
A Jamming Game in Wireless Networks with

Transmission Cost�

E. Altman1, K. Avrachenkov1, and A. Garnaev2

1 INRIA Sophia Antipolis, France
{altman,k.avrachenkov}@sophia.inria.fr

2 St. Petersburg State University, Russia
agarnaev@rambler.ru

Abstract. We consider jamming in wireless networks with transmission
cost for both transmitter and jammer. We use the framework of non-zero-
sum games. In particular, we prove the existence and uniqueness of Nash
equilibrium. It turns out that it is possible to provide analytical expres-
sions for the equilibrium strategies. These expressions is a generalization
of the standard water-filling. In fact, since we take into account the cost
of transmission, we obtain even a generalization of the water-filling in
the case of one player game. The present framework allows us to study
both water-filling in time and water-filling in frequency. By means of nu-
merical examples we study an important particular case of jamming of
the OFDM system when the jammer is situated close to the base station.

Keywords: Wireless networks, Jamming, Non-zero-sum games, Nash
Equilibrium, Water-filling.

1 Introduction and Problem Formulation

Power control in wireless networks became an important research area. Since the
technology in the current state cannot provide batteries which have small weight
and large energy capacity, the design of algorithms for efficient power control is
crucial. For a comprehensive survey of recent results on power control in wireless
networks an interested reader can consult [15]. It turns out that game theory
provides a convenient framework for approaching the power control problem see
for instance [9] and references therein. Most of the work on application of game
theory to power control considers mobile terminals as players of the same type.
Here we consider the jamming problem with two types of players. The first type
of players are regular users of the wireless mobile network who want to use the
available wireless channels in the most efficient way. The second type of players
are jammers who want to prevent or to jam the communication of the regular
users. The study of jamming in wireless networks is important in the context of
military actions or fighting against terrorist activity. On a battlefield, it is very
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likely that one side will try to prevent the wireless communication of the other
side. Thus, one side is interested in the best usage of power to overcome the
artificial noise emitted by the other side. And conversely, the other side tries to
use power to harm the communication in the most efficient way.

In [2] the authors have studied the application of dynamic stochastic zero
sum game to the jamming problem in wireless networks. In the model of [2] the
transmission power can be chosen from a discrete set. Here we suppose that the
power level can be chosen from a continuous set. This allows us not only to prove
the existence of the Nash equilibrium (NE) but also to show its uniqueness. Here,
in addition to the power constraint we introduce the cost of power usage. This
makes the problem a non-zero game. Furthermore, the current continuous model
allows us to study not only temporal power distribution for one channel but also
the distribution of power among different sub-channels.

In the works [7] and [14] the authors have analyzed the worst case wireless
channel capacity when the noise variances are fixed (possibly unknown at the
transmitter) and the carrier gains are allowed to vary while verifying a certain
constraint. In that case, transmission at the worst rate guarantees error free com-
munication under any possible conditions of the channel, although it might give
a pessimistic result. This formulation leads to a minimax problem. In the works
[7] and [14] as well as in [2] the cost of transmission is not taken into account.
Other problem formulations involving jamming in which one wireless terminal
wishes to maximize the mutual information and the other tries to minimize it,
can be found at [3]. For other related work, see [5].

Let us specify the present model formulation. We consider two mobile termi-
nals and one base station. Since we use the framework of game theory, we shall
use the terms mobiles and players interchangably. Player 1 seeks to transmit
information to the base station. We shall refer to it as “Transmitter”. Player 2
has an antagonistic objective: to prevent or to jam the transmissions of Player 1
to the base station. Thus, we shall call Player 2 “Jammer”. Both players have in
addition a transmission cost (see below) which prevents us from using zero-sum
games to model our problem.

We assume that there are n independent resources, each of which can be
used simultaneously by both players. We further assume that resource i has a
”weight” of πi.

