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Abstract—We consider a dense, ad hoc wireless network con-
fined to a small region, such that direct communication is possible
between any pair of nodes. The physical communication model is
that a receiver decodes the signal from a single transmitter, while
treating all other signals as interference. Data packets are sent be-
tween source-destination pairs by multihop relaying. We assume
that nodes self-organise into a multihop network such that all hops
are of length  meters, where  is a design parameter. There is a
contention based multiaccess scheme, and it is assumed that every
node always has data to send, either originated from it or a transit
packet (saturation assumption). In this scenario, we seek to maxi-
mize a measure of the transport capacity of the network (measured
in bit-meters per second) over power controls (in a fading environ-
ment) and over the hop distance  , subject to an average power
constraint.
We first argue that for a dense collection of nodes confined to a

small region, single cell operation is efficient for single user decod-
ing transceivers. Then, operating the dense ad hoc network (de-
scribed above) as a single cell, we study the optimal hop length and
power control that maximizes the transport capacity for a given
network power constraint. More specifically, for a fading channel
and for a fixed transmission time strategy (akin to the IEEE 802.11
TXOP), we find that there exists an intrinsic aggregate bit rate
(  !" bits per second, depending on the contentionmechanism and
the channel fading characteristics) carried by the network, when
operating at the optimal hop length and power control. The op-
timal transport capacity is of the form   !"! "!"#    !" with   !"
scaling as "!"   , where "!" is the available time average transmit
power and " is the path loss exponent. Under certain conditions
on the fading distribution, we then provide a simple characterisa-
tion of the optimal operating point.

Index Terms—MultihopRelaying, Optimal Power Control, Self-
Organisation, Fixed Transmission Time

I. INTRODUCTION

We consider a scenario in which there is a large number of

stationary nodes (e.g., hundreds of nodes) confined to a small

area (e.g., spatial diameter 30m), and organised in to a multi-

hop ad hoc wireless network. Source-destination pairs are cho-

sen randomly and we assume that the traffic in the network is

homogeneous. We assume that data packets are sent between

source-destination pairs by multihop relaying with single user

decoding and forwarding of packets, i.e., we assume that sig-

nals received from nodes other than the intended transmitter

are treated as interference. A distributed multiaccess contention This research was supported by the Indo-French Centre for the Promotion
of Advanced Research (IFCPAR), under project 2900-IT

scheme is used in order to schedule transmissions; for example,

the CSMA/CA based distributed coordination function (DCF)

of the IEEE 802.11 standard for wireless local area networks

(WLANs). We assume that all nodes can decode all the con-

tention control transmissions (i.e., there are no hidden nodes),

and only one successful transmission takes place at any time in

the network. In this sense we say that we are dealing with a sin-

gle cell scenario. Thus our work in this paper can be viewed as

an extension of the performance analysis presented in [2] and

extended in [1]. We further assume that, during the exchange

of contention control packets, pairs of communicating nodes

are able to estimate the channel fading between themselves and

are thus able to perform power control per transmission.

There is a natural tradeoff between using high power and

long hop lengths (single hop direct transmission between

the source-destination pair), versus using low power and

shorter hop lengths (multihop communication using interme-

diate nodes), with the latter necessitating more packets to be

transported in the network. The objective of the present paper is

to study optimal routing, in terms of the hop length, and optimal

power control for a fading channel, when a single cell network

(such as that studied in [1]) is used in a multihop mode. Our

objective is to maximise a certain measure of network transport

capacity (measured in bit-meters per second; see Section IV),

subject to a network power constraint. A network power con-

straint determines, to a first order, the lifetime of the network.

Situations and considerations such as those that we study

could arise in a dense ad hoc sensor network. Ad hoc sen-

sor networks are now being studied as possible replacements

for wired measurement networks in large factories. For exam-

ple, a distillation column in a chemical plant could be equipped

with pressure and temperature sensors and valve actuators. The

sensors monitor the system and communicate the pressure and

temperature values to a central controller which in turn actu-

ates the valves to operate the column at the desired operating

point. Direct communication between the sensors and actuators

is also a possibility. Such installations could involve hundreds

of devices, organised into a single cell ad hoc wireless network

because of the physical proximity of the nodes. There would be

many flows within the network and there would be multihop-

ping. We wish to address the question of optimal organisation

of such an ad hoc network so as to maximise its transport capac-

ity subject to a power constraint. The power constraint relates



to the network life-time and would depend on the application.

In a factory situation, it is possible that power could be sup-

plied to the devices, hence large power would be available. In

certain emergencies, “transient” sensor networks could be de-

ployed for situation management; we use the term “transient”

as these networks are supposed to exist for only several minutes

or hours, and the devices could be disposable. Such networks

need to have large throughputs, but, being transient networks,

the power constraint could again be loose. On the other hand

sensor networks deployed for monitoring some phenomenon in

a remote area would have to work with very small amounts of

power, while sacrificing transport capacity. Our formulation

aims at providing insights into optimal network operation in a

range of such scenarios.

