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ABSTRACT

We consider the constrained optimization of a �nite�state� �nite action Markov chain	 In the

adaptive problem� the transition probabilities are assumed to be unknown� and no prior distribution

on their values is given	 We consider constrained optimization problems in terms of several cost

criteria which are asymptotic in nature	 For these criteria we show that it is possible to achieve

the same optimal cost as in the non�adaptive case	

We �rst formulate a constrained optimization problem under each of the cost criteria and

establish the existence of optimal stationary policies	

Since the adaptive problem is inherently non�stationary� we suggest a class of 
Asymptotically

Stationary� �AS
 policies� and show that� under each of the cost criteria� the costs of an AS policy

depend only on it�s limiting behavior	 This property implies that there exist optimal AS policies	

A method for generating adaptive policies is then suggested� which leads to strongly consistent

estimators for the unknown transition probabilities	 A way to guarantee that these policies are also

optimal is to couple them with the adaptive algorithms of ���	 This leads to optimal policies for

each of the adaptive constrained optimization problems under discussion	
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�� INTRODUCTION�

The problem of adaptive control of Markov chains has received considerable attention in recent

years� see the survey paper by Kumar ����� Hernandez�Lerma ���� and references therein	 In the

setup considered there� the transition probabilities of a Markov chain are assumed to depend on

some parameter� and the 
true� parameter value is not known	 One then tries to devise a control

policy which minimizes a given cost functional� using on�line estimates of the parameter	 In most

of the existing work� the expected average cost is considered	 Recently Sch�al ���� introduced an

asymptotic discounted cost criterion	 Adaptive optimal policies with respect to the latter criterion

were investigated by Sch�al ����� and a variation of this criterion was considered by Hernandez�

Lerma and Marcus ����������	 Concerning the Bayesian approach to this problem� see Van Hee ����

and references therein	

Since we adopt a non�Bayesian framework it is natural� in order to formulate an adaptive

problem� to consider only those cost criteria which do not depend on the �nite�time behavior of the

underlying controlled Markov chain	 For such criteria� it may be possible to continuously improve

the policy� using on�line parameter estimates� so as to obtain the same �optimal
 performance as

in the case where all parameters are known	 We consider the well�known Expected Average cost

and Sample Average �or ergodic
 cost� the Sch�al discounted cost� and introduce a new Asymptotic

Discounted cost	 In Section � we de�ne these cost functionals and formulate a constrained and an

adaptive constrained optimization problem for each cost structure	 For example� the Average�Cost

constrained problem amounts to minimizing an average cost� subject to inequality constraints in

terms of other average cost functionals	

Adaptive policies for constrained problems were �rst introduced by Makowski and Shwartz

������� in the context of the expected average cost and under a single constraint	 They rely on the

Lagrange approach of Beutler and Ross ���� which is limited to a single constraint	 The general

constrained adaptive control problem of a �nite state chain under the expected average cost is

considered by Altman and Shwartz ���	 Using the 
Action Time�Sharing� �ATS
 policies� they

obtain optimal adaptive policies	 In Section � we recall the de�nition of these policies and show

that they are useful for the sample average cost as well	 We obtain some useful characterizations

of the average and the expected average costs	

The adaptive control paradigm is roughly the following	 At each decision epoch�

�i
 Compute some estimate of the unknown parameters�
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�ii
 Use these values to compute a control policy�

�iii
 Apply the policy of �ii
 and repeat	

The 
certainty equivalence� approach to the computation in step �ii
 is to treat the values

provided in �i
 as the correct parameter values� and compute the corresponding optimal �stationary


control	 There are several drawbacks to this approach� �rst� the complexity of computing optimal

policies is very high ����	 In the constrained case� the optimal policy may be a discontinuous

function of the parameter ���	 A more fundamental consideration is the following	 Clearly a poor

estimate may result in a bad choice of control	 Such a choice may in turn suppress estimation� say

by using only such control actions which do not provide new information	 The use of a stationary

policy may cause the algorithm to 
get stuck� at an incorrect value of the parameter� hence also

at a suboptimal policy	

We propose the following approach to the adaptive control problem	 We �rst show that the

costs depend only on limiting properties of the control	 This makes it possible to apply 
forced

choices� of controls which are not optimal� but enhance estimation �see e	g	 ����
	 Consistent

estimation is guaranteed by making these choices su�ciently often	 We show that it is possible

to achieve consistent estimation without changing the limiting properties	 Finally� we choose a

convenient implementation of a policy� incorporating the 
forced choices� and possessing the correct

limiting behavior to ensure optimality	

Section � treats the average cost and serves as a template for the development in this paper�

and below we describe the analogue development in Section � vs	 Sections ���	 In Section � we �rst

recapitulate the existence of optimal stationary policies for the �non�adaptive
 constrained average

cost problem	 It is well known that this problem can be solved via a linear program �see e	g	 �����

which extends the linear program used for the non constrained case �� p	 ���
	 This suggests a

method for the computation in �ii
	 These steps are followed for the other cost criteria in Section

�� where we show that there exists an optimal stationary policy for the constrained �non�adaptive


problem� and in Section � where we show that the Linear Program of ���� applies also for the

asymptotic discounted cost	 An extension of another Linear Program �� p	 ��� is shown to provide

a method of computing stationary policies for the constrained non�adaptive problem under the

discounted and the Sch�al cost criteria	 Unlike the non�constrained case� the optimal policies for

the discounted problems depend on the initial state	

Section � proceeds to discuss the ATS class of policies �which includes the stationary policies


for which limits of the conditional frequencies ��	�
 exist	 We then show �following ���
 that average
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costs depend only on these limits	 This provides conditions under which forced choices do not a�ect

the �nal average cost	 ATS policies are not applicable to the other cost criteria� since the other

costs are not determined by these limits	 The key concept for these cost criteria is the new and

more re�ned limits introduced in ��	�
	 Policies possessing these limits are called �Asymptotically

Stationary� �AS
	 In Section � we show that under those policies there exists a limiting distribution

for the state of the process� which coincides with the invariant distribution under the corresponding

stationary policy	 Moreover� for each of the cost criteria� the cost of an AS policy equals the cost

under the corresponding stationary policy	 It follows that AS policies possess the asymptotic

properties needed to achieve optimality� while retaining the �exibility which is needed to obtain

consistent estimation� they are thus useful for the adaptive problems	

In Section � we construct an optimal adaptive policy	 To do so� we �rst show how to compute

estimates of the unknown transitions from the history of previous states and actions	 We then show

how to compute the �sub�optimal
 stationary policy that is used till the next estimate is obtained	