Possible interpretations
(i) The resources may correspond to capacity available at different time slots; we
assume that there is a varying environment whose state changes among a finite
set of states i ∈ [1, n], according to some ergodic stochastic process with station-
ary distribution {πi}n

i=1. We assume that both players have perfect knowledge
of the environment state at the beginning of each time slot.
(ii) The resources may correspond to frequency bands (e.g. as in OFDM) where
one should assign different power levels for different sub-carriers [15]. In that
case we may take πi = 1/n for all i.

The pure strategy of Transmitter is T = (T1, . . . , Tn) where Ti ≥ 0 for i ∈ [1, n]
and

∑n
i=1 πiTi ≤ T̄ where T̄ > 0, πi > 0 for i ∈ [1, n]. The component Ti can
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be interpreted as the power level dedicated to resource of type i. If the resource
i is the available capacity when the environment state is i, then Ti is the power
level that is chosen whenever we visit state i, and T̄ is a bound on the power
averaged over time.

If the resources correspond to frequency bands, then Ti is the average power
to be transmitted at the ith band. T̄ is then the maximal average power level
that can be used by Transmitter.

The pure strategy of Jammer is N = (N1, . . . , Nn) where Ni ≥ 0 for i ∈ [1, n]
and

∑n
i=1 πiNi ≤ N̄ where N̄ > 0. The payoffs to Transmitter and Jammer are

given as follows

vT (T, N) =
n∑

i=1

πi ln
(

1 +
giTi

hiNi + N0
i

)

− cT

n∑

i=1

πiTi,

vN (T, N) = −
n∑

i=1

πi ln
(

1 +
giTi

hiNi + N0
i

)

− cN

n∑

i=1

πiNi

(1)

where N0
i is the power level of the uncontrolled noise of the environement at state

i, cT > 0 and cN > 0 are the costs of power usage for Transmiter and Jammer,
and gi > 0 and hi > 0 are fading channel gains for Transmiter and Jammer
when the environement is in state i. The first sum in payoff is the expected
value of the Shanon capacity [6,10,15] and the second sum is the average cost of
transmission.

We shall look for a NE, that is, we want to find (T ∗, N∗) ∈ A × B such that

vT (T, N∗) ≤ vT (T ∗, N∗) for any T ∈ A,

vN (T ∗, N) ≤ vN (T ∗, N∗) for any N ∈ B,

where A and B are the sets of all the strategies of Transmitter and Jammer,
respectively. In particular, we shall prove that the NE exists and is unique and
we shall provide closed form analytic expressions for its calculation.

In the special case when cT and cN are zero in (1), the game is zero-sum. As
vT is convex in Ti and concave in Ni, we can apply Sion’s minimax Theorem to
conclude that it has a saddle point.

The structure of the paper is as follows: To complete the picture and to intro-
duce notations, in Section 2 we consider single player water-filling game with the
environment when the transmission cost is taken into account. Section 3 is the
main part of the paper where we study the structure of the NE in the jamming
game. Then, in Section 4, based on theoretical results of Section 3, we provide
an algorithm for determination of the NE. We study some numerical examples in
Section 5 and make conclusions in Section 6.

2 Water-Filling with Transmission Cost

In this section we consider the following single person game with the environ-
ment. There is one player named Transmitter. He/she wants to send informa-
tion through a channel which state depends on the state of the environment
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or through n sub-channels. The goal of Transmitter is to maximize the sending
rate of the transmitted information and to minimize the transmission cost. The
pure strategy of Transmitter is T = (T1, . . . , Tn) where Ti ≥ 0 for i ∈ [1, n] and∑n

i=1 πiTi ≤ T̄ where T̄ > 0 and πi > 0 for i ∈ [1, n]. The payoff to Transmitter
is given as follows

v(T ) =
n∑

i=1

πi ln
(

1 +
Ti

N0
i

)

− cT

n∑

i=1

πiTi,

where N0
i > 0 is the noise level when the environment is in state i, i ∈ [1, n]

and cT is a cost for power usage. We would like to emphasize that this is a
generalization of the standard water-filling scheme, see e.g., [8,13,15]. Following
the standard water-filling approach we can get the following result.

