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Abstract—We consider properties of constrained games, where the
strategy set available to a player depends on the choice of strategies
made by other players. We show that the utilities of each player associated
with that player’s own performance and constraints are not sufficient to
model a constrained game and to define equilibria; for the latter, one
also needs to model how a player values the fact that other players
meet their constraints. We study three different approaches to other
players’ constraints, and show that they exhibit completely different
equilibrium behaviors. Further, we study a general class of stochastic
games with partial information, and focus on the case where the players
are indifferent to whether the constraints of other players hold.

I. INTRODUCTION

Games with constraints have long been used for modeling and
studying non-cooperative control in various areas [9], [11], [13].
Various models exist for constrained games; the simplest being one
with orthogonal constraints, where the strategies of the players are
restricted independently of each other [15]. A second model of
interest is the model of Common Coupled Constraints (CCC) [15],
[14], in which all players have a common convex non-orthogonal
multi-strategy space. This model can be viewed as constraints that
are common to all users. A unilateral deviation of a player from some
feasible multi-strategy (one that satisfies the constraints) to another
strategy that is feasible for that player, does not result, therefore,
in the violation of constraints of other users. CCC have often been
used in networking problems, where capacity constraints of links are
naturally common. We study CCC in Section III.

In General Constrained Games (GCG) [8] the constraints are not
necessarily common to all users. Therefore, if a single player deviates
from a multi-strategy that is feasible for all players to another strategy
that is feasible for the deviating player, the new multi-strategy need
not be feasible for other users.

We argue that, in addition to the players’ constraints, it is important
to indicate the goal of each player with respect to the other players’
constraints: does a player wish to prevent the constraints of another
player to hold, or is the player indifferent to whether or not they hold.
For example, when there are two players, and only one player, say,
player 2 (P2), has constraints, the strategic behavior of P2 depends
on the goals of player 1 (P1). If P1’s primary goal is to prevent
P2 to satisfy P2’s constraints whenever possible, P2 must be very
careful in choosing his strategy. If, on the other hand, P1’s primary
goal is to maximize his own payoffs, P2 has more strategies available.
We show that qualitative aspects of the game differ when the players’
attitudes towards the other players’ constraints vary. We then provide,
in Section V-B, a general equilibrium existence result for stochastic
games in which the players are indifferent towards the other players’
constraints.

II. THE MODEL

Consider games with N players. The set of strategies available
to each player i is Si (which may be finite or infinite). Set
S = ×N

i=1Si, and for every x = (xi)
N
i=1 ∈ S set x−i =

(x1, . . . , xi−1, xi+1, . . . , xN ), for every i. Given a multi-strategy of
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the other players, x−i, the constraints allow player i to choose a strat-
egy from the constrained strategy set Si(x−i) ⊆ Si. A multi-strategy
x = (xi)

N
i=1 is feasible if xi ∈ Si(x−i) for every player i. The

payoff1 of player i is described by a function ui : S → IR∪{±∞},
such that ui(x) ∈ IR for every feasible multi-strategy x. Thus, the
payoff is defined even if the constraints are violated, but in this
case the payoff may be infinite. These games are called General
Constrained Games (GCG), since the constraints of one player may
be different from those of other players. A feasible multi-strategy x
is an equilibrium if ui(x) ≥ ui(x

′
i, x−i), for every player i, and for

every strategy x′i ∈ Si(x−i).

Example II.1. Power control in a cellular network
There are N mobile terminals, each of which has to send a transmis-
sion to a base station. Time is slotted, and at each time slot only one
transmission can be successful. The strategic choice of each mobile i
is the transmission power Pi that the mobile uses. The received power
of mobile i is given by hiPi, where hi is the channel gain, and it
is assumed to be constant. At each time slot, the transmission of the
mobile that maximizes the received power is successful. The goal
of each mobile i is to minimize the transmission power Pi, subject
to the constraint that its minimum expected throughput (which is the
probability of a successful transmission) is at least some given bound.
This is a GCG, since the success probability of a mobile depends on
the actions of all other mobiles.