This stationary policy incorporates 
forced choices� of actions for the sake of enhancing estimation	

We �nally show that this scheme yields an AS policy that is optimal for the constrained adaptive

problem	

The model�

Let fXtg
�
t�� be the discrete time state process� de�ned on the �nite state space X � f�� ���� Jg�

the action At at time t takes values in the �nite action space A� X and A are equipped with the

corresponding discrete topologies �X and �A	 Without loss of generality� we assume that in any

state x all actions in A are available	 We use the space of paths fXtg and fAtg as the canonical

sample space �� equipped with the Borel ���eld B obtained by standard product topology	

Denote by Ht  � �X�� A��X�� A�� ����Xt� At
 the history of the process up to time t	 If the state

at time t is x and action a is applied� then for any history ht�� � �X�A
t of states and actions

till time t� �� the next state will be y with probability

Pxay  � P �Xt�� � y j Xt � x�At � a
 � P �Xt�� � y j Ht�� � ht���Xt � x�At � a
 ����


A policy u in the policy space U is a sequence u � fu�� u�� ���g� where ut is applied at time epoch t�

and ut�� j Ht���Xt
 is a conditional distribution over A	 Each policy u and initial state x induce

a probability measure Pu
x on f��Bg	 The corresponding expectation operator is denoted by Eu

x 	

A Markov policy u � U�M
 is characterized by the dependence of ut�� j Ht���Xt
 on Xt only�

i	e	 for each t� ut�� j Ht���Xt
 � !ut�� j Xt
	 A stationary policy g � U�S
 is characterized by a
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single conditional distribution p
g
�jx  � u�� j Xt � x
 over A� under g� Xt becomes a Markov chain

with stationary transition probabilities� given by P g
xy  �

P
a�A pgajxPxay	 The class of stationary

deterministic policies U�SD
 is a subclass of U�S
 and� with some abuse of notation� every g �

U�SD
 is identi�ed with a mapping g  X� A� so that pg�jx � �g�x���
 is concentrated at the point

g�x
 in A for each x	

Call a policy u Asymptotically Stationary �AS
 if for some stationary policy g�

lim
t��

Pu
x �At � ajXt � y�Ht��
 � pgajy Pu

x a�s� ����


for any initial state x and all a and y	 Any policy satisfying ��	�
 is denoted by "g� and G�g
 is the

set of such policies corresponding to g	 The class of policies such that ��	�
 holds for some g in

U�S
 is denoted by U�AS
	

Throughout the paper we impose the following assumption 

A�� Under any stationary deterministic policy g � U�SD
� the process Xt is a regular Markov

chain�

�i	e	 there are no transient states� and the state space consists of a single ergodic non�cyclic class
	

Under this assumption� each stationary policy g induces a unique stationary steady state

distribution on X� denoted by �g��
	

The following notation is used below �a�x
 is the Kronecker delta function	 For an arbitrary

set B� ��B� is the indicator function of the set and cl B the closure of B	 For any function �  B � IR

we de�ne ���y
  � maxf�����y
g� y � B	 When B is a �nite set we denote by jBj the cardinality

of the set �i	e	 the number of elements in B
 and by S�B
 the �jBj � �
�dimensional real simplex�

i	e	 S�B
  � fq  q � IRjBj�
PjBj

i�� qi � �� � � qi � � for all ig	 For vectors D and V in IRK �

the notation D � V stands for Dk � Vk � k � �� �� � � � �K�	 For two matrices 	� P of appropriate

dimensions the notation 	 � P stands for summation over common indices	

�� PROBLEM FORMULATION

Let C�x� u
 and D�x� u
  � fDk�x� u
 � � � k � Kg be cost functions associated with each

policy u and initial state x	 The precise de�nitions of several cost functions of interest are given

below	 The real vector V  � fVk � k � �� ����Kg is held �xed thereafter	 Call a policy u feasible if

Dk�x� u
 � Vk � k � �� �� � � � �K

�



The constrained optimization problem is 

�COP
 Find a feasible v � U that minimizes C�x� u


The unconstrained problem �where K � �
 is denoted by OP	

The adaptive constrained optimization problem ACOP is de�ned as follows	 The values of

the transition probabilities Pxay are unknown� except that assumption A� is known to hold	 The

objective is still to �nd an optimal policy forCOP� but based on the available information� assuming

that no a�priori information about the values of the fPxayg is available	 In choosing the control to

be used at time t� the only available information are the observed values fHt���Xtg	 The paradigm

�i
��iii
 in adaptive control is then to use the observations to obtain information about the values

of fPxayg� leading to computation of an adaptive policy	 The notation Pxay here stands for the

true but unknown values of the transition probabilities� and similarly for the notation P � E and �g	

Let c�x� a
� d�x� a
  � fdk�x� a
 � k � �� ����Kg be real �IRK
 valued instantaneous cost func�

tions� i	e	 costs per state�action pair	 We shall use the following cost functions from X � U to

IR 

The expected average costs 

Cea�x� u
  � lim
t��

�

t# �
Eu

�
tX

s��

c�Xs� As
 j X� � x

�
����a


Dk
ea�x� u
  � lim

t��

�

t# �
Eu

�
tX

s��

dk�Xs� As
 j X� � x

�
k � �� ����K ����b


Let � � 
 � � be a discount factor	 The expected discounted costs 

Ced�x� u
  � Eu

�
�X
t��


tc�Xt� At
 j X� � x

�
����a


Dk
ed�x� u
  � Eu

�
�X
t��


tdk�Xt� At
 j X� � x

�
k � �� ����K ����b


As noted above� in the adaptive case� we would like to obtain the same optimal value of

C�x� u
� despite the lack of information	 Clearly� under the discounted cost criteria we cannot hope

to obtain the same costs as when the fPxayg are known� since the actions taken at each �nite time

t will generally be sub�optimal	 Therefore� the performance in terms of the cost functions Ced and