Theorem 1. Let 1/N0
1 = maxi∈[1,n] 1/N0

i and Ti(ω) =
[
1/(cT + ω) − N0

i

]
+

for
i ∈ [1, n] and HT (ω) =

∑n
i=1 πiTi(ω).

If cT ≥ 1/N0
1 then T ∗ = (0, . . . , 0) is the unique optimal strategy and its

payoff is 0. If cT < 1/N0
1 then T (ω∗) = (T1(ω∗), . . . , Tn(ω∗)) is the unique

optimal strategy and its payoff is v(T (ω∗)) where for HT (0) ≤ T̄ ω∗ = 0 and for
HT (0) > T̄ ω∗ is the unique root of the equation HT (ω) = T̄ .

3 Jamming Game

In this section we consider a non-zero-sum game between Transmitter and Jam-
mer with payoff functions defined by (1). We shall study the NE of this game,
that is, we want to find (T ∗, N∗) ∈ A × B such that

vT (T, N∗) ≤ vT (T ∗, N∗) for any T ∈ A,

vN (T ∗, N) ≤ vN (T ∗, N∗) for any N ∈ B,

where A and B are the sets of all the strategies of Transmitter and Jammer,
respectively.

Note that

∂2vT (T, N)
∂T 2

i

= − πig
2
i

(giTi + hiNi + N0
i )2(hiNi + N0

i )2
< 0

and
∂2vN (T, N)

∂N2
i

= − πiTigih
2
i (giTi + 2hiNi + 2N0

i )
(giTi + hiNi + N0

i )2(hiNi + N0
i )2

< 0.

Thus, vT and vN are concave in T and N respectively. So, we can apply the
Kuhn-Tucker Theorem to find the form that the NE has, namely, we will show
in Theorem 3 that each NE is of the form (T (ω, ν), N(ω, ν)) for some nonnegative
ω and ν where T (ω, ν) and N(ω, ν) are given in closed form in (5) and (6). These
functions have a nice monotonous properties established in Lemma 1, namely,
N(ω, ν) is decreasing in ω and ν and T (ω, ν) is decreasing in ω and is increasing
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in ν. This properties allow us to prove in Theorem 4 that there is at most one NE.
Then, based on the monotonous properties of T (ω, ν) and N(ω, ν), we produce a
NE in Theorems 5 and 6 in a way where the original two parametric problems in
ω and ν reduces to one parametric problem either in ω or in ν where the optimal
values of ω and ν can be found from solution of an equation with monotonous
function. This in turn allows us in Section 4 to produce an effective algorithm
based on the bisection method for numerical determination of NE.

Now we can pass on to our analysis. As it was noticed vT and vN are concave
in T and N , thus, the Kuhn - Tucker Theorem implies the following theorem.

Theorem 2. (T ∗, N∗) is a NE if and only if there are non - negative ω and ν
such that

∂

∂Ti
vT (T ∗, N∗) =

gi

giT
∗
i + hiN

∗
i + N0

i

− cT

{
= ω for T ∗

i > 0,

≤ ω for T ∗
i = 0,

(2)

∂

∂Ni
vN (T ∗, N∗) =

gihiT
∗
i

(giT
∗
i + hiN

∗
i + N0

i )(hiN
∗
i + N0

i )

− cN

{
= ν for N∗

i > 0,

≤ ν for N∗
i = 0,

(3)

where

ω

{
≥ 0 for

∑n
i=1 πiT

∗
i = T̄ ,

= 0 for
∑n

i=1 πiT
∗
i < T̄

and ν

{
≥ 0 for

∑n
i=1 πiN

∗
i = N̄,

= 0 for
∑n

i=1 πiN
∗
i < N̄.