Dynamic version: Consider a dynamic situation, in which from
time to time each mobile has to send transmissions to the base station,
and the channel gains are not constant, but rather each one follows a
Markov chain; that is, (hi(t))i form N independent Markov chains,
where hi(t) is the gain of mobile’s i channel at time t. Assume also
that there is a finite set of available power levels. Each mobile i knows
at time t the number of transmissions waiting in the player’s queue
and the player’s gain hi(t) at that time, but is unaware of the status of
the other mobiles; all the player knows is the joint distribution of the
number of transmissions they have to send and the joint distribution
of their channel gains. The strategic choice of each mobile at every
time slot t is its transmission power Pi(t) at that time slot, and the
received power from mobile i is the product hi(t)Pi(t). We may then
consider the game where mobile i minimizes his own average power
subject to his average expected throughput being at least some given
bound. Alternative objectives will be discussed in Section V-B.

III. GAMES WITH COMMON COUPLED CONSTRAINTS

The game has Common Coupled Constraints (CCC) if, for every
multi-strategy x = (xk)N

k=1 and every pair of players i and j, xi ∈
Si(x−i) ⇐⇒ xj ∈ Sj(x−j). Thus, in games with CCC, for every
multi-strategy, the constraints of one player are satisfied if and only
if the constraints of all players are satisfied.

A zero-sum game is a two-player game in which u1 + u2 = 0. In
this case we denote the payoff function of player 1 by U ; that is, u1 =
U and u2 = −U . The upper value is infy∈S2 supx∈S1(y) U(x, y),
and the lower value is supx∈S1

infy∈S2(x) U(x, y). The game has a
value if the upper value and the lower value are the same.

1At present we do not require that the payoff functions or the functions
x−i 7→ Si(x−i) be measurable. When we state our results, we will indicate
which conditions these functions should satisfy.
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A feasible multi-strategy (x∗, y∗) is a constrained saddle point if

U(x∗, y∗) = sup
x∈S1(y∗)

U(x, y∗) = inf
y∈S2(x∗)

U(x∗, y).

We call U(x∗, y∗) the saddle point payoff. In zero-sum games, the
concepts of equilibrium and saddle point coincide. In unconstrained
(finite) matrix games, as well as in (finite) matrix games with
orthogonal constraints, a saddle point in mixed strategies always
exists, and the saddle point payoff is the value of the game. Moreover,
if (x1, y1) and (x2, y2) are two saddle points, then (x1, y2) and
(x2, y1) are also saddle points. More generally, the following holds
for zero-sum games (e.g., [7, p. 126]):

Lemma III.1. (Minmax Theorem)
Let S1 and S2 be convex subsets of linear topological spaces, where
S2 is compact. Consider a function U : S1 × S2 → IR such that
– for each x ∈ S1, y → U(x, y) is convex and lower semi-
continuous; and
– for each y ∈ S2, x → U(x, y) is concave.
Then there exists some y∗ ∈ S2 such that

inf
y∈S2

sup
x∈S1

U(x, y) = sup
x∈S1

U(x, y∗) = sup
x∈S1

inf
y∈S2

U(x, y).

We conclude that under the conditions of the lemma, if S1 is
compact as well then a saddle point exists. As we will see below,
when the constraints are non-orthogonal the situation is completely
different.

The following assumption will hold throughout the sequel.
Assumption A: For every x ∈ S1 and for every y ∈ S2 the sets
S1(y) and S2(x) are nonempty.

In the context of games with CCC, this assumption is without loss
of generality. Indeed, if, e.g., S1(y) = ∅, P2 cannot use the strategy
y, since the constraints will be violated whatever P1 plays. Therefore,
such strategies can be deleted from P2’s strategy set.
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Fig. 1. Zero-sum game with coupled constraints

Example III.1. Matrix games.
In matrix games, the set of strategies of the players is the set of
probability distributions over their respective (finite) sets of actions,
the payoff function is multi-linear, and the constraints are multi-linear
as well. Consider the constrained zero-sum matrix game that appears
in Figure 1. The game is defined as follows:
(i) The strategies of P1 and P2 are the probability distributions
written as row vectors: x = (x(T ), x(B)) and y = (y(T ), y(B)),
respectively.
(ii) There are two matrices: U and D. The first corresponds to utilities
and the second to constraints. The entries of U are the numbers given
in the left-hand side of the corresponding boxes of the matrix in
Figure 1. The entries of D correspond to the numbers appearing in
parentheses in the right-hand side of each box in Figure 1.
(iii) P1 wishes to maximize the expected outcome xUyᵀ, and P2
wishes to minimize it. (yᵀ is the transpose of y).
(iv) As in [15], the constraint is common to both players: xDyᵀ ≤ ρ,
where ρ is some constant, taken to be 0 in this example.