Ded will be degraded with respect to the case where all parameters are known	 Moreover� since
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we work in the framework of non�Bayesian adaptive control �no prior information is given on the

unknown parameters
� there is no natural way to de�ne optimal adaptive policies with respect to

this cost criterion �see discussion in ���� Section II	�
	 This motivates the following 
asymptotic�

de�nitions� consider the N�stage expected discounted costs 

CN
ed�x� u
  � Eu

�
�X
t�N


t�N c�Xt� At
 j X� � x

�
����a


DN�k
ed �x� u
  � Eu

�
�X
t�N


t�Ndk�Xt� At
 j X� � x

�
k � �� ����K ����b


De�ne the asymptotic expected discounted cost

Caed�x� u
  � lim
N��

CN
ed�x� u
 ����


with similar de�nitions for Dk
aed�x� u
 � k � �� �� � � � �K	

The constrained optimization problems COPea� COPed� COP
N
ed and COPaed are de�ned by using

the appropriate de�nitions of the costs in the general de�nition of COP	 We denote by� e	g	� ACOPea

the adaptive problem that corresponds to COPea� with a similar notation for the other relevant

cost criteria	

Inspired by Sch�al ����� de�ne the asymptotic constrained problem in the sense of Sch�al COPsd

as follows	 Let g � U�S
 be an optimal stationary policy for COPed� we prove the existence of such

a policy in Theorem �	�	 A policy u is feasible for COPsd if

lim
N��

�
DN�k
ed �x� u
� Eu�Dk

ed�XN � g
 j X� � x�
�
� � � k � �� ����K ����a


A policy u is optimal for COPsd if it is feasible and

lim
N��

��CN
ed�x� u
� Eu�Ced�XN � g
 j X� � x�

�� � � ����b


This concept was �rst used by Sch�al ���� for the unconstrained adaptive problem	 The version in

��	�
 is the one used by Hernandez�Lerma� Marcus et al see ���� and references therein	 The reason

we prefer to use the version of ���� is that for this case there exists an optimal stationary policy for

the constrained problem whenever there exists a feasible policy �see Theorem �	�
� whereas under

the de�nition of ���� an optimal policy for the constrained problem may not exist �see Appendix
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In the unconstrained problems treated in �������� the optimal policy is independent of the

initial state� and so Eu
x �Ced�XN � g
� is the minimal cost� given the initial distribution of XN 	 As

is shown in Example �	�� the optimal policy of COPed depends� in general� on the initial state	

Thus� an optimal COPsd policy tries to imitate� in the limit� the behavior of the optimal policy

corresponding to the initial state x	 Consequently� Eu
x �Ced�XN � g
� is not necessarily the minimal

cost� given the initial distribution of XN since g may not be optimal for this 
initial� distribution	

Moreover� it is possible that if u� is an optimal policy for COPsd� then DN�k
ed �x� u�
 � Vk # � for

some x and � � � and for all N 	 In COPaed� in the period � � t � N we attempt to obtain the


initial� distribution Pu�XN j X� � x
 which is best for obtaining good performance from t � N

onwards	 We also require that �in the limit
 the constraints are satis�ed	

Finally� the sample average costs are the random variables� given by

Cav  � lim
t��

�

t# �

tX
s��

c�Xs� As
 ����a


Dk
av  � lim

t��

�

t# �

tX
s��

dk�Xs� As
 � k � �� ����K ����b


A policy u is feasible for COPav if

Dk
av � Vk Pu

x a	s	 � x � X � k � �� �� � � � �K ����a


A policy v is optimal for COPav if it is feasible� and if for every feasible policy u and every constant

M �

Pu
x �Cav �M
 � � implies Cav �M P v

x a	s	 ����b


The main results of this paper can now be stated 

Theorem ���� Under A�� if COPea �resp� COPed� COP
N
ed � COPaed� COPsd or COPav	 is

feasible� then there exists an optimal stationary policy for COPea �resp� COPed� COP
N
ed � COPaed�

COPsd or COPav	�

Proof� The result for COPea is well known ������	 This and the other results are given in Theorems

�	�� �	�� �	�� �	�� �	� and �	� respectively	

Theorem ���� Under A�� if g in U�S
 is optimal for COPea� COPaed� COPsd or COPav then

any "g in G�g
 is also optimal for the respective problem�
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Proof� This claim is established in Theorem �	�	

The computation of optimal stationary policies is discussed in Section �� where a new Linear

Program for COPed and COPsd is obtained	 We show that the well�known Linear Program which

solves COPea also provides an optimal solution for COPav and COPaed	

In Section � we provide a method for modifying an adaptive algorithm so as to obtain strongly

consistent estimation of the transition probabilities	 The modi�ed policy is an AS policy with the

same limits� so that by Theorem �	� this modi�cation does not change its optimality properties	

Explicit optimal adaptive policies can be obtained by using the estimation scheme of Section

�� combined with the methods of ���	

�� AVERAGE COSTS� frequencies and ATS policies�

In this section we investigate the average cost criteria	 For the expected average cost� the

constrained problem has been studied extensively	 In particular� the following Theorem is proved

in ����� ���� or ��� Theorem �	��	

Theorem ���� Assume A�� and that COPea is feasible� Then there exists an optimal stationary

policy for COPea�

The computation of the optimal stationary policy is presented in Section �	�	

Remark� In the multichain case an optimal stationary policy may not exist	 For that case�

Hordijk and Kallenberg ���� provide a method of computing an optimal Markovian policy	 Ross

and Varadarajan ���� have studied a constrained problem that involves minimization of the expected

average cost subject to a single constraint of the sample average type	 They obtain an optimal

stationary policy for the unichain case and ��optimal stationary policies for the multi�chain case	

Since adaptive policies cannot usually be stationary� a larger class of policies is needed for

ACOPea	 It will be convenient to mimic� in some asymptotic sense� the behavior of stationary

policies	 The class of 
Action Time Sharing� �ATS
 policies was introduced in ������
 and was used

to solve ACOPea in ���	 We show in Section �	� that this approach also solves ACOPav 	

The development of ATS policies proceeds through the following steps	 Following Derman �� p	

��� we show that the expected state action frequencies �see de�nitions below
 determine the expected

average cost	 Hordijk and Kallenberg ���� ��� used the expected frequencies in solving COPea	 Then

�



we establish �Lemma �	�
 the measurability of the state�action frequencies ��� Chapter ��
 and show

below that they determine the sample average cost	

Altman and Shwartz ��� extended the analysis of the expected average case to a countable

state space� and introduced a more basic quantity� the conditional frequencies� which determine

the frequencies� and hence the sample average and the expected average costs �see also ��� and

���
	 ATS policies are de�ned through the conditional frequencies	 The analysis in Section � of

the Asymptotically Stationary �AS
 policies which are needed for other cost criteria� also relies on

these results	

���� State�Action Frequencies	

The state action �sa	 frequency fTsa is a random vector fTsa  � � S�X � A
 de�ned by

fTsa�y� a
  � �
T��

PT
r�� �fXr � y�Ar � ag	 The value of fTsa�y� a�

 is the frequency at which the

event of being at state y and choosing action a occurs by time T 	 We de�ne similarly the state