(4)

For non-negative ω and ν let

I00(ω, ν) = I00(ω) =
{
i ∈ [1, n] : higi/N

0
i ≤ hi(ω + cT )

}
,

I10(ω, ν) =
{
i ∈ [1, n] : hi(ω + cT ) < higi/N

0
i ≤ hi(ω + cT ) + gi(ν + cN )

}
,

I11(ω, ν) =
{
i ∈ [1, n] : hi(ω + cT ) + gi(ν + cN ) < higi/N

0
i

}
,

Ti(ω, ν) =

⎧
⎪⎪⎨

⎪⎪⎩

gi

(ω + cT )hi + (ν + cN )gi
× ν + cN

ω + cT
for i ∈ I11(ω, ν),

1
cT + ω − N0

i
gi

for i ∈ I10(ω, ν),

0 for i ∈ I00(ω, ν),

(5)

Ni(ω, ν) =

⎧
⎨

⎩

gi

(ω + cT )hi + (ν + cN )gi
− N0

i
hi

for i ∈ I11(ω, ν),

0 for i ∈ I00(ω, ν).
(6)

Theorem 3. Each NE is of the form (T (ω, ν), N(ω, ν)) for some nonnegative
ω and ν.

Now we go on to finding optimal ω and ν. Let

HT (ω, ν) =
n∑

i=1

πiTi(ω, ν), HN (ω, ν) =
n∑

i=1

πiNi(ω, ν).
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Then Theorem 3 implies that

HT (ω, ν) =
∑

i∈I10

πi

(
1

cT + ω
− N0

i

gi

)

+
ν + cN

ω + cT

∑

i∈I11

πigi

(ω + cT )hi + (ν + cN )gi
,

HN (ω, ν) =
∑

i∈I11

πi

( gi

(ω + cT )hi + (ν + cN )gi
− N0

i

hi

)
.

In the next lemma some monotonous properties of Ti(ω, ν) and Ni(ω, ν),
HT (ω, ν) and HN (ω, ν) are obtained.

Lemma 1. (i) For fixed ω > 0 and 0 ≤ ν1 < ν2 we have: (1) Ti(ω, ν1) ≤
Ti(ω, ν2) where strict inequality holds if and only if i ∈ I10(ω, ν1),
(2) Ni(ω, ν1) ≥ Ni(ω, ν2) where strict inequality holds if and only if i ∈
I10(ω, ν1), (3) HT (ω, ν1) ≤ HT (ω, ν2) where equality holds if and only if
I10(ω, ν1) = ∅, (4) HN (ω, ν1) ≥ HN (ω, ν2) where equality holds if and only
if I10(ω, ν1) = ∅.

(ii) For fixed ν > 0 and 0 ≤ ω1 < ω2 we have: (1) Ti(ω1, ν) ≤ Ti(ω2, ν) where
equality holds if and only if i ∈ I00(ω1, ν), (2) Ni(ω1, ν) ≥ Ni(ω2, ν) where
equality holds if and only if i �∈ I10(ω1, ν), (3) HT (ω1, ν1) ≥ HT (ω2, ν) where
equality holds if and only if I00(ω, ν1) = [1, n], (4) HN (ω1, ν) ≥ HN (ω2, ν)
where equality holds if and only if I10(ω1, ν) = ∅.

(iii) HT (ω, ν) and HN (ω, ν) are non-negative and continuous in [0,∞)× [0,∞).
(iv) If HN (0, 0) ≤ N̄ then HN (ω, ν) < N̄ for ω > 0 and ν > 0.

Based on monotonous properties described in Lemma 1 we can establish the
following result about the number of NE the game can have.

Theorem 4. There is at most one NE.

Note that

HT (ω, 0) =
∑

i∈[1,n]: hi(ω+cT )<higi/N0
i ≤hi(ω+cT )+gicN

πi

(
1

cT + ω
− N0

i

gi

)

+
cN

ω + cT
×

∑

i∈[1,n]: hi(ω+cT )+gicN <higi/N0
i

πi
gi

(ω + cT )hi + cNgi
.