Consider the strategy x∗ = (1, 0) of P1 (choose T with probability
1). In order for the constraint to hold, P2 has to play y∗ = (0, 1)
(choose R with probability 1), and the payoff is x∗Uyᵀ

∗ = 1. Since
1 is the maximal payoff we obtain

max
x

min
{y:xDyᵀ≤ρ}

xUyᵀ = U(T, R) = 1.

Next, assume that P2 chooses y∗ = (1, 0) (choose L with
probability 1). To meet the constraint, P1 has to play x∗ = (0, 1)
(choose B with probability 1), and the payoff is x∗Uyᵀ

∗ = −1. Since
−1 is the minimal payoff we obtain

min
y

max
{x:xDyᵀ≤ρ}

xUyᵀ = U(B, L) = −1.

We conclude that the value does not exist. Moreover, we obtain
the surprising unusual inequality

max
x

min
{y:xDyᵀ≤ρ}

xUyᵀ > min
y

max
{x:xDyᵀ≤ρ}

xUyᵀ. (1)

Observe that the two multi-strategies x∗ = (1, 0), y∗ = (0, 1)
and x∗ = (0, 1), y∗ = (1, 0) are constrained saddle points, that
yield different payoffs. In addition, x∗ = (1, 0), y∗ = (1, 0) and
x∗ = (0, 1), y∗ = (0, 1) are not saddle points (the first one is not
even feasible).

Example III.2. Networking games: parallel links. Consider a
network with two parallel links connecting a source and a destination.
Player i has a total demand φi, and has to decide how to split his
demand between the two links. The strategy of player i is given by
xi = (xi

1, x
i
2), where xi

` is the amount of flow that player i sends
over link `. The capacity of link ` is C` units, and the cost per unit
flow of link ` is f`(x`), where x` = x1

` + x2
` is the total flow on the

link.
Consider an example with two players, f1 = 0, f2(x`) = x`,

C1 = 5, C2 = 10, φ1 = φ2 = 3. Then the average cost for P1
is given by J(x) = x1

2(x
1
2 + x2

2). We assume that P1 wishes to
minimize this cost and P2 wants to maximize it. P2 can be viewed
as an intruder who wishes to degrade the performance of P1.

If P1 plays first, then P1 has a dominant strategy of shipping all
his demands through link 1: x1

1 = 3, x1
2 = 0, and, independently of

the strategy of P2, J(x) = 0, so that

min
x1

max
{x2:(x1,x2) is feasible}

J(x) = 0.

Similarly, if P2 plays first, P2 has the dominant strategy of sending
all his flow through link 1. We then get

max
x2

min
{x1:(x1,x2) is feasible}

J(x) = 1.

Thus, again we obtain the surprising inequality:

min
x1

max
{x2:(x1,x2) is feasible}

J(x) < max
x2

min
{x1:(x1,x2) is feasible}

J(x).

In this example there is a continuum of constrained saddle points:
each multi-strategy x that satisfies x1

1 + x2
1 = 3 is a saddle point.

Moreover, each saddle point yields a different payoff.

We now show that the surprising phenomenon that was exhibited
in Examples III.1 and III.2 is common in games with common
constraints.

We define the unrestricted game to be the one in which the
constraints are relaxed in a way that the coupling between the
constraints on each player is removed. The set of strategies of player
1 and 2 are then S1 and S2, respectively.
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Theorem III.1. Consider a zero-sum game with CCC, and assume
that in the unrestricted game the value exists (see Lemma III.1):

sup
x∈S1

inf
y∈S2

U(x, y) = inf
y∈S2

sup
x∈S1

U(x, y). (2)

Then the original constrained game satisfies

sup
x∈S1

inf
y∈S2(x)

U(x, y) ≥ inf
y∈S2

sup
x∈S1(y)

U(x, y). (3)

Proof. Let v be the value of the unrestricted game:

v := sup
x∈S1

inf
y∈S2

U(x, y) = inf
y∈S2

sup
x∈S1

U(x, y).