�s	 frequency fTs as the frequency at which the event of being at state y occurs till time T 	 It is a

random vector fTs  � � S�X
 de�ned by fTs �y
  � �
T��

PT
r�� �fXr � yg	

Denote by $fTsa�x� u
 and $fTs �x� u
 the vectors whose components are given respectively by

$fTsa�x� u� y� a
  � Eu�fTsa�y� a
jX� � x�� and $fTs �x� u� y
  � Eu�fTs �y
jX� � x�	 Let $Fsa�x� u
 denote

the set of all accumulation points of $fTsa�x� u
 as T � �� and $Fs�x� u
 the set of accumulation

points of $fTs �x� u
 as T ��	

Similarly� the multifunction Fsa is a mapping from � whose values are subsets of S�X �A
 and

is given by the �random
 set of accumulation points of fTsa as T � �	 The multifunction Fs is a

mapping from � whose values are subsets of S�X
 and is given by the set of accumulation points

of the vectors fTs as T � �	 The multifunction �multivalued random vector
 Fsa is said to be

Borel�measurable ����� Section �� or ���� Appendix D�
 if the set

F��
sa �B�  � f
  Fsa�

 	 B 
� �g � B

for every closed subset B in the standard Borel ���eld on S�X �A
	 The measurability of Fs is

similarly de�ned in terms of Borel subsets of S�X
	 The measurability of Fsa and Fs is discussed in

Lemma �	� below	 Since the sets $Fsa�x� u
 $Fs�x� u
 �Fsa�

 and Fs�


 are all sets of accumulation

points and are all bounded� they are all compact sets �for each 

	

De�ne for any given set of policies U � the set of achievable expected state action frequencies

Lx�U �
  � �u�U �
$Fsa�x� u
	 In particular� the set of all achievable expected frequencies is denoted

by Lx  � �u�U $Fsa�x� u
	

��



The following Lemmas �	���	� establish some basic properties of the state action frequencies

and relate them to the cost achieved by the policies	

Lemma ���� Under A�


�i	 The class of stationary policies is complete� i�e� Lx�U�S

 � Lx for every initial state x�

Moreover� L  � Lx is independent of x�

�ii	 Fsa and Fs are Borel measurable�

�iii	 Under any policy u� Fsa � L�U�S

 Pu
x a�s�

Proof� The �rst claim is proved in Derman ��� pp	 ��� �a generalization to the countable state

and action spaces is obtained in ��� Theorem �	��
	 We prove �ii
 for Fs� as the proof for Fsa is the

same	 Pick any closed subset B in the standard Borel ���eld on S�X
	 Note that

Fs�

 � 	�k�� cl
�
��t�kff

t
s�

g

�
�see e	g	 ���
	 Hence

F��
s �B
 � f
  	�k�� � 	�k��f
  cl

�
��t�kff

t
s�

g

�
	 B 
� �g

Let fBng
�
� be a sequence of open sets containing B� with 	�n��Bn � B	 Since B is closed�

F��
s �B
 � 	�k��f
  	�n��

	
��t�kf

t
s�

	 Bn




� �g � 	�k�� 	

�
n�� �

�
t�kf
  ff ts�

g 	 Bn 
� �g �

Since f ts are clearly �measurable
 random variables� it follows that f
  f ts�

 � Bng � B and hence

F��
s �B
 � B� which establishes �ii
	 In view of �ii
� �iii
 follows from Derman ��� pp	 ���	

���� Costs and frequencies�

We show below that the state�action frequencies �expected frequencies
 determine the cost Cav

�respectively Cea
	 This result obviously applies to Dav and Dea	

Lemma ���� Under A�� for every policy u � U and any instantaneous cost function c�

�i	 there exists some $	 � $Fsa�x� u
 for which the cost Cea�x� u
 obeys

Cea�x� u
 �
X
y

X
a

c�y� a
$	�y� a
 ����


�ii	 there exists some random variable 	� with 	��

 � Fsa�

 for which the cost Cav obeys

Cav �
X
y

X
a

c�y� a
	��y� a
� ����


��



Remark� The main issue in �ii
 is to show that 	� can be chosen so that it is a measurable mapping

from f��Bg to S�X�A
	

Proof� The �rst claim is in Derman ��� pp	 ���	 To prove �ii
� de�ne the function v  S�X�A
 � IR

by v�	
  � c � 	  �
P

x�a c�x� a
	�x� a
	 Then

Cav � lim
t��

�

t # �

tX
s��

c�Xs� As
 � lim
t��

c � f tsa

Since for each 
� any accumulation point of c � f tsa can be expressed as c � 	 with 	�

 � Fsa�

� we

obtain

Cav � sup
��Fsa

c � 	 � max
��Fsa

v�	


where the second equality follows from the compactness �for each 

 of the range of Fsa	 Since

v is continuous and since Fsa is Borel measurable with compact range� it follows from a standard

Measurable Selection Theorem �see ���� Appendix D� or ���� Section ��
 that there exists a random

variable �called a Selector
 	� with 	��

 � Fsa�

 such that v�	�
 � c � 	� � max��Fsa v�	
	

���� Conditional frequencies and ATS policies�

The conditional frequency f tc is a collection ff tc�ajy
� all a� yg� so that the components of the

random vector f tc  � � S�A
J �with J � jXj
 are given by

f tc�ajy
  �

Pt
s�� �fXs � y�As � agPt

s�� �fXs � yg
����


if
Pt

s��fXs � yg � � set f tc�ajy
  � �
jAj 	 This quantity represents the frequency that action a is

used conditioned on state y being visited	

The set of limit points of f tc as t�� is denotes by Fc	 If only one limit exists then it is denoted by

fc	 Lemma �	� below states that the conditional frequencies determine the state�action frequencies

and the expected frequencies� hence they determine the cost	 The conditional frequencies are the

key quantities for the controller� since they can be directly steered to the desired values	 For

instance� if we need to obtain f�ajy
 � ��� for some a� y then one possibility for achieving this is

to use action a every �fth visit to state y	 That this is possible� is a consequence of the following

Lemma� whose proof is available in ��� Lemma �	�� or ��� Corollary �	��	 Note that there is no such

direct way to control the �expected
 state�action frequencies	

��



Lemma ��	� Under A�� for any policy u� each state y � X is visited in�nitely often Pu
x a�s�

A policy u is called an ATS policy corresponding to some stationary policy g if Fc is a singleton�

with fc�ajy
 � p
g
ajy Pu

x a	s	

Lemma ��
� Assume A�� and �x some stationary policy g� If under a policy u� fc�ajy
 �

pgajy Pu
x a�s� Then

�i	 Fsa and $Fsa are singletons� and for all a� y� fsa�y� a
 � $fsa�x� u� y� a
 � p
g
ajy�

g
y Pu

x a�s�

�ii	 For any initial state x� Cea�x� g
 � Cea�x� u
 � Cav Pu
x a�s� and Cea�x� g
 � Cav P g

x a�s�

Proof� The �rst claim is proved in ��� eq	 ��	�
� �see also ��� p	 ����
	 The second claim then

follows from Lemma �	�	

From the de�nition it is clear that these conditional frequencies are not sensitive to the use of


bad� �non�optimal
 controls at some initial �nite time interval� nor are they a�ected by the use of

non�optimal controls provided that the frequency at which they are used decreases to zero	 The cost

functions Cea and Cav also have these properties due to their de�nition as time�averages	 Thus it is

to be expected that only Cesaro properties of the control should in�uence the costs	 This property

makes ATS policies attractive for ACOPea� since we do not need to know the optimal stationary

policy g at any �nite time� a �strongly
 consistent estimator of pgajy su�ces for optimality	 On the

other hand� ATS policies facilitate estimation through probing� i	e	 by testing non�optimal actions

without a�ecting the cost	 Such policies were indeed used in ��� to solve ACOPea	

It is shown in Theorem �	� that the stationary policies are optimal for COPav 	 Moreover�

the stationary policy g which is optimal for COPea is also optimal for COPav 	 It then follows

from Lemma �	� �ii
 that the ATS policy that solves ACOPea also solves ACOPav 	 Therefore the

method described in ��� to solve ACOPea is optimal for ACOPav as well	

ATS policies are not adequate for the other cost criteria introduced in Section �� since the

conclusion �ii
 of Lemma �	� does not hold for cost criteria �even asymptotic
 which are based on

discounting rather than time average	 We therefore have to develop other policies in order to obtain

an adaptive method that can be applied to all ACOP	 In the next section we show that stationary

policies are optimal for all cost criteria under consideration	 We then develop� in Section �� the

Asymptotically Stationary policies	

��



	� STATIONARY POLICIES� OPTIMALITY

The optimality of stationary policies for COPea is discussed in the beginning of Section � �see

Theorem �	�
	 In this section we prove the optimality of stationary policies for the other cost

criteria under consideration	

	��� The sample average cost

Theorem 	��� Assume A�� Then

�i	 COPav is feasible if and only if COPea is feasible�

�ii	 The stationary policies are optimal for COPav �

�iii	 A stationary policy is optimal for COPea if and only if it is optimal for COPav�

Proof� Since under a stationary policy g� Dav � Dea�g
 P g
x a	s	 and similarly for C� �iii
 follows

from �i
 and �ii
	

If COPea is feasible� then there exists a feasible stationary policy	 But under a stationary

policy g� Dav � Dea�g
 P g
x a	s	� so COPav is feasible	

Now assume COPav is feasible	 By Fatou�s Lemma� since clearly �
t��

Pt
s�� d

k�Xs� As
 is

bounded�

lim
t��

Eu
x

�

t # �

tX
s��

dk�Xs� As
 � Eu
x lim
t��

�

t# �

tX
s��

dk�Xs� As
 � Eu
xD

k
av � Vk

and �i
 follows	

Let v be a stationary optimal policy for COPea and �x some policy u and initial state x	 Let

Y  � f
  Cav � Cea�x� v
� Dav � V g	 Fix a selector � � Fsa that satis�es Cav � � � c	 Fix an

arbitrary 
� � Y and denote 	  � ��
�
	 Let tn be an increasing subsequence of times� such that

	  � limn�� f tnsa �
�
	

Claim 	 �� L	 To establish the claim by contradiction� assume 	 � L	 Then there exists a stationary

policy g such that $Fsa�x� g
 � f	g	 By de�nition of Y and 	 it follows that

	 � c � Cea�x� g
 � Cea�x� v


Dk
ea�x� g
 � 	 � dk � lim

t��
f tsa�
�
 � d

k � Vk

This contradicts the optimality of v� which establishes the claim	

��



From this it follows that Pu
x �Fsa 
� Lx�S

 
 Pu

x �Y 
	 However by Lemma �	� �see Derman ��

p	 ���
� for any policy u� Pu
x �Fsa 
� Lx�S

 � �� so that necessarily Pu

x �Y 
 � �	 Since u is arbitrary

and Cea�x� v
 � Cav and Dea�x� v
 � Dav P v
x a�s�� �ii
 holds	

	��� The expected discounted cost

We begin by de�ning some basic quantities that play an important role in the expected dis�

counted cost	 De�ne the matrix f$�sa�x� u� y� a
gy�a by

$�sa�x� u� y� a
  �

�X
t��


tPu�Xt � y�At � ajX� � x
 ����


These quantities determine the cost in the following way for each instantaneous cost c�y� a
�

y � X� a � A� the overall cost has the representation �see ���
 

Ced�x� u
 �
X

y�X�a�A

c�y� a
$�sa�x� u� y� a
 ����


and similarly for Ded	

This representation was suggested and investigated by Borkar ��� who developed a similar

representation also for �nite time cost criteria and for the exit problem	 In his paper Borkar

considers a countable state space and a compact action space	 He calls the quantity $�sa 
occupation

measure�	 Borkar�s approach is somewhat di�erent� in that he de�nes the occupation measure

through the cost representation and not explicitly through ��	�
	

Let L�x denote the set of matrices f$�sa�x� u� y� a
gy�a achieved by all policies in U � and L�x�S


the set of matrices f$�sa�x� u� y� a
gy�a achieved by all policies in U�S
	

Lemma 	��� Assume that under any policy in U�SD
� the state space includes a single recurrent

class� where the structure is independent of the policy� Then L�x � L�x�S
� and is closed and convex�

Proof� See Borkar ���	

Theorem 	��� Under A� the stationary policies are optimal for COPed and COPN
ed �

Proof� The claim for COPed follows immediately from ��	�
 and Lemma �	�� in fact� this holds even

if we relax Assumption A� to allow some �xed transient states	 In order to prove the second claim

consider the process "Xt de�ned on the enlarged state space fX�f�� �� � � � � Ng g and the same action

��



space A	 Let the transition probability be given by "Pfx�jgafy�lg � Pxay for l � j # � or j � l � N �

and � otherwise	 Let "c�fx� jg� a
 � � for j 
� N and "c�fx�Ng� a
 � 
�N c�x� a
 with the analogue

de�nition for "dk	 Then clearly for any policy u and initial state x� CN
ed�x� u
 � "Ced�fx� �g� u
 and