(7)

The following lemma supplying some properties of HT (ω, 0) follows straighfor-
ward from (7) and Lemma 1.

Lemma 2. (i) HT (·, 0) is non-negative and continuous in (0,∞),
(ii) HT (ω, 0) = 0 for enough big ω, namely, for ω ≥ maxi{gi/N

0
i −gicN/hi}−cT ,

(iii) HT (ω, 0) is strictly decreasing on ω while HT (ω, 0) > 0,

Lemma 2 implies that if HT (0, 0) > T̄ that there exists the unique positive ω∗
10

such that HT (ω∗
10, 0) = N̄ (indexes 10 mean that in this moment we look for the

optimal solution where ω > 0 and ν = 0). If HT (0, 0) ≤ T̄ then HT (τ, 0) < T̄
for τ > 0. Then, from Theorems 2 and 3 and Lemmas 1(iv) and 2 we have the
following theorem.
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Theorem 5. Let HN (0, 0) ≤ N̄ then
(a) if HT (0, 0) ≤ T̄ then (T (0, 0), N(0, 0)) is NE,
(b) if HT (0, 0) > T̄ then (T (ω∗

10, 0), N(ω∗
10, 0) is NE.

By Lemma 1 the following Lemma holds

Lemma 3. If HN (0, 0) > N̄ then there is ν∗
01 such that HN (0, ν∗

01) = N̄ (sub-
script 01 signifies that we look for the optimal solution where ω = 0 and ν > 0)
and there is ω̂ such that HN (ω̂, 0) = N̄ . Thus, HN (ω, ν) < N̄ for each ω > ω̂
and each non-negative ν. For each ω ∈ (0, ω̂] there is unique nonnegative ν(ω)
such that HN (ω, ν(ω)) = N̄ . ν(ω) is continuous and strictly decreasing on ω,
ν(0) = ν∗

01 and ν(ω̂) = 0.

Thus, by Lemma 3 we can introduce the following notation:

H̄T (ω) = HT (ω, ν(ω)) =
∑

i∈I10(ω,ν(ω))

πi

(
1

cT + ω
− N0

i

)

+
ν(ω) + cN

ω + cT
×

∑

i∈I11(ω,ν(ω))

πi
gi

(ω + cT )hi + (ν(ω) + cN )gi
.

Then by Lemma 1 H̄T is continuous and strictly decreasing in (0, ω̂). Thus, if
H̄T (0) ≤ T̄ then H̄T (ω) < T̄ for ω ∈ (0, ω̂). If H̄T (ω̂) > T̄ then H̄T (ω) > T̄ for
ω ∈ (0, ω̂). If H̄T (ω̂) < T̄ and H̄T (0) > T̄ then there is unique ω∗

11 ∈ (0, ω̂) such
that H̄T (ω∗

11) = T̄ (subscript 11 signifies that we look for the optimal solution
where ω, ν > 0). Then, from Theorems 2 and 3 we have the following theorem.

Theorem 6. Let HN (0, 0) > N̄ then
(a) if H̄T (0) = HT (0, ν∗

01) ≤ T̄ then (T (0, ν∗
01), N(0, ν∗

01)) is NE,
(b) if H̄T (0) = HT (0, ν∗

01) > T̄ and H̄T (ω̂) = HT (ω̂, 0) > T̄ then
(T (ω∗

10, 0), N(ω∗
10, 0)) is NE,

(c) if H̄T (0) = HT (0, ν∗
01) > T̄ and H̄T (ω̂) = HT (ω̂, 0) ≤ T̄ then

(T (ω∗
11, ν(ω∗

11)), N(ω∗
11, ν(ω∗

11)) is NE.

Theorems 4 – 6 imply the following main result.

Theorem 7. There is unique NE given by Theorems 5 and 6.