For every y ∈ S2 one has S1(y) ⊆ S1, and therefore
supx∈S1(y) U(x, y) ≤ supx∈S1

U(x, y). Hence

inf
y∈S2

sup
x∈S1(y)

U(x, y) ≤ inf
y∈S2

sup
x∈S1

U(x, y) = v.

By symmetry we obtain: v ≤ supx∈S1
infy∈S2(x) U(x, y). Combin-

ing the two equations yields Eq. (3).

Remark III.1. (i) In zero-sum games with CCC, the maximization
and minimization by players 1 and 2 respectively are restricted to
feasible multi-strategies. The upper and lower values that appear in
Eq. (3) are both taken over the feasible multi-strategies. This is in
spite of the fact that in the left-hand side, the maximization of P1 is
over all S1; P2 takes care that the constraints of P1 are satisfied. A
symmetric argument holds for the right-hand side.
(ii) Eq. (3) holds also in constrained games without CCC. But it
no longer has a useful interpretation, since (a) the lower value in
the left-hand side is no longer restricted to multi-strategies that are
feasible for P1, and (b) the upper value (in the right-hand side) is
no longer restricted to multi-strategies that are feasible for P2.
(iii) The inequality infy∈S2 supx∈S1

U(x, y) ≥
supx∈S1

infy∈S2 U(x, y), which represents the situation when
no constraints are present, always holds. As Theorem III.1 states, in
games with constraints in which the second mover must fulfill the
constraints, the reverse inequality holds. This result is similar to the
first mover advantage that is well recognized in economic theory.
As we will see later, when the first mover has to play a strategy that
ensures that the constraints are satisfied whatever the other player
plays, this phenomenon no longer exists.

IV. AGGRESSIVE ATTITUDE TO ADVERSARY’S CONSTRAINTS

In this section we study zero-sum games with coupled constraints,
in which each player’s main goal is to prevent the other player from
satisfying his constraints. We call this situation an “aggressive attitude
to the adversary’s constraints”. (We assume however that whenever
possible, a player will not violate his own constraints in order to
prevent the constraints of the other player from being satisfied.)

The max-min value corresponds to the situation in which P1 moves
first. Since the main goal of P2 is to prevent P1 from satisfying
the constraints, P1 must choose a strategy that guarantees that the
constraints are satisfied, whatever P2 plays. Let G1 = {x : x ∈
S1(y), ∀y ∈ S2} be the set of those strategies of P1. Similarly,
let G2 = {y : y ∈ S2(x), ∀x ∈ S1} be the set of strategies of
P2 that ensure that the constraints are satisfied, whatever P1 plays.
The max-min value is given by supx∈G1

infy∈S2(x) U(x, y), while
the min-max value is given by infy∈G2 supx∈S1(y) U(x, y).

We assume the following throughout the rest of the section.
Assumption B: G1 and G2 are nonempty sets.

As we will now show, in this setup the inequality in (2) in Theorem
III.1 is reversed.

Theorem IV.1. Consider a zero-sum game with GCG. Suppose that
the value of the game in which each player i is restricted to strategies

in Gi exists. When both players have an aggressive attitude to the
adversary’s constraints, then

sup
x∈G1

inf
y∈S2(x)

U(x, y) ≤ inf
y∈G2

sup
x∈S1(y)

U(x, y). (4)

Remark IV.1. The reason that the inequality here is reversed is that
a player P who plays first must be very cautious – that player must
play a strategy in G1 or to the adversary’s constraints, neither the
value nor a saddle point may exist. In section V-B we show that if
the players are indifferent to other players’ constraints, an equilibrium
always exists (and therefore in particular a saddle point in zero-sum
games always exists).