D
N�k
ed �x� u
 � "Dk

ed�fx� �g� u
	 This process satis�es the hypotheses of Lemma �	�� so that the proof

for COPN
ed follows immediately from the proof for COPed	

	�� The asymptotic expected discounted cost

Theorem 	�	� Under A�� for any stationary policy g� Caed�x� g
 � �� � 
���Cea�x� g
� and

Dk
aed�x� g
 � ��� 
���Dk

ea�x� g
 � k � �� �� � � � �K�

Proof� For any policy u� note that CN
ed�x� u
 has the representation 

CN
ed�x� u
 � Eu�

�X
t�N


t�N c�Xt� At
jX� � x�

�
�X
t�N


t�N
X
y�a

c�y� a
Pu�Xt � y�At � ajX� � x


����


Since for any stationary policy the limit �g�y� a
  � limt�� P g
x �Xt � y�At � a
 exists�

lim
t��

X
y�a

c�y� a
P g�Xt � y�At � ajX� � x
 �
X
y�a

c�y� a
�g�y
pgajy � Cea�g� x
 ����


�see Lemma �	�
	 It then follows from ��	�
 that

Caed�x� g
  � lim
N��

CN
ed�x� g
 � ��� 
���

X
y�a

c�y� a
�g�y
pgajy � ��� 
���Cea�x� g
 ����


The derivation for Dk
aed is identical	

In order to establish the existence of an optimal stationary policy for COPaed we need the

following Lemmas	 For any real valued vector z � IRjXj� let kzk�  �
P

y�X jz�y
j 	 Let 	��
 be any

distribution on X� and recall the convention �	 � P 
�y
 �
P

x 	�x
Pxy	

Lemma 	�
� Let P � fPxyg be the transitions of a regular Markov chain on X� with invariant

measure �� If Pxy 
 �� � � for all x� y � X� then k	 � P � �k� � ��� ��
k	 � �k��

��



Proof�

k	 � P � �k� � k�	 � �
 � Pk� �
X
y

j
X
x

�	�x
� ��x
�Pxyj ����


k	 � �k� �
X
x

j�	�x
� ��x
j �
X
x

j	�x
� ��x
j
X
y

Pxy �
X
x

X
y

j	�x
� ��x
jPxy ����


Since
P

x�	�x
� ��x
� � �� we have
P

x�	�x
� ��x
�� �
P

x�	�x
 � ��x
�� and we obtain after

some algebra

k	 � �k� � k	 � P � �k� �
X
y

X
x

��	�x
� ��x
�� � Pxy 
 ���
X
x

�	�x
� ��x
�� � ��k	 � �k� ����


The Lemma now follows from ��	�
	

Lemma 	��� Under A�� there exists a single constant � � �� independent of x and of g � U�S
�

and an integer M such that kP g�Xt � �jX� � x
� �gk� � �t�M for all t � M �

Proof� A� implies that under any stationary deterministic g� fXtg is a regular Markov chain	

Hence �see ����
 for some integer M�g
� �P g�M�g� has all components nonzero	 Furthermore� since

U�SD
 is a �nite set� then there is an integer M such that �P g�M has all components strictly

positive for any g � U�SD
� and is a transition matrix for a regular Markov chain with invariant

measure �g	 Since U�SD
 is a �nite set� ���  � minf f�P g�Mgyz  g � U�SD
� y� z � Xg � �	

Now enumerate the stationary deterministic policies as fg�� � � � � gjU�SD�jg	 Fix g in U�S
� then

P g �
PjU�SD�j

i�� qiP
gi where qi 
 � and

P
i qi � �	 Therefore

f�P g�Mgyz 


jU�SD�jX
i��

qMi f�P
gi �Mgyz 
 jU�SD
j�M���  � ��

By Lemma �	� applied to the transition matrix �P g�M it follows that

k	 � �P g��n���M � �gk� � ��� ��
k	 � �P g�nM � �gk�

for any initial distribution 	��
 and any g � U�S
	 Hence

k	 � �P g�nM � �gk� � ��� ��
n

uniformly in g � U�S
 and in 		 Thus for t � nM # l where � � l � M we have

k	 � �P g�t � �gk� � k �	 � �P g�l
�P g�nM � �gk� � ��� ��
n � ��� ��
�t�M���

��



and the result follows	

Theorem 	��� Under A�� if COPaed is feasible then there exists an optimal stationary policy�

Proof� Let gn be an optimal stationary policy for COPn
ed and let u be any �not necessarily

stationary
 feasible policy for COPaed� i	e	 Daed�x� u
 � V 	 By de�nition�

Caed�x� u
 � lim
N��

CN
ed�x� u


Thus there exists some increasing sequence of integers nl such that

Caed�x� u
 � lim
l��

Cnl
ed�x� u
 ����


Since A is �nite� there is some subsequence nm of nl such that for all y� gnm��� y
 converges to some

distribution g��� y
	 By Theorem �	� we have 

Caed�x� g
 � ��� 
���Cea�x� g
 �

lim
m��

��� 
���Cea�x� gnm
 � lim
m��

Caed�x� gnm
 �����


where the second equality follows from the representation ��	�
 since �g
�

is continuous in g� �see

e	g	 ����
	 Now by ��	�
�

j Caed�x� gnm
� Cnm
ed �x� gnm
 j� sup

v�U�S�

j Caed�x� v
� Cnm
ed �x� v
 j

� sup
v�U�S�

�X
t�nm


t�nm
X
y�a

jc�y� a
j � pvajy j P
v
x �Xt � y
� �v�y
 j

However� by Lemma �	� j P v
x �Xt � y
� �v�y
 j� � as t��� uniformly in v	 Therefore

Caed�x� g
 � ��� 
���Cea�x� g
 � lim
m��

Cnm
ed �x� gnm
 �����


Similarly for Daed we obtain 

Daed�x� g
 � lim
m��

Dnm
ed �x� gnm
 �����


��



On the other hand we have from ��	�


Caed�x� u
 � lim
m��

Cnm
ed �x� u
 �����


Clearly� by de�nition of Daed�

Daed�x� u
 
 lim
m��

Dnm
ed �x� u
 �����


Since Cnm
ed �x� gnm
 � Cnm

ed �x� u
 we obtain from ��	��
 and ��	��
 that Caed�x� g
 � Caed�x� u
	 Sim�

ilarly� ��	��
 and ��	��
 imply Daed�x� g
 � Daed�x� u
	 Thus� for every policy there is a stationary

policy with better performance	 To conclude note that the continuity of g � Caed�g
 established

in ��	��
 together with the compactness of the space of stationary policies imply the existence of

an optimal stationary policy	

The connection between optimal policies for COPea� COPav and COPaed is now summarized	