A. Preview of Contributions

We motivate the definition of the transport capacity of the

network as the product of the aggregate throughput (in bits per

second) and the hop distance (in meters). For random spatio-

temporal fading, we seek the power control and the hop dis-

tance that jointly optimise the transport capacity, subject to a

network average power constraint. For a fixed data transmis-

sion time strategy (discussed in Section III-B), we show that

the optimal power allocation function has a water pouring form

(Section V-A). At the optimal operating point (power control

and hop distance) the network throughput (  !", in bits per sec-
ond) is shown to be a fixed quantity, depending only on the con-

tention mechanism and fading model, but independent of the

network power constraint (Section V-B). Further, we show that

the optimal transport capacity is of the form   !"! "!"#    !",
with   !" scaling as "!"   , where "!" is the available time average
transmission power, and " is the power law path loss exponent

(Theorem V.2). Finally, we provide a condition on the fading

density that leads to a simple characterisation of the optimal

hop distance (Section V-C).

II. MOTIVATION FOR SINGLE CELL OPERATION

In this context, the seminal paper by Gupta and Kumar [4]

would suggest that each node should communicate with neigh-

bours as close as possible while maintaining network connec-

tivity. This maximises network transport capacity (in bit-metres

per second), while minimising network average power. It has

been observed by Dousse and Thiran [5], however, that if, un-

like [4], the practical model of bounded received power for fi-

nite transmitter power is used, then the increasing interference

with an increasing density of simultaneous transmitters is not

consistent with a minimum SINR requirement at each receiver.

The following discussion motivates a single cell operation in

our framework, i.e., only one transmission exists in the network

at any time.

Consider a dense planar wireless network with # nodes in a

square of fixed area$. Let%!## denote the spatial reuse in the
network (number of simultaneous transmissions) with &!%!###
bounding the transmitter-receiver separation. Let ! !%!### be
the transmitter power per node (with a network average power"! , as in Section V) and let ' be the receiver noise power.

The maximum SINR achievable per link in such a network

(with single user decoding receivers) is bounded, i.e., ()'* !#  $ %!! &"'!!""! , where )$ %! denotes the interference at a node due
to spatial reuse. Using the finite (and fixed) area assumption, we

bound the minimum interference by any simultaneous transmis-

sion by
#  $ %!!  #(! . Hence, ()'* ! #  $ %!!&" $ %!!$!# !!!"""!#$"  # . The

aggregate capacity (bits/slot) achieved in such a network is now

bounded above by+!%!### $% %!## &'( �) * ! !%!###' * !%!##" )##  $ %!! #(! # "#
Clearly, +!%!### is uniformly bounded for any %!##. Since&!%!### ! #+$, we see that the transport capacity (in bit-

metres per second, see Section IV) achieved in the network,

bounded above by +!%!###&!%!###, is also finite, indepen-

dent of the number of nodes and power "! . Also, we ex-

pect that the transmitter-receiver separation (bounded above by&!%!###) would decrease to , as %!## increases to $ (finite

area assumption). Hence, &-.$ %!"# +!%!###&!%!### % ,.
This implies that there exists an optimal %!##, ) - %!## -$, which maximises the transport capacity in the network, i.e.,

the optimum spatial reuse is finite. However, we note that, with-

out spatial reuse, a simple TDMA scheme with direct trans-

missions between the source and the destination with transmit

power # "! (and hence, an average power "! ), achieves &'(!##
order transport capacity. As seen above, with spatial reuse, the

system becomes interference limited, and hence, becomes inef-

ficient both for large # and for large "! . Thus, we conclude that
single cell operation (as defined earlier) is efficient for dense

networks with single user decoding. In the context of sen-

sor networks, &'(!## scaling has been achieved with maximum
node power constraints as well, using cooperative transmission

techniques ([6]).

With the above motivation, in this work, we study the trans-

port capacity of power constrained dense ad hoc networks op-

erated as a single cell. More recently, El Gamal and Mam-

men [7] have shown that, if the transceiver energy at each hop

is factored in, then the operating regime studied in [4] is nei-

ther energy efficient nor delay optimal. Fewer hops between

the transmitter and receiver (and hence, less spatial reuse) re-

duce the energy consumption and lead to a better throughput-

delay tradeoff. While optimal operation of the network might

suggest using some spatial reuse (finite, as discussed above),

coordinating simultaneous transmissions (in a distributed fash-

ion), in a constrained area, is extremely difficult and the asso-

ciated time, energy and synchronisation overheads have to be

accounted for. In view of the above discussions, in this paper,

we assume that the multiple access control (MAC) is such that

only one transmitter-receiver pair communicate at any time in

the network.