Example IV.1. Consider the constrained game given in Figure 2. We
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Fig. 2. Zero-sum game with
constraints on player 2’s strate-
gies
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Fig. 3. Zero-sum constrained
game with two saddle points

assume that player 1 is not constrained, so that G1 = S1, whereas the
constraints of player 2 are multi-linear: S2(x) = {y : xDyᵀ ≤ ρ},
where ρ = 1/2 is a constant.

We first show that the value need not exist. The set G2, which
contains all the strategies of P2 that guarantee that P2 meets the
constraints no matter what P1 does, is the singleton {(1/2, 1/2)}
(that is, the actions L and R have the same probability of being
played). This implies that infy∈G2 supx∈S1

U(x, y) = 1 is obtained
when P1 uses the action B with probability 1. On the other hand,
supx∈S1

infy∈S2(x) U(x, y) = 3/4. Indeed, P1 can get approxi-
mately 3/4 by playing (1/2 + ε, 1/2 − ε) where ε is a small
positive number: the best response of P2 is (1/2, 1/2), and the
payoff is 3/4 − ε/2. To see that P1 cannot guarantee more than
3/4, observe that if P1 plays (x(T ), x(B)), then, if x(T ) ≤ 1/2 the
best response of P2 is L, which yields payoff x(T ) ≤ 1/2, whereas,
if x(T ) ≥ 1/2, by playing (1/2, 1/2) P2 ensures that the payoff is
1− x(T )/2 ≤ 3/4.

We conclude that in this example,

sup
x∈G1

inf
y∈S2(x)

U(x, y) < inf
y∈G2

sup
x∈S1

U(x, y),

and the value does not exist.
We now argue that in this game a saddle point does not exist either.

As mentioned above, G2 = {(1/2, 1/2)}, hence the only strategy of
P2 that can be part of a saddle point is y∗ = (1/2, 1/2). However,
P1’s best reply to y∗ is B, and P2’s best reply to B is L and not y∗.

Though in general a saddle point need not exist, there are zero-
sum games in which both players have an aggressive attitude to their
adversary’s constraints that do possess a saddle point, for example, a
game in which the payoff function is constant. One may verify that,
in Example III.1, if ρ = 0 then (T,R) is a saddle point.

Unlike games with CCC, when the players have an aggressive
attitude towards the adversary’s constraints, the payoff in all saddle
points (if there are several saddle points) is the same.

Theorem IV.2. Consider a zero-sum game with GCG, and assume
that both players have aggressive attitude towards the other player’s
constraints. If (x1, y1) and (x2, y2) are two constrained saddle



4

points, then U(x1, y1) = U(x2, y2), and both (x1, y2) and (x2, y1)
are saddle points.

Proof: Since (x1, y1) and (x2, y2) are saddle points, one has
x1, x2 ∈ G1 and y1, y2 ∈ G2. In particular, both (x1, y2) and (x2, y1)
are feasible. Moreover,

U(x1, y1) = inf
y∈S2(x1)

U(x1, y), U(x2, y2) = sup
x∈S1

U(x, y2).

Since y2 ∈ G2 ⊆ S2(x1),

U(x1, y1) = inf
y∈S2(x1)

U(x1, y) ≤ U(x1, y2) ≤ U(x2, y2).

By symmetry, we obtain U(x1, y1) ≥ U(x2, y2), so that U(x1, y1) =
U(x1, y2) = U(x2, y2). This implies

U(x1, y2) = U(x1, y1) = inf
y∈S2(x1)

U(x1, y)

and U(x1, y2) = U(x2, y2) = sup
x∈S1(y2)

U(x, y2),

so that (x1, y2) is a saddle point. An analogous argument shows that
(x2, y1) is a saddle point.

V. INDIFFERENCE TO OPPONENTS’ CONSTRAINTS

We now assume that a player is not ready to suffer a loss in order to
prevent the constraints of another player to hold. We call this behavior
“indifference to opponents constraints”. We first consider zero sum
games, and provide a few illuminating examples. We then study
non-zero sum stochastic games, and provide a general equilibrium
existence result.