Lemma 	�
� Consider problems COPea and COPav with constraints given by V � and problem

COPaed with constraints given by �� � 
��� � V � Under A�� if a stationary policy v is optimal for

one of the problems� then it is optimal for all of them�

Proof� Recall that there exist stationary optimal policies for COPea� COPav and COPaed �The�

orem �	�� �	� and �	� resp	
	 The relation between COPea and COPav is established in Theorem

�	�	 The relation between COPaed and COPea is immediate from Theorem �	�	

	�	 Sch�al optimality

Theorem 	��� Assume A�� If COPsd is feasible� there exists an optimal stationary policy for

COPsd� If COPed is feasible and g is an optimal stationary policy for COPed� than g is optimal

for COPsd�

Proof� If COPsd is feasible� then by de�nition so is COPed	 Thus the �rst claim follows from the

second	 If g is optimal for COPed then by de�nition it is optimal for COPsd	

Note that while there is a stationary policy which is optimal for COPea� COPav and COPaed

uniformly in the initial conditions� this is not the case for COPsd	 As is shown in Example �	�� for

each initial condition the optimal stationary policy may be di�erent	

��




� COMPUTATION OF OPTIMAL POLICIES

In this Section we show that optimal policies for COPea� COPav � COPaed and for COPed�

COPsd �which may be found in U�S
� according to the results of Section �
 can be obtained by

solving the appropriate Linear Programs	 A similar solution for COPN
ed is obtained through the

embedding described in the proof of Theorem �	�	


�� Optimal policies for COPea� COPav� and COPaed

Since by Lemma �	�� if a stationary policy v is optimal for COPea or COPav or COPaed then

it is optimal for all of them� it su�ces to describe the LP that yield an optimal �stationary
 policy

for COPea	 This LP is well known ���� it was recently extended to the multi�chain case in ���� and

����	 An extension to the countable state and action case was introduced in ���	

LP�� Find fz��y� a
gy�a that minimizes c � z  �
P

y�a c�y� a
z�y� a
 subject to 

X
y�a

z�y� a
 �Pyav � �v�y
� � � v � X ����a


X
y�a

dk�y� a
z�y� a
 � Vk � � k � K ����b


X
y�a

z�y� a
 � � z�y� a
 
 � ����c


Theorem 
��� Under A��

�i	 If the stationary policy g is feasible for COPea� then a feasible solution z to ����	 is given by

z�y� a
 � �gy � p
g
ajy ����


�ii	 If g is an optimal stationary policy for COPea then ���
	 de�nes an optimal solution for LP��

�iii	 Conversely� let z�y� a
 satisfy ����	� Then a feasible policy g for COPea is de�ned through

pgajy �
z�y� a
P

a��A z�y� a�

����


�iv	 If z is an optimal solution of LP�� then the stationary policy g de�ned by ����	 is optimal for

COPea�

��



Proof� See ����	


�� Optimal policies for COPed� COP
N

ed
and COPsd

We �nd below optimal stationary policies for COPed through Linear Program	 The same

technique can be used to solve COPN
ed by using the embedding described in the proof of Theorem

�	�	 By Theorem �	�� any stationary policy which is optimal for COPed is also optimal for COPsd	

De�ne the following LP 

LP�� Find fz��y� a
gy�a that minimizes C�z
  �
P

y�a c�y� a
z�y� a
 subject to 

X
y�a

z�y� a
 ��v�y
� 
Pyav� � �x�v
 v � X ����a


X
y�a

dk�y� a
z�y� a
 � Vk � � k � K ����b


z�y� a
 
 � ����c


Note that due to ��	�a
� each initial condition x leads to a distinct Linear Program	

Theorem 
��� Assume A��

�i	 If the stationary policy w is feasible for COPed� then the matrix $�sa�x�w
� de�ned in ����	

satis�es ����	� For any stationary policy w� c � $�sa�x�w
 � Ced�x�w
�

�ii	 If g is an optimal stationary policy for COPed then there exists an optimal solution for LP


satisfying

z��y� a
 � $�sa�x� g� y� a
 ����a


�iii	 Conversely� let z�y� a
 satisfy ����	� Then the policy w given by

pwajy �
z�y� a
P

a��A z�y� a�

����b


is feasible for COPed� and Ced�x�w
 � C�z
�

�iv	 If z� solves LP
� then the stationary policy g de�ned by

pgajy �
z��y� a
P

a��A z��y� a�

����c


is optimal for COPed�

��



Proof� The Lemma is a generalization of ��� p	 ��� where the non�constrained expected discounted

case is considered	 To prove �i
 assume that the stationary policy w is feasible for COPed	 Then

��	�c
 is clearly satis�ed� and ��	�b
 is satis�ed by ��	�
	 ��	�a
 is satis�ed since

X
y�a

$�sa�x�w� y� a
�v�y
 �
X
a

$�sa�x�w� v� a
 �

� �x�v
 #

�X
t��


tPw�Xt � vjX� � x


Since

Pw�Xt � v j X� � x
 �
X
a�y

Pw�Xt�� � y�At�� � a j X� � x
Pyav ����


we obtain

X
y�a

$�sa�x�w� y� a
�v�y
 � �x�v
 # 

X
y�a

�X
t��


tPw�Xt � y�At � ajX� � x
Pyav

� �x�v
 # 

X
y�a

$�sa�x�w� y� a
Pyav

which proves the �rst claim in �i
	 The second claim follows from ��	�
	

To prove �iii
 let z�y� a
 satisfy ��	�
	 Then
P

a z�y� a
 �
P

a
$�sa�x�w� y� a
 due to ��	�a
 and

��	�c
 �see proof in ��� p	 ���
� where w is given in the Theorem	 Since Pw�Xt � y�At � a j X� �

x
 � Pw�Xt � y j X� � x
 � pwajy� we have $�sa�x�w� y� a
 � pwajy
P

a
$�sa�x�w� y� a
� it then follows

from ��	�b
 that z�y� a
 � $�sa�x�w� y� a
	 Thus by ��	�
 it follows that w is feasible for COPed

and Ced�x�w
 � C�z
� which establishes �iii
	 Thus pwajy � z�y� a
�
P

a�A z�y� a
��� is a one�to�one

mapping of the feasible solutions of LP� onto the stationary policies that are feasible for COPed	

This� together with ��	�
 establish �ii
 and �iv
	

Since to the best of our knowledge there are no previous studies on the constrained prob�

lem with expected discounted cost� we point out at some of its� properties and some important

di�erences from the non�constrained case	

�i
 In the unconstrained case it is known that an optimal stationary deterministic policy can be

found	 In the constrained case we do not have in general optimal stationary deterministic policies�

but do have optimal stationary randomized policies	 It can easily be shown �as in the expected