A. Outline of the Paper

In Section III we describe the systemmodel and in Section IV

we motivate the objective. We study the transport capacity of

a single cell multihop wireless network, operating in the fixed

transmission time mode, in Section V. Section VI concludes



the paper and discusses future work. The proofs of all lemmas

and theorems, if not in the paper, are provided in [10].

III. THE NETWORK MODEL

There is a dense collection of immobile nodes that use mul-

tiaccess multihop radio communication with single user decod-

ing and packet forwarding to transport packets between various

source-destination pairs. All nodes use the same contention mechanism with the

same parameters (e.g., all nodes use IEEE 802.11 DCF

with the same back-off parameters). We assume that nodes send control packets (such as

RTS/CTS in IEEE 802.11) with a constant power (i.e.,

power control is not used for the control packets) during

contention, and these control packets are decodable by ev-

ery node in the network. As in IEEE 802.11, this can be

done by using a low rate, robust modulation scheme and by

restricting the diameter of the network. This is the “single

cell” assumption, also used in [1], and implies that there

can be only one successful ongoing transmission at any

time. During the control packet exchange, each transmitter

learns about the channel “gain” to its intended receiver,

and decides upon the power level that is used to transmit

its data packet. For example, in IEEE 802.11, the chan-

nel gain to the intended receiver could be estimated during

the RTS/CTS control packet exchange. Such channel in-

formation can then be used by the transmitter to do power

control. In our paper, we assume that such channel esti-

mation and power control is possible on a transmission-

by-transmission basis. In this work, we model only an average power constraint

and not a peak power constraint. We assume that the traffic is homogeneous in the network

and all the nodes have data to send at all times; these could

be locally generated packets or transit packets (saturation

assumption).

A. Channel Model: Path Loss, Fading and Transmission Rate

The channel gain between a transmitter-receiver pair for a

hop is a function of the hop length and the multipath fading

“gain” ( ). Based on our dense network and traffic homogene-
ity assumption, we further make the following assumption. The nodes self-organise so that all hops are of length !,

i.e., a one hop transmission always traverses a distance of! meters. This hop distance, !, will be one of our optimi-
sation variables.

The path loss for a hop distance ! is given by    , where " is the
path loss exponent, chosen depending on the propagation char-

acteristics of the environment (see, for e.g., [8]). This variation

of path loss with ! holds for ! # !!, the far field reference dis-
tance; we will assume that this inequality holds (! # !!), and
will justify this assumption in the course of the analysis below

(see Theorem V.2).

We assume that for each transmitter-receiver pair, the chan-

nel gain due to multipath fading may change from transmission

to transmission, but remains constant over any packet transmis-

sion duration. Since successive transmissions can take place

between randomly selected pairs of nodes (as per the outcome

of the distributed contention mechanism) we are actually mod-

eling a spatio-temporal fading process. We assume that this

fading process is stationary in space and time with some given

marginal distribution $ . Let the cumulative distribution of$ be %  ! (with a p.d.f. &  !), which by our assumption

of spatio-temporal stationarity of fading is the same for all

transmitter-receiver pairs and for all transmissions. We assume

a flat and slow fading channel with additive white Gaussian

noise of power '". And, (
, the channel coherence time ap-
plicable to all the links in the network, upper bounds the time

taken to complete any data transmission in the network. We

assume that$ and (
 are independent of the hop distance !.
When a node transmits to another node at a distance ! (in

the transmitting antenna’s far field), using transmitter power ) ,
with channel power gain due to fading,  , then we assume that
the transmission rate given by Shannon’s formula is achieved

over the transmission burst; i.e., the transmission rate is given

by * " + #$% & '  ),'"!"!
where+ is the signal bandwidth and , is a constant account-

ing for any fixed power gains between the transmitter and the

receiver. Note that this requires that the transmitter has avail-

able several coding schemes of different rates, one of which is

chosen for each channel state and power level.

B. Fixed Transmission Time Strategy

We focus on a fixed transmission time scheme, where all data

transmissions are of equal duration, independent of the bit rate

achieved over the wireless link. This implies that the amount

of data that a transmitter sends during a transmission opportu-

nity is proportional to the achieved physical link rate. Let -
(. (
, the channel coherence time), be the data transmission
time. Upon a successful control packet exchange, the chan-

nel (between the transmitter, that “won” the contention, and its

intended receiver) is reserved for a duration of - seconds in-

dependent of the channel state  . This is akin to the “TxOP”
(transmission opportunity)mechanism in the IEEE 802.11 stan-

dard. Thus, when the power allocated during the channel state is )   !, and )   ! # (, then data transmission occupies

the channel for the duration - seconds, sending *  !- bits

across the channel, where *  ! " + #$%"& ' # #$$$%&   #
. If)   ! " (, we assume that the channel is left idle for the next- seconds.

