10,87 (9)), C (0),  (29)

Uy (@) = T (16° (), ICD), €7 1(0)) + T (187 (9), ICD), C}1)). (30)

Required Spaces: We first identify appropriate complete metric spaces in which the above
quantities reside and whose norm gives the required convergence. We start with some defi-
nitions/notations.

Let (2, F, P) be any probability space.

Let ||.|» be the L? norm, i.e., || ||, := +/ E[¥2] for any random variable 1.

Let D represent the space of left continuous functions on [0, |C|] with right limits and
equipped with supremum norm, || f lloo := SUp,o, ¢y |/ (@)1

Let

Y= {measurable functions ¢ : [0, |C|] x 2 — R such that

the map ¢ = [|1¥(g, )ll> € D}

where [[¥/ (¢, )2 := /W(q,w)zdp(w)=vE[1//(q,~)2].
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Define the following norm on this space:

[V lloo2:= sup [¥(g. )]z forany ¢ eW.
q<l0,/cl]

By Lemma 3 (¥, ||.||~.2) is a Banach space.
Contraction Mappings and fixed points: It is easy to see that (C7, U?) defined in (29)—

(30) reside'? in ¥ for all o It is also easy to see that these under stationarity form the fixed
point of the following function, defined point-wise (i.e., for every ¢) by:

O (Ve Vi3 (@) = [Cla™" +V By (@) + T,(10, 87 (@)1, )
+ T (10, 87 (). e (ICD)). GD

%Eg([S"(q), ICI1, ¥e(ICD) + %7}([5"(4), ICIl, ¥e).  (32)
VB VB
In the above, 7,,([a, c], ¥) (with m = g or gg) represents the sum of the modified service
times, B, of the users that arrived in the interval [a, c]: 1) arrivals at around ¢ (independent
arrivals as explained in footnote 11) occur for time period |¢¥ (g, .)| as in Sect. 2.4.2 and 2)
if ¥ (g, .) is negative then the quantities added, B, are negative of the service times, else B
are the service times themselves.

Let ® := (O¢, Oy). The function ® : ¥? — ¥? is affine linear (linear but for |C|a™!
term). Let ®p;, represent the linear part. With this,

@5(%, %; U)(CZ) =

1O (W Y 0) — O UL ooz = 1O1in (W — Y Y — U 1w
< VBV, =¥ ooz + 1700, 8 (@], e — ¥l o2
+ 1T (10, 87 (@)1, Ye(1C1) — Y.(ICD) ooz

1
+ —= (1787 (@), [CI], Ye = ¥l oo,
\/E( 8 2
+ 1 T45 (187 (). IC1], Ye(ICD) — WL(ICD) llco.2) -

In the above, terms like || 7, ([0, 87 (g)]1, ¥c) |l .2 Tefer to the ||.||o > norm of a ¥ € ¥, where
V¥ (g, .) represents the random workload, 7, ([0, 6° (¢)1, ). Note that for any type of arrivals
(i.e., with m = g or m = gg) and for any interval / and time function 7,

T, (I, T)| <) B;

where B; are the service times of the arrivals in the chosen time period |7 | and so it is clear
that these type of terms to converges (in monotone fashion) to zero as B — 0. In fact even

the terms like 1/\/§|Tm(., .)| drop to zero as B — 0. Thus there exists a B < 0o such that

1@Linllcor <1 forall B < B and for all o.

13C,‘{ is a sum of two monotone functions (recall from (15), C(q) = T, (¢) + [T,,—1|C| — T,—1(g)]) while
Uy is a monotone function of ¢ for all realizations, hence their moments will also have similar properties
and hence both the moments are in D.
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Hence ® is a contraction for all o and the contraction coefficient can also be chosen inde-
pendent of o, i.e., there exists B and L < 1 such that (for all B < B),

1O We, Y3 0) — O, Y5 0) ooz < LIWe, Y) — (WL, U)oz forall o.
Thus, from contraction mapping theorem, we have a unique fixed point (CJ, U?) for every
o and these by construction of the map @, given by (29)—(30), are the stationary quantities
corresponding to (C,, U,) with discretization levels o.
Continuity of © with respect to o: From (31)—(32), difference ©(C?, U ;o) —
ey ' u? "; 00) is made up of terms like @, the workload process defined for any m = g
or gg and any ¥ € ¥ by,

oo (q, 5 ¥) :=T,(67(q),ql, V).