The case where there are no the costs of power usage for Transmiter and Jam-
mer, namely, cT = cN = 0, is an important particular case of our model. For
this case our model from non-zero sum game turns into zero-sum game. Then,
it is clear, that HN (0+, 0+) = ∞ and H̄T (0+) = ∞ and we come under condi-
tions of Theorem 6 (b) and (c). Thus, if HT (ω̂, 0) ≤ T̄ (where ω̂ is defined by
equation HN (ω̂, 0) = N̄ , see Lemma 3), then (T (ω∗

11, ν(ω∗
11)), N(ω∗

11, ν(ω∗
11)) is

the equilibrium. If HT (ω̂, 0) > T̄ then (T (ω∗
10, 0), N(ω∗

10, 0)) is the equilibrium.
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4 Algorithm

In this section we present an algorithm based on the bisection method and
Theorems 5 and 6 and Lemmas 2 and 3 to find the optimal values of ω and ν
and the corresponding optimal solution.

Algorithm

Step 1. If HN (0, 0) ≤ N̄ and HT (0, 0) ≤ T̄ then ω = ν = 0 and (T (0, 0), N(0, 0))
is NE and the algorithm is terminated.

Step 2. If HN (0, 0) ≤ N̄ and HT (0, 0) > T̄ . Then call ω∗
10 = BS1

T (0),
(T (ω∗

10, 0), N(ω∗
10, 0)) is NE and the algorithm is terminated.

Step 3. If HN (0, 0) > N̄ then BS1
N (ω̂, 0) and ν∗

01 = BS2
N (0).

Step 4. If HT (0, ν∗
01) ≤ T̄ then (T (0, ν∗

01), N(0, ν∗
01)) is NE and the algorithm

is terminated.
Step 5. If HT (0, ν∗

01) > T̄ and HT (ω̂, 0) > T̄ then (T (ω∗
10, 0), N(ω∗

10, 0)) is NE
and the algorithm is terminated.

Step 6. If HT (0, ν∗
01) > T̄ and HT (ω̂, 0) ≤ T̄ then ω0 = 0, ω1 = ω̂.

Step 6a. ν0 = BS2
N (ω0), ν1 = BS2

N (ω1).
Step 6b. Set ω̄ = (ω1 + ω0)/2.
Step 6c. ν̄ = BS2

N (ω̄).
Step 6d. If ω1 − ω0 ≤ ε, then ω∗

11 = (ω1 + ω0)/2, ν∗
11 = BS2

N (ω∗
11) and

(T (ω∗
11, ν

∗
11), N(ω∗

11, ν
∗
11)) is NE and the algorithm is terminated.

Step 6e. If ω1 −ω0 > ε, then, if HT (ω̄, ν̄) < N̄ then ω0 = ω̄, if HN (ω̄, ν̄) >
N̄ then ω1 = ω̄ and go to Step 6b.

Step 6f. Let ω1 − ω0 > ε and HN (ω̄, ν̄) = N̄ then ω∗
11 = ω̄, ν∗

11 = ν̄ and
(T (ω∗

11, ν
∗
11), N(ω∗

11, ν
∗
11)) is NE and the algorithm is terminated.

Function ω = BS1
T (ν)

Step 1. Let ω0 = 0, ω1 = maxi{gi/N
0
i − gicN/hi} − cT

Step 2. Set ω̄ = (ω1 + ω0)/2.
Step 3. If ω1 − ω0 ≤ ε, then return ω = (ω1 + ω0)/2.
Step 4. If ω1 − ω0 > ε then, if HT (ω̄, ν) < T̄ set ω0 = ω̄, if HT (ω̄, ν) > T̄ set

ω1 = ω̄ and go to Step 2.
Step 5. Let ω1 − ω0 > ε and HT (ω̄, ν) = N̄ then return ω̄.