The optimality of a fixed transmission time scheme, for

throughput, as compared to a fixed packet length scheme, can

be formally established (see [10]), but, due to lack of space,

we only provide an intuition here. When using fixed packet

lengths, a transmitter may be forced to send the entire packet

even if the channel is poor, thus taking longer time and more

power. On the other hand, in a fixed transmission time scheme,

we send more data when the channel is good and limit our in-

efficiency when the channel is poor.



IV. MULTIHOP TRANSPORT CAPACITY

Let  denote the common hop length and  !  "!! a power

allocation policy, with !  "! denoting the transmit power used
when the channel state is ". We take a simple model for the

random access channel contention process. The channel goes

through successive contention periods. Each period can be ei-

ther an idle slot, or a collision period, or a successful trans-

mission with probabilities # $ #
 and #" respectively. Under the
node saturation assumption, the aggregate bit rate carried by

the system, "#   !  "!!$  !, for the hop distance  and power

allocation  !  "!!, is given by (see [2], or [1])"#   !  "!!$  ! #$ #"    % "! %& "! !# ' & #
'
 & #" '$ & ' ! (1)

where % "! $ ( "!' , and, ' $ '
 and '$ are the average time
overheads associated with an idle slot, collision and data trans-

mission. For e.g., in IEEE 802.11 with the RTS/CTS mecha-

nism being used, a collision takes a fixed time independent of

the data transmission rate. We note that # $ #"$ #
$ ' $ '$$ and '

depend only on the parameters of the distributed contention

mechanism (MAC protocol), and not on any of the decision

variables that we consider.

With "#   !  "!!$  ! defined as in (1), we consider"#   !  "!!$  ! "  as our measure of transport capacity of

the network. This measure can be motivated in several ways."#   !  "!!$  ! is the rate at which bits are transmitted by the
network nodes. When transmitted successfully, each bit tra-

verses a distance  . Hence, "#   !  "!!$  ! "  is the rate

of spatial progress of the flow of bits in the network (in bit-

metres per second). Viewed alternatively, it is the weighted

average of the end-to-end flow throughput with respect to the

distance traversed. Suppose that a flow ) covers a distance* with % & hops (assumed to be an integer for this argu-

ment). Let + "#   !  "!!$  ! be the fraction of throughput of
the network that belongs to flow ). Then, ' !! "!( ")#"*&#" # is the

end-to-end throughput for flow ) and ' !! "!( ")#"*&#" # " * $+ "#   !  "!!$  !" is the end-to-end flow throughput for flow) in bit-metres per second. Summing over all the flows, we have"#   !  "!!$  ! "  , the aggregate end-to-flow throughput in

bit-metres per second.

With the above motivation, our aim in this paper is to max-

imise the quantity "#   !  "!!$  ! "  over the hop distance  
and over the power control  !  "!!, subject to a network aver-
age power constraint, '! . We use a network power constraint

that accounts for the energy used in data transmission as well

as the energy overheads associated with communication.

V. OPTIMISING THE TRANSPORT CAPACITY

For a given  !  "!! and  , and the corresponding throughput"#   !  "!!$  !, the transport capacity in bit-meters per second,
which we will denote by ,  !  "!!$  !, is given by,  !  "!!$  ! #$ "#   !  "!!$  !"  
Maximizing , #$ #! involves optimizing over  , as well as !  "!!. However, we observe that, it would not be possible

to vary  with fading, as routes cannot vary at the fading time
scale. Hence, we propose to optimize first over  !  "!! for a
given  , and then optimize over  , i.e., we seek to solve the

following problem,()*& ()*!!( ")#"$#"!( ")#"#$ %(",  !  "!!$  ! (2)

where the network average power, $  !  "!!!, is given by,$  !  "!!! #$# - & #
-
 & #" -$ & '    !  "! %& "! !# ' & #
'
 & #" '$ & ' ! (3)- $ -
 and -$ correspond to the energy overheads associ-

ated with an idle period, collision and successful transmission.

Thus,- denotes the total energy expended in the network over
an idle slot, -
 denotes the total average energy expended by
the colliding nodes, as well as the idle energy of the idle nodes,

and -$ denotes the average energy expended in the success-

ful contention negotiation between the successful transmitter-

receiver pair, the receive energy at the receiver (in the radio and

in the packet processor), and the idle energy expended by all

the other nodes over the time '$ & ' .
For a given  and power allocation  !  "!!, define the time

average transmission power, '!+  !  "!!$  !, and the time aver-
age overhead power, '!$ (which does not depend on  !  "!! or ), as '!+  !  "!!$  ! #$ #"    !  "! %& "! !'# ' & #
'
 & #" '$ & ' !'!$ #$ # - & #
-
 & #"-$# ' & #
'
 & #" '$ & ' !
Then the network power constraint can be rewritten as'!+  !  "!!$  ! % '! & '!$
where the right hand side does not depend on  !  "!! or  .
Observe that '!+ #$ '! & '!$! is the time average transmission
power constraint.