Clearly w7 (., .; C;’/) € ¥ for every o < oo and for every o’ and using'* (33)

Il (q, ;s CI)lla < 2BIN (g, )2

where A? (¢, .) represents the number of customers that arrived in segment [57 (¢), ¢] for a
time duration of C;’/(IC ). Clearly'3 using the properties of Poisson process,

IN?(q, )3 = E[N°(q,.)]

’ ’ 2
= (KPQ([SU(Q),Q])IICfZ achn + ()\PQ((SU(‘])J]])”C: (ICI)) )

2
( ke e ¢ (1172 <|C|>)> for any g.

Hence for any given ¢’ and m,
lim |&) (., .; C:/)Hoo.z =0 andsimilarly lim ||&] (., .; C;”(|C|))||0012 =0
From (31)—(32), difference

Oc(Cy U1 0) = Oc(CI U 100) = —w (1 € ) — w8, (. €2 (IC]),

! ! ! ! 1 1 !
Oy(Cy U] ;0)—Oy(C] U] ;00) = —=w@/ (. ,C")+ 2e (3 €2 (ICD)
N VB ¥
and thus for any ¢’ < oo,
10(CT U 6) —O(CT U 00)||sos — 0 as o — 0. (34)

14From (15), CZ (g) equals sum of stationary quantities corresponding to 75 (g) and T,_1(IC| — T,,—1(q)
and hence will be less than or equal to 2C¢ (|C|) in distribution and this is true for all ¢, i.e.,

distribution

c2(g) 2¢7(c)) forallg. (33)

Also, recall service times B < B with probability one.

15Because of independent arrivals as reasoned in footnotes 11 and 12.
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Continuity of fixed points with respect to o : By the definition of fixed points,

(€. U) = (CF U 2
=0(C7,U};0) —O(CF, U 00) [l
<NOCF,UF0) —O(CE,US;00) o2 + I1O(CY, U5 0) — O(CE, UL 0) oo 2
SOCE Uz 0) = O(CF,UT; 00) ooz + LICT, UY) = (CF, U Nl 2-
And hence

1

co,U%) —(C>, U <
I(C2. UL = (C; *)”00,2_1_L

10(CF,U” 0) —O(C7, U5 00) [loo,2-
Thus, using (34), as 0 — 00
I(CZ, U — (€2, U) loo2 = 0.

It is easy to check that ||CJ (g, .)|l2 = cﬁ". Thus, by the definition of ||. ||~ > the theorem
on second moments follows. O

Lemma 3 (¥, ||.||.2) is a complete space.

Proof Say , is a Cauchy sequence. Then for any g, v,(g, .) is Cauchy in L? space and
hence there exist an L2-limit say call it ¥ (g, .). Now for any ¢,

1¥n(g. ) =¥ (g, Il = Hm [[¥(q,.) = ¥n(g, 2.

For any € > 0 there exists N such that

sup ¥ (q,.) — ¥al(g, )2 <€ foralln,m> N.
q

Combining the above two equations, whenever n > N

sup [V (g,.) =¥ (g, )2 <€
q

and hence [|Y, — ¥|lco.2 — 0 as n — oo.
By completeness of D the map (of limits of L? norms) ¢ — ||¥ (g, .) ||, resides in D. [

Appendix C: Pareto optimality

Let W be the set of vectors of expected waiting times achieved by a class of design policies.
A vector w; € W obtained by some policy dominates another vector w, if all entries of w;
are smaller than or equal to those of w, with at least one entry being strictly smaller. This
definition is given when w; has finite number of entries. We now extend the definition in an
obvious way to our case, i.e., when w; is a function on [0, |C|] that is integrable with respect
to Lebesgue measure, £. A function w is said to dominate another function w; if w; < w,
almost surely (w.r.t. Lebesgue measure) and if there exists a set B such that w; < w, on B
and £(B) > 0. A minimum vector in W in the Pareto sense is one that is not dominated by
any other vector in W.

@ Springer



Ann Oper Res

Lemma 4 Let ¢ be an integrable function on [0, |C|] with ¢ > ¢ almost surely, with ¢ > 0.
Let,

ICl
w =arg min/ w(q)¢(g)dq,
weW Jo
be a minimizer of the integral. Then w* is a Pareto optimal solution.

Proof If it is not and there exists a vector w; which dominates w*. Say w; < w* on B with
L(B) > 0 while w; = w* on the complement, 5. Then

IC]
/0 (w1(q) — w(@)¢ (q)dg = / (w1(@) — w (@)¢(@)dg
B

IA

e / (W (q) — wi(@))dg <0,
B

and so the optimality of w* is contradicted when ¢ > 0. When ¢ = 0, by definition of infi-
mum one can find a subset of B on which ¢ > ¢ > 0 and the proof follows. g
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