Function ω = BS1
N (ν)

Step 1. Let ω0 = 0, ω1 = maxi{gi/N
0
i − gicN/hi} − cT

Step 2. Set ω̄ = (ω1 + ω0)/2.
Step 3. If ω1 − ω0 ≤ ε then return ω = (ω1 + ω0)/2.
Step 4. If ω1 − ω0 > ε then, if HN (ω̄, ν) < N̄ set ω0 = ω̄, if HN (ω̄, ν) > N̄ set

ω1 = ω̄ and go to Step 2.
Step 5. Let ω1 − ω0 > ε and HN (ω̄, ν) = N̄ then return ω̄.

Function ν = BS2
N (ω)

Step 1. Let ν0 = 0, ν1 = maxi{hi/N
0
i − hicT /gi} − cN
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Step 2. Set ν̄ = (ν1 + ν0)/2.
Step 3. If ν1 − ν0 ≤ ε then return ν = (ν1 + ν0)/2.
Step 4. If ν1 − ν0 > ε then, if HN (ω, ν̄) < N̄ set ν0 = ν̄, if HN (ω, ν̄) > N̄ set

ν1 = ν̄ and go to Step 2.
Step 5. Let ν1 − ν0 > ε and HN (ω, ν̄) = N̄ then return ν̄.

5 Numerical Examples

In this section we consider a few numerical examples. The numerical examples
correspond to the OFDM scheme with five sub-channels (n = 5). Consequently,
we take πi = 1/5. Let us consider an important particular case of jamming in the
OFDM system when the jammer is near the base station. In this scenario hi = 1
for all i ∈ [1, 5]. First, we take gi = κi−1 for i ∈ [1, 5] where κ ∈ (0, 1). This
corresponds to Rayleigh fading. Also we set N0

i = 0.1, i ∈ [1, 5], N̄ = T̄ = 1 and
cT = cN = 0.1. The payoffs of the players as functions of κ is shown in Figure 1.
As an example, we depict the optimal strategies of the players in Figure 2 for
the case κ = 1/2. It is interesting to observe that Jammer spends more energy
in the sub-channels with good quality and Transmitter tries to use the resources
of the bad quality sub-channels. In other words, Jammer pays less attention to
the sub-channel with bad quality and Transmitter takes an opportunity to send
some part of information over bad quality sub-channels.

In the second example, we consider that the background noise is different
in each sub-channel. Specifically, we take N0

i = i/10 for i ∈ [1, 5] and κ =
0.2. Then, we obtain the optimal strategies T ∗ = (3.66, 1.18, 0.16, 0, 0) and
N∗ = (3.90, 1.10, 0, 0, 0) with the payoffs 0.07 and -0.27. This example illustrates
the possibility of the situation when Transmitter uses more sub-channels than
Jammer, see formulae (5) and (6).

Fig. 1. The payoffs as functions of κ Fig. 2. The optimal strategies for κ = 1/2
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6 Conclusions

In this paper we considered jamming in wireless networks with transmission
cost for both transmitter and jammer from a game theoretical point of view. We
proved the existence and uniqueness of NE. It turned out that it is possible to
provide analytical expressions for the equilibrium strategies which depend on two
parameters. We propose an efficient algorithm for finding these parameters, and
hence, the optimal strategies. The presented jamming game is a generalization of
the standard water-filling problem. In fact, since we take into account the cost of
transmission, for the case of the single player, we obtain even the generalization
of the water-filling optimization problem. The present framework allows us to
study both water-filling in time and water-filling in frequency. By means of
numerical examples we study an important particular case of jamming of the
OFDM system when the jammer is situated close to the base station. These
examples showed that Jammer pays less attention to the sub-channel with bad
quality and Transmitter takes an opportunity to send some part of information
over bad quality sub-channels.
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Appendix

Proof of Theorem 3. Let (T ∗, N∗) be a NE. Then for each i ∈ [1, n] the
following four cases are possible: (a) T ∗

i = N∗
i = 0, (b) T ∗

i = 0, N∗
i > 0, (c)

T ∗
i > 0, N∗

i > 0 and (d) T ∗
i > 0, N∗

i = 0.
(a) Let T ∗

i = 0 and N∗
i = 0 then by (2) we have that gi/N

0
i − cT ≤ ω∗. Thus,

i ∈ I00(ω∗, ν∗) and T ∗ = T (ω∗, ν∗), N∗ = N(ω∗, ν∗).
(b) Let T ∗

i > 0 and N∗
i = 0 then by (2) we have that

gi

giT
∗
i + N0

i

− cT = ω∗.