A. Optimization over  !  "!! for a fixed  
Consider the optimization problem()*!!( ")#"$#"!( ")#"#$ %(",  !  "!!$  ! (4)

The denominators of "#  #$ #! in (1) and of $ in (3) are in-

dependent of  and the power control  !  "!!. Thus, with fixed, the optimization problem simplifies to maximizing   % "! %& "! or,!   +,-". & !  "!"./& , # %& "!
subject to the average power contraint,!   !  "! %& "! % '!+%



where     is given by,    !" #!!"! $ !
"
 $ !##"$ $ " %%!#"    
Notice that     is also independent of   ##%! or $ and is the

average transmit power constraint averaged only over the trans-

mission periods.

Without a peak power constraint, this is a well-known prob-

lem whose optimal solution has the water-pouring form (see

[3]). The optimal power allocation function   ##%! is given by ##% "  &% " $%& #' !!
where % is obtained from the power constraint equation" ! ! "#$ (##% ##%$# "     
The optimal power allocation is a nonrandomized policy, where

a node transmits with power  ##% every time the channel is in
state # (whenever  ##% ) '), or leaves the channel idle for #
such that  ##% " '.
B. Optimization over $
By defining (##% !" & "'#(# , the problem of maximising the

throughput over power controls, for a fixed $, becomes)*+" !$ ,-. & $ '#& (##%! (##%$#
subject to " !$ (##%(##%$# #     $%
Denoting by /# %&% (# $ the optimal value of this problem, the

problem of optimisation over the hop-length now becomes)*+( $$ /%     $% & (5)

Theorem V.1: In the problem defined by (5), the objective        !! !, when viewed as a function of  , is continuously
differentiable. Further, when the channel fading random vari-

able,! , has a finite mean ("!!" #!), then

1) #$%! !         !! ! & ' and,
2) if in addition, $ " (, "" % " ""# is continuously differ-

entiable and  !! & '" & ( " "" # for large ', then,#$%! !         !! ! & ',
Proof: The proofs of continuous differentiability of         !! !, 1) and 2) are provided in [10].

Remarks V.1:

1) Under the conditions proposed in TheoremV.1, it follows

that         !! ! is bounded over  # )')!" and achieves
its maximum in  # !')!".

2) When the objective function (5) is unbounded, the opti-

mal solution occurs at  & ! (from the continuity re-

sults).

3) We note that, in practice, $ " (.
Theorem V.2: The following hold for the problem in (5),

1) Without the constraint  &  !, the optimum hop distance #$% scales as ! **%"" !! .
2) There is a value **%"#$% such that, for **%" & **%"#$%, #$% &  !, and hence the optimal solution obeys the scal-

ing shown in 1).

3) For **%" & **%"#$%, the optimum power control $* !'"% is
of the water pouring form and scales as **%".

4) For **%" & **%"#$%, the optimal transport capacity scales as! **%"" !! .
Proof:

1) Let  #$% be optimal for **%" & '. We claim that, for + &', + !!  #$% is optimal for the power constraint + **%". For
suppose this was not so, it would mean that there exists & ' such that$+ !!  #$%  $ + **%"!+ !!  #$%"&%% #   $+ **%" & %
or, equivalently,$ #$%  $ **%" &#$%%% # +# !!   $ **%"!+# !!  "&%
which contradicts the hypothesis that  #$% is optimal for**%".

2) Using the path loss model  !! , we see that for  #  !, the
received power is scaled more than * , due to the factor !! , and an  &! factor in ,, i.e., the model over-estimates
the received power and the transport capacity. Hence, the

achieved transport capacity for  #  ! is definitely less
than        !! !. The result now follows from the scaling

result in 1).

3) It follows from 1) that, if **%" scales by a factor +, then
the optimum  scales by + !! , so that, at the optimum,     !!
is unchanged. Hence the optimal $+!'"% is unchanged,
which means that $* !'"% must scale by +. The water

pouring form is evident.

4) Again, by 1) and 2), if **%" scales by a factor +, then the
optimum  scales by + !! , so that, at the optimum,     !! is

unchanged. Thus       !! ! is unchanged, and the optimal
transport capacity scales as the optimum  , i.e., by the

factor + !! .
Remarks V.2:

The above theorem yields the following observations for the

fixed transmission time model.