A. Zero-sum games

Example III.1 (continued) Consider first the matrix game in Figure
1, and interpret it as a game with a constraint only on P2, where P1
is indifferent to whether the constraints of P2 are satisfied or not.
Since T is a dominant strategy for P1, the game has a saddle point
(which is (T,R)).
Example IV.1 (continued) Consider the game in Figure 2. Suppose
that P1 is not constrained: S1(y) = S1 for every y, and P2’s
constraints are defined with ρ = 1/2:

S2(x) = {y = (y(L), y(R)): x(T )y(L) + x(B)y(R) ≤ 1/2}.

This gives

S2(x) =





{y = (y(L), y(R)): y(L) ≤ 1/2} if x(T ) > 1/2,
{y = (y(L), y(R)): y(L) ≥ 1/2} if x(T ) < 1/2,
{(1/2, 1/2)} if x(R) = 1/2.

Suppose that both players are indifferent to each other constraints.
The unique equilibrium of the unconstrained game is x(T ) = 2/3,
y(L) = 2/3, which is not feasible. The best response for both players
is given in Figure 4. The figure shows that a saddle point does not
exist.

Example V.1. Consider the matrix game that appears in Figure 3,
with ρ = 0. Both (T,R) and (B,L) are constrained saddle points, and
the two saddle point payoffs differ. Moreover, (T,L) and (B,R) are
not feasible, and in particular not constrained saddle points.

Matrix games are a special case of the general model we study
in the next section, and therefore, as we show below, have a mixed
equilibrium provided that the Slater condition holds.

Fig. 4. The best responses in Example IV.1.

B. Stochastic non zero-sum constrained games

Below we provide an existence result for N -player stochastic
games, which includes, as a special case, the static games discussed
in previous sections (with the restriction that here we study games
with finite action sets).

Related work. Zero-sum constrained stochastic games have been
studied in the context where one player controls the transitions [5],
[12], and in a setting where each player controls an independent
Markov chain [10]. Non-zero-sum stochastic games with general
constraints have been studied in [2], [3], [6]. Stochastic games with
constraints on one side, where a player has an aggressive relation to
his adversary’s constraint, have been studied in [16].

Below, ∆(X) is the space of probability measures over the finite
set X . Consider the following N -players game with a finite state
space Σ. Each player i has:

• a finite set Ai of actions. Set A :=
∏N

i=1 Ai;
• a finite set Mi of signals. Set M :=

∏N
i=1 Mi;

• a stage payoff function ui : Σ×A×M → IR. Thus, the stage
payoff depends on the current state, on the action profile, and
on the signal profile;

• a discount factor λi ∈ (0, 1);
• K constraint functions dk

i : Σ×A×M → IR, for k = 1, ..., K;
• for each constraint k = 1, 2, ..., K, a bound ρk

i ∈ IR and a
discount factor µk

i ∈ (0, 1).

For every stage n ∈ IN there is a transition function qn : Σ × A ×
(M × Σ × A)n−1 → ∆(M × Σ). Thus, given past play, nature
chooses (i) the next state, and (ii) a signal profile, possibly in a
correlated manner.

The game is played as follows. It starts at a given initial
state ζ1 ∈ Σ. At each stage n ≥ 1, the following happens:
(i) Each player i chooses an action an

i . Set an = (an
i )N

i=1.
(ii) Nature chooses (mn, ζn+1) ∈ Σ × M according to q(• |
ζ1, a1, m1, ζ2, a2, m2, . . . , ζn, an). (iii) Each player i is told of
mn

i , but is not told of the current state, the actions of the other
players, or the payoffs. The signal, however, may contain some of
this information.

The information available to player i at the beginning of stage
n is the sequence of signals that the player has received so far:
m1

i , ..., m
n−1
i , and the sequence of actions that the player has chosen,

a1
i , . . . , a

n−1
1 . Hence, a behavior strategy of player i is a function:

si :

( ⋃
n∈IN

(Ai ×M)n−1

)
→ ∆(Ai).