Thus, gi

N0
i

> ω∗ + cT and T ∗
i = 1

ω∗ + cT
− N0

i
gi

. Then, by (3) we have that

ν∗ ≥ gihiT
∗
i

(hiT
∗
i + N0

i )N0
i

− cN =
(

1
ω∗ + cT

− N0
i

gi

)
hi

N0
i

(ω∗ + cT ) − cN

=
hi

N0
i

− hi

gi
(ω∗ + cT ) − cN .

Thus, i ∈ I10(ω∗, ν∗) and T ∗ = T (ω∗, ν∗), N∗ = N(ω∗, ν∗).
(c) Let T ∗

i > 0 and N∗
i > 0 then by (2) and (3) we have that

ω∗ =
gi

giT
∗
i + hiN

∗
i + N0

i

− cT ,

ν∗ =
gihiTi

(giT
∗
i + hiN

∗
i + N0

i )(hiN
∗
i + N0

i )
− cN .

(d) Let T ∗
i = 0 and N∗

i > 0 then by (3) ν∗ = −cN < 0. This contradiction
proves that the assumption that T ∗

i = 0 and N∗
i > 0 cannot take place and the

result follows.

Proof of Lemma 1. (i1) For fixed ω > 0 and 0 ≤ ν1 < ν2 we have I10(ω, ν1) ⊆
I10(ω, ν2) and I11(ω, ν1) ⊇ I11(ω, ν2). Since for any ν I10(ω, ν) ∪ I11(ω, ν) =
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[1, n]\I00(ω) does not depend on ν we have to consider separately the cases
i ∈ I00(ω, ν1), i ∈ I10(ω, ν1), i ∈ I11(ω, ν2) and i ∈ I11(ω, ν1) ∩ I10(ω, ν2), and
then (i1) now follows easily from the definitions.

Proof of Theorem 4. Suppose there are at least two NE, say (T (ω1, ν1),
N(ω1, ν1)) and (T (ω2, ν2), N(ω2, ν2)).

Suppose that ν1 = ν2 = ν. We can assume that 0 ≤ ω1 < ω2. Thus, by
Theorem 2, HT (ω2, ν) = T̄ . Thus, by Lemma 1 (ii3) HT (ω2, ν) ≤ HT (ω1, ν)
So, HT (ω1, ν) = T̄ = HT (ω2, ν) and by Lemma 1 (ii3) I00 = [1, n]. Thus,
HT (ω2, ν) = 0. This contradictions shows ω1 has to be equal to ω2.

Suppose that 0 ≤ ν1 < ν2 = ν. Thus, by Theorem 2, HT (ω2, ν2) = N̄ . So,
I11(ω2, ν2) �= ∅.

Assume that ω1 ≤ ω2. Then I11(ω2, ν2) ⊆ I11(ω1, ν1) and Ni(ω1, ν1) >
Ni(ω2, ν2) for i ∈ I11(ω2, ν2). Thus, HN (ω1, ν1) > HN (ω2, ν2) = N̄ . This contra-
diction shows that the inequality ω1 > ω2 has to be held.

So, let ω1 > ω2. Thus, I00(ω2) ⊆ I00(ω1). We can assume that I00(ω2) �= [1, n]
since otherwise the equilibrium coincides with each other, namely Ti(ωk, νk) =
Ni(ωk, νk) = 0 for k = 1, 2. So, I00(ω2) �= [1, n]. Thus, by Lemma HT (ω2, ν2) ≥
HT (ω2, ν1) > HT (ω1, ν1) = T̄ . This contradiction completes the proof of
theorem.
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