1) As an illustration, with $ & ,, in order to double the op-
timal transport capacity, we need to use (& times the **%".
This would result in a considerable reduction in network

lifetime, assuming the same battery energy.
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Fig. 1. Plot of        ! (linear scale) vs.  (log scale) for a channel with
two fading states ! " !!. The fading gains are ! ! "## and !! ! ##$, with
probabilities $!! ! ###" ! "!$!" . The function has 3 non-trivial stationary
points.

2) We observe that as the power constraint     scales, the op-
timal bit rate carried in the network, !  !  "! !, stays con-
stant, but the optimal transport capacity increases since

the optimal hop length increases. Further, because of the

way the optimal power control and the optimal hop length

scale together, the nodes transmit at the same physical bit

rate in each fading state; see the proof of Theorem V.2

part 3).

C. Characterisation of the Optimal !
By the results in Theorem V.1 we can conclude that the opti-

mal solution of the maximisation in (5) lies in the set of points

for which the derivative of !  !  !  "! ! is zero. For fixed     ,
define ""!# $%  !  "! . Differentiating !  !"""!##, we obtain,
(see Appendix A)��! "! !"""!## % !"""!## ! $""!#%"""!##
where %""# is the Lagrange multiplier for the optimisation

problem that yields !"""!##. Since ! appears only via ""!#,
we can view the right hand side as a function of ". We are in-

terested in the zeros of the above expression. Clearly, " % & is
a solution. This solution corresponds to the case ! %"; How-

ever, we are interested only in solutions of ! # "&&"#, and
hence, we seek positive solutions of " of !""#! $"%""# % &.
Remarks V.3: The above analysis has been done for a contin-

uously distributed fading random variable' . The analysis can

be done for a discrete valued fading distribution as well, and

we provide this analysis in [10]. The following example then

illustrates that, in general, the function !""# ! $"%""# % &
can have multiple solutions. Consider a fading distribution that

takes two values: (! % '&& and (" % &)(, with probabilities*#! % &)&' % '! *#" . Figure 1 plots !  ! " !" # for the sys-
tem with $ % ). Notice that there are 3 stationary points other
than the trivial solution ! % " (which is not shown in the fig-

ure). Also, the maximising solution is not the first stationary

point (the stationary point close to &). If, on the other hand,*#! % &)&&' % '! *#" , we again have ) stationary points, but
the optimal solution now is the first stationary point.

More generally, and still pursuing the discrete case, let$ de-

note the set of fading states when the fading random variable is

discrete with a finite number of values; %$% denotes the cardi-
nality of$.
Theorem V.3: There are at most *%$%!' stationary points of! !"""!## in & + ! +".

Proof: See [10] for the related analysis and the proof of

this theorem.

We conclude from the above discussion that it is difficult to

characterise the optimal solution when there are multiple sta-

tionary points. Hence we seek conditions for a unique positive

stationary point, which must then be the maximising solution.

In Appendix A, we have shown that the equation characterising

the stationary points, !""#! $"%""# % &, can be rewritten as$ !# "+,-",#! $", ! '##%"," - %%,& !, % & (6)

for -".# $% * $"%& ! $"& , the density of the random variable&'$" . Notice that " does not appear in this expression. The solu-
tion directly yields the Lagarange multiplier of the throughput

maximisation problem for the optimal value of hop length. The

following theorem guarantees the existence of atmost one sta-

tionary point of (6).

Theorem V.4: If for any %! / %" / &, (" ""# #(" "!# # is a strictly

monotonic decreasing function of ,, then the objective function! !  !  "! ! has at most one stationary point !)* & & + !)* +".

Proof: The proof follows from Lemmas A.1, and A.2 in

Appendix.

Corollary V.1: If ' has an exponential distribution and $ &*, then the objective in the optimisation problem of (5) has a

unique stationary point !)* # "&&"#, which achieves the max-
imum.

Proof: *"(# is of the form 01!+# and the monotonic-

ity hypothesis in Theorem V.4 holds for *"(#. Also, from

Theorem V.1, we see that +./""# !  !  !  "! ! % & and+./""# ! !  !  "! ! % &.
Remarks V.4: 1) Hence, for $ & *, for the Rayleigh fad-

ing model there exists a unique stationary point which

corresponds to the optimal operating point.

2) For     /     $%&, and for the conditions in Theorem V.1

and V.4, let ")* denote the unique stationary point of

(6). Then define !"")* # % 0)* . It follows from The-

orem V.2 that the optimal transport capacity takes the

form
  !  ,$% ! !! 0)* , where0)* depends on *"(# and the

MAC parameters but not on   (or    ).
3) Figure 2 numerically illustrates our results for Rayleigh

fading and $ % *. Scaling     
by 1 scales the transport

capacity from *)) to 1)2, i.e., by 1 !! % '1 and similarly
for scaling     by 3.