The discounted expected payoff of player i under a multi-strategy
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s = (si)
N
i=1 is2

γi(s) := IEζ,s

[ ∑
n∈IN

(1− λi)
n−1ui(ζ

n, an, mn)

]
. (5)

The discounted expected kth constraint of player i under the multi-
strategy s is given by

δk
i (s) := IEζ,s

[ ∑
n∈IN

(1− µk
i )n−1dk

i (ζn, an, mn)

]
. (6)

A strategy ri for player i is feasible given a multi-strategy s−i

if δk
i (s−i, ri) ≤ ρk

i . A multi-strategy s = (si)i is feasible if si is
feasible for player i given s−i, for every i. A feasible multi-strategy
s is an equilibrium if γi(s) ≥ γi(s

′
i, s−i), for every player i and

every strategy s′i of player i which is feasible given s−i. Observe
that a player’s total payoff and total constraint are the discounted
sum of stage payoffs and stage constraints. Such a case naturally
occurs when the players have budget constraints, and the expenses
of a player are the discounted sum of the player’s stage expenses.
Below we argue that our existence result holds in a model in which
the total payoff and/or the total constraint are the (undiscounted) sum
of stage payoffs or stage constraints, provided these summations are
uniformly bounded.

We assume the following Slater condition holds.
Assumption C: For every multi-strategy s, and every player i, there
is a strategy ri that strictly satisfies the constraints dk

i (ri, s−i) <
ρk

i , k = 1, . . . , K.

Theorem V.1. Under Assumption C, in every discounted stochastic
game with discounted constraints, an equilibrium exists.3

It is worth noting that Example IV.1 that we have just studied
is not a counter-example to Theorem V.1, since it does not satisfy
Assumption C. Indeed, if x(T ) = x(B) = 1/2, player 2 has no
strategy y that satisfies that xDyᵀ < 1/2.

Proof: A pure strategy of player i is a function

si :

( ⋃
n∈IN

(Ai ×M)n−1

)
→ Ai.

By Kuhn’s theorem, every behavior strategy is equivalent to a mixture
of pure strategies. Denote by ΣP

i the space of pure strategies of player
i, and by ΣB

i = ∆(ΣP
i ) the space of his behavior strategies. ΣP

i is
a compact space in the product topology. Therefore ΣB

i is compact
in the weak topology, and it is convex.

Moreover, for every i and every multi-strategy s, the functions
ri 7→ γi(s−i, ri) and ri 7→ δk

i (s−i, ri) are linear (and in particular
continuous and quasi-concave).

For every player i and for every multi-strategy s, define

Fi(s) =
{

ri ∈ ΣB
i : δk

i (s−i, ri) ≤ ρk
i , ∀k

}
.

By Assumption C, this set is nonempty. Since ri 7→ δk
i (s−i, ri) is

linear, this set is convex and compact.

2Discounted games are an appropriate model when the interaction lasts
many (possibly unknown number of) periods, and profits in the near future
count more than profits in the far future. It is also appropriate when the players
maximize the total sum of their stage payoffs (or minimize the total sum of
their stage costs), and at every stage there is a fixed probability that the game
terminates. We later argue that one can relax the termination condition.

3In our model each player observes a private signal. This implies that there
is no common state variable, as the private history of the players differ.
Moreover, without the knowledge of the strategies of the other players, a
player cannot form a belief over the set of private histories that the other
players observed. Therefore, previous work on constrained stochastic games
[2], [6] cannot be applied here.

One can verify that the set-valued function s 7→ Fi(s) is upper-
semi-continuous. We prove that Assumption C ensures that it is
lower-semi-continuous as well. Let s be arbitrary, and ri ∈ Fi(s).
Let (s(l))l∈IN be a sequence of strategies that converge to s. We
argue that there is a sequence (ri(l))l∈IR that converges to r such
that ri(l) ∈ s(l) for each l. Indeed, by assumption C there is ε > 0,
and a strategy ŝi, such that δk

i (s−i, ŝi) ≤ ρk
i − ε, for every k. Since

δk
i is continuous,

lim
l→∞

δk
i (s−i(l), ri) = δk

i (s−i, ri) ≤ ρk
i ,

lim
l→∞

δk
i (s−i(l), ŝi) = δk

i (s−i, ŝi) ≤ ρk
i − ε.