The uniqueness results guarantees that a distributed imple-

mentation of the optimization problem, if it converges, shall

converge to the unique stationary point, which is the optimal

solution.
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Fig. 2. Plot of         !  (linear scale) vs.  (   ! ! ) (log scale) for a fading

channel (with exponential distribution). We consider ! power levels ( "!" " # "!" 
and $ "!" ) and #  %. The function has a unique optimum  #$"& #$"  '$%(
for all the ! cases.

VI. CONCLUSION

In this paper we have studied a problem of jointly optimal

power control and self-organisation in a single cell, dense, ad

hoc multihop wireless network. The self-organisation is in

terms of the hop distance used when relaying packets between

source-destination pairs.

We formulated the problem as one of maximising the trans-

port capacity of the network subject to an average power con-

straint. We showed that, for a fixed transmission time scheme,

there corresponds an intrinsic aggregate packet carrying capac-

ity at which the network operates at the optimal operating point,

independent of the average power constraint. We also obtained

the scaling law relating the optimal hop distance to the power

constraint, and hence relating the optimal transport capacity to

the power constraint (see Theorem V.2). Because of the way

the power control and the optimal hop length scale, the optimal

physical bit rate in each fading state is invariant with the power

constraint. In Theorem V.4 we provide a characterisation of

the optimal hop distance in cases in which the fading density

satisfies a certain monotonicity condition.

One motivation for our work is the optimal operation of sen-

sor networks. If a sensor network is supplied with external

power, or if the network is not required to have a long life-

time, then the value of the power constraint,   , can be large,

and a long hop distance will be used, yielding a large transport

capacity. On the other hand, if the sensor network runs on bat-

teries and needs to have a long life-time then   would be small,

yielding a small hop length. In both cases the optimal aggregate

bit rate carried by the network would be the same.

Future work on this topic will include developing a dis-

tributed algorithm for nodes to adapt themselves towards the

optimal operating point.
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APPENDIX

A. Stationary Points of ! !"""!##
Recall that we defined ""!# $%   ! ! . Further, !"""!## was

defined by!"""!## $% &'(  ! )*+!, - #$%"  "$#!" " &"$#!$ (7)

where the maximum is over all power controls ! "$#" satisfy-
ing the constraint   !  "$#!" &"$#!$ # ""!# (8)

For ease of notation, let us use the substitution ' $% #$% . Write("'# $% ("#$% # %  #$$! and )"'# $% &#% &# $ % # . Note that)"$# is the probability density of the random variable* $% #'% .
Then, equations (7) and (8) can be rewritten as!""# % &'(   ! )*+", - '("'##)"'#!'
and   ! ("'#)"'#!' # "
This optimisation problem is one of maximising a convex func-

tional of !("'#", subject to a linear constraint. The optimal so-
lution of the problem has water-pouring form, and the optimal

solution is given by,("'# % ! ,+""# % ,'"%
where +""# is obtained from  (#)$! ,+""# % ,'" )"'#!' % "
Further, the derivative of the optimum value !""#, w.r.t. ", i.e.,�&#)$�) % +""# (see Aubin [9]).
Let us now reintroduce the dependence on !, and consider

the problem of optimising !  !"""!## over !. Differentiating! !"""!## w.r.t. !, we get,��! "! !"""!## % !"""!## - ! ��!!"""!##% !"""!## - ! �!�" """!##  �""!#�!% !"""!## - ! !!"""!##  %-   +!!"%'% !"""!## % -""!#!!"""!##



where   ! " #$ � !!"�! . Substituting   ! " $ !! ", we have,��# !# ! !#"" $  ! !#""  $ !#"!! !#"" (9)

The stationary points of #! ! !#"" are now obtained by equat-

ing the right hand side of (9) to zero. Note that since # appears
in this equation only as  !#", we need only study the roots of
the equation  ! " $ !! " $ % (10)

We now proceed to obtain a characterisation of the stationary

points. Substituting the optimal solution in the expression of ! " and !! ", and suppressing the argument  in !! ", we
get,  ! " $  !" &'(!%!" &!%"#% (11)

with ! being given by $  !" # )!  )%$ &!%"#% (12)

Using the substitution ' $ ## , ( $ #" , and defining )!'" $#$ & % #$ &, we get, ! " $  %$ &'(# ('$ )!'"#' (13)

with ( (actually, (! ") being given by $  %$ !(  '" )!'"#' (14)

We note that )!"" is the density of the random variable * #$#& $ ' () .