Since δk
i is multi-linear, there is a sequence of numbers in the unit

interval (α(l))l∈IN that converges to 1 such that

δk
i (s−i(l), α(l)ri + (1− α(l))ŝi)

= α(l)δk
i (s−i(l), ri) + (1− α(l))δk

i (s−i(l), ŝi) ≤ ρk
i , ∀k.

The sequence of strategies (s∗i (l))l∈IN that is defined by s∗i (l) :=
α(l)ri +(1−α(l))ŝi converges to ri, and for each l one has s∗i (l) ∈
Fi(s(l)). Therefore Fi is lower-semi-continuous.

Define Gi(s) = argmaxri∈Fi(s)
γi(s−i, ri). Then Gi(s) ⊆ ΣB

i is
convex and compact, and it has nonempty values. Since the set-valued
function s 7→ Fi(s) is both upper-semi-continuous and lower-semi-
continuous, it follows that the set-valued function s 7→ ×N

i=1Gi(s)
is upper-semi-continuous.

By Glicksberg’s generalization of Kakutani’s fixed point theorem,
there is a fixed point s∗ = (s∗i )

N
i=1: s∗i ∈ Gi(s

∗), for every i. The
multi-strategy s∗ is our desired equilibrium.

We notice that in Examples III.1 and III.2 all the saddle points
are equilibria. If in Example III.1 we set ρ = 1, then there is a
continuum of equilibria: each pair (x, y) such that xDyᵀ = 1 is an
equilibrium.

Total expected payoff. The proof of Theorem V.1 relies, in addition
to Assumption C, on the following two properties of the model:

• The strategy spaces of the players are compact and convex sets
in a metric space.

• The functions ri 7→ γi(s−i, ri), and ri 7→ δk
i (s−i, ri) are

continuous and quasi-concave.

A different model in which these properties are satisfied, and
therefore the conclusion of Theorem V.1 holds, is the following.
Suppose there is a “terminal state” ζ0 ∈ Σ, such that the game
terminates once this state is reached. That is, the game stops at time
τ , where τ := min{n ≥ 1: ζn = ζ0}. Define the total expected
payoff by

γ̂i(s) := IEζ,s

[
τ∑

n=1

ui(ζ
n, an, mn)

]
,

and the total expected k’th constraint by

δ̂k
i (s) := IEζ,s

[
τ∑

n=1

dk
i (ζn, an, mn)

]
.

Since the summation in the definition of the functions γi and δk
i

may be infinite, these functions may be undefined for some multi-
strategies. A simple sufficient conditions that ensures that these
functions are well defined is that IEζ,s[τ ] < ∞ for every pure
stationary multi-strategy in the problem with full information [12].
For other sufficient conditions see [1].

The functions γ̂i and δ̂k
i are multi-linear, and in particular con-

tinuous and quasi-concave. It follows that in a stochastic game in
which the total reward of each player i is either γi or γ̂i, and his
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total k’th constraint is either δk
i or δ̂k

i , an equilibrium exists (provided
that γ̂i(s) and δ̂i(s) are well defined for every i and every s).

As an application example, consider the dynamic setting in Exam-
ple II.1. Assume that the gains hi(t) are unknown to the mobiles.
Periodically, the base station broadcasts a pilot signal with a known
power; the power of the pilot received by mobile i is a private
signal that allows the mobile to estimate the current value of hi(t).
Assume also that each mobile has a battery with a finite amount of
energy. After each transmission, the remaining energy depletes by the
amount of energy used for transmission. The objective of a mobile
is to maximize the total expected lifetime of its battery, subject to a
constraint on the success probability at each slot (which should be
larger than some constant). This problem can be modeled within the
framework of this section.

VI. CONCLUSIONS

We have considered games with various types of constraints, and
observed phenomena that are new with respect to unconstrained
games. We have shown that for each constraint on a given player
i, one has to define how the other players value the violation of the
constraint of player i. In zero-sum games, depending on the attitude
to other’s constraints, the value need not exist, and surprisingly the
max-min can be larger than the min-max. Other variations in which
different players have different attitudes to other players’ constraints
can also be studied. We finally studied non-zero-sum stochastic games
with constraints, and identified conditions for the existence of an
equilibrium.
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