For a function +!"" of the random variable *, define the oper-
ators  %!"" and !%!"" as %!+!*"" #$ ' %$ +!'")!'"#'' %$ )!'"#'!%!+!*"" #$  %$ +!'")!'"#'
Lemma A.1: The roots of (10) are equivalent to obtaining the

roots of the equation$! ! !!*  )" $ ! ! !&'(!!*"" (15)

with  then being given by $  !" # )!  )%$ &!%"#%
Proof: Using the definitions of  %!"" and !%!"", (13) and

(14) simplify to ! " $ &'(!(""!* # (" !%!&'(!*"" (16) $ ("!* # (" !%!*" (17)

(17) provides the ( (actually (! ") to be substituted in (16). Sub-
stituting for  ! " (from (16)), and for ( (from (17)), into the

right hand side of (9), dividing across by "!* # (", and using
the definition of  %!"", we have,&'(# * !%!*""!* # (" $  %!&'(!*"" $  * !%!*" $ %&'(#  "!* # (" *  %!*"$  %!&'(!*"" $  * !%!*" $ %&'( (#  !%!*" * )$ %!*")* &'(!," !!%&'!*""" $  * !%!*" $ %
Rearranging terms, we get,&'(# * !%!*"!%!*" $* &'( ! %!*"," !!%&'!*""" $  * !%!*" $ %
Denote -% #$ &'( % %!*"," !!%&'!*""&. Then, we have,&'(# * !%!*"!%!*" $* -%  $  * !%!*" $ %
Using (17), we have!%!*" * !%!*" $ !%!*"("!* # (" $  %!*"(
which, with the previous equation, yields&'(# ( %!*"$* -%  $#)  %!*"( $ $ %
Recall that ( is actually (! ". We now find that  appears in the

equation only as (! ". Hence we can view this as an equation

in the variable (!$ #" ". Rearranging terms, we get &'(# %!*"( $* $ %!*"( $  !-%  $"
Exponentiating both sides, and substituting back for -%, yields %!*"( ,"+  !""#! $  %!*"," !!%&'!*"","+
On cancelling  %!*", and transposing terms, we next obtain,"+  !""#! "#! $ ," !!%&'!"! ""
or, ,"+! !!" !! "" $ ," !!%&'!"! ""
Taking &'( on both sides, we have,$ %#*  (( $ $  %#&'(#*( $$



In terms of     !, this is equivalent to    ! ! "" ! "    #$% !" !!
which is the desired result after writing " "  ! .
We next address the question of a unique positive solution

of (15). The following lemma guarantees the existence of a

unique positive solution, when #  !, the density of "#$ , satisfies
a certain monotonicity condition.

Lemma A.2: (15) has at most one positive solution if for any$ % $! % &, %   ! !%  !! ! is a strictly monotone decreasing function
of &.

Proof: Expanding  !   !, (15) becomes, " ! "  $' ! '!( '!)' ! " ! " #$% $'!( '!)' " &
Rewriting the equation in terms of #  !, we have," ! "    $' ! '! ! #$% $'!! ''! #  ''! )' " &
In this last equation change the variable to & (" $', yielding"  "  #$% &! !   & ! '!!$!&! #  $&! )& " & (18)

Define 
 &! ("  #$% &! !   & ! '!!  & and +! &! (" # #!&$.
Thus, we are interested in a positive $ that solves"  " 
 &!+! &!)& " &
Observe that #)*& " 
 &! " !" and 
 '! " &. Further, there
exists a unique &! such that 
 &! # & for all & # & # &! and
 &! $ & for all &! # & # '. Since +! &! $ & for all & and $,
we have 
 &!+! &! # & for all & # & # &! and 
 &!+! &! $ &
for all &! # & # '.
Consider $ , $! such that $ % $! % &. By hypothesis,'  #&$' ! #&$ is a strictly monotone decreasing function of &. Hence,
#&$'  #&$
#&$' ! #&$ is also a strictly monotone decreasing function of &.

We then have,% & " %
 &!%+!  &!)&% & " %
 &!%+!! &!)& " % & " %
 &!% '  #&$' ! #&$+!! &!)&% & " %
 &!%+!! &!)&% +!  &!!+!! &!! ,
And, %  & 
 &!+!  &!)&%  & 
 &!+!! &!)& " %  & 
 &! '  #&$' ! #&$+!! &!)&%  & 
 &!+!! &!)&- +!  &!!+!! &!!

Hence, % & " %
 &!%+!  &!)&% & " %
 &!%+!! &!)& % %  & 
 &!+!  &!)&%  & 
 &!+!! &!)&
i.e., % & " %
 &!%+!  &!)&%  & 
 &!+!  &!)& % % & " %
 &!%+!! &!)&%  & 
 &!+!! &!)&
i.e., the ratio of the negative area of the integral to the positive

area of the integral is a strictly monotonic function of $. Hence,
as $ decreases, the integral can cross & at most once, or, there

exists at most one (non-trivial) solution for (18).