��



average case ����
 that an optimal stationary policy can be computed� that has at most K states

in which randomization is needed	

�ii
 Unlike the unconstrained case� the optimal stationary policy depends on the initial state �or

initial distribution
	 Moreover� the optimality principle does not hold in the constrained case	 The

following example with one constraint exhibits these points	

Example 
��� Consider COPed with X � f�� �g� A � fa� bg� discount factor 
 � ����

P�a� � P�b� � P�a� � P�b� � ��� � P�a� � P�b� � P�a� � P�b� � ���

c��� a
 � c��� b
 � �� c��� a
 � �� c��� b
 � �

d��� a
 � d��� b
 � � � d��� a
 � �� d��� b
 � ���

Note that the transitions do not depend on the control	 Let g� be the policy which chooses always

action a and set V � Ded��� g�
	 Any feasible policy for the problem starting at � must always

choose a at �� hence g� is optimal for that initial condition	 However� if g� chooses a at � and b at

�� then clearly g� achieves the minimal cost	 If the initial condition is � then

Ded��� g�
 � ��� #

�X
n��


n � � � V ����


so that g� is feasible� and hence optimal for the problem starting at �	 Hence the optimal policy

depends on the initial state	

Suppose that at any time s� Xs � z	 Then the optimality principle states that one should use

the policy which is optimal for the optimization problem that starts with X�  � z	 Clearly in the

example this principle does not hold� since when Xs � � we must not use g� if the initial state was

X� � �	

�� ASYMPTOTICALLY STATIONARY POLICIES

From the de�nition ��	�
 of asymptotically stationary policies� for each u � G�g
 there exists

��t
 � ��t� 

 such that �outside a set in � of probability Pu
x zero
�

��t
 � � as t��� and
���Pu

x �At � ajHt���Xt � y
� pgajy

��� � ��t
 ����


for all x� y and a	 We show that these limiting conditional distributions of a policy determine the

cost achieved by asymptotically stationary policies� for all the cost criteria under consideration	

��



This enables the application of AS policies to the solution of all the relevant adaptive constrained

problems	

Given a policy u� denote

�ux�y� a
  � lim
t��

Pu
x �Xt � y�At � a
 ����


whenever this limit exists	 Note that under A�� for any stationary policy g� �gx exists and �gx�y� a
 �

�g�y� a
 � �g�y
 � g�ajy
 is independent of x	 The main result of this Section is that the conditional

distributions which enter the de�nition ��	�
 of an AS policy "g have a role which is similar to

the conditional frequencies ��	�
 in the sense that they determine the limiting probabilities ��	�


�Theorem �	�
� which in turn determine the costs �see proof of Theorem �	�
	

Theorem ���� Under A�� given any stationary policy g� if u � G�g
 then for any state y and

initial state x� limt�� Pu�Xt � yjX� � x
 � �g�y
� and �ux exists and is equal to �g�

In order to prove Theorem �	� we need the following Lemma	 Fix a stationary policy g and a

policy u in G�g
	 De�ne the matrix P �t
 by

fP �t
gyz  � Pu�Xt � zjXt�� � y�X� � x
 ����


Lemma ���� Assume A� and �x some arbitrary !� � �� g � U�S
 and u � G�g
� If Pu
x �Xtn �

y
 � !� for some increasing sequence ftng
�
� � then limn��fP �tn
gyz � fP ggyz for each z�

Proof of Lemma ���� By ��	�
� for any % � � there exists a T� � � such that Pu
x ���T�
 � %
 �

%	 For t � T��

jPu
x �At � ajXt � y
� pgajyj �

���Eu
x

�
�f��t
 � %g

h
Pu
x �At � a j Ht���Xt � y
� pgajy

i

#�f��t
 � %g
h
Pu
x �At � a j Ht���Xt � y
� pgajy

i �� Xt � y
����

� % # Eu
x

	
�f��t
 � %g j Xt � y



����


For any tn � T�� Eu
x

	
�f��tn
 � %g j Xtn � y



� �

	� 	 Since % is arbitrary� limn�� Pu�Atn �

ajXtn � y�X� � x
 � pgajy	 The Lemma then follows by noting that Pyz�t
 �
P

a Pyaz �P
u�At�� �

ajXt�� � y�X� � x
	

��



Proof of Theorem ���� Fix x� a and u � G�g
	 Under g� fXtg is a regular Markov chain	 Hence

for some integer M �as in the proof of Lemma �	�
� �P g�M has all components nonzero �in fact it

can easily be shown that one such M is the smallest integer divisible by �� �� � � � � J
	

Let �j be a row vector with � in the j�th component and � otherwise	 Denote Qt
x  �

Pu�XtjX� � x
	 Observe that Qt
x � �x �

Qt
s�� P �s
� where P �s
 is de�ned in ��	�
	 This fol�

lows by iterating

Qt
x�y
 � Pu�Xt � yjX� � x


�
X
z

Pu�Xt�� � zjX� � x
 � Pu�Xt � yjXt�� � z�X� � x
 �
X
z

Qt��
x �z
Pu

zy�t

����


where the second equality is obtained from Bayes rule	 In matrix notation the last equation reads

Qt
x � Qt��

x � Pu�t
	 Given some !� � � let P ��t
 be the matrix whose elements are given by

fP ��t
gyz  � fP �t
gyz # fP g � P �t
gyz � �fQ
t��
x �y
 � !�g ����


for all y� z in X	 Denote

R�t
  �

t�MY
s�t��

P �t
 � R��t
  �

t�MY
s�t��

P ��t
 ����


Next� we evaluate Qt�M
x �Qt

x �R
��t
	

���Qt��
x �Qt

xP
��t# �


�
�y

�� � jQt��

x �y
�
X
z

Qt
x�z
P �

zy�t# �
j

� j
X
z

Qt
x�z
�Pzy�t# �
� P �

zy�t# �
�j � !� �M

����


Similarly� for an arbitrary stochastic matrix !P ������Qt��
x �Qt

xP
��t# �


�
!P
�

�y

��� � !� �M� ����


Using ��	�
���	�
 we obtain���Qt�M
x �Qt

xR
��t


�
�y

�� �

���Qt
x �R�t
� R��t



�
�y

�� �����a


�

�����
�
Qt
xP �t# �




t�MY
s�t��

P �t
�

t�MY
s�t��

P ��t


��
�y


�����
#

�����
�
Qt
x �P �t# �
� P ��t# �



t�MY
s�t��

P ��t


�
�y


����� �����b


�

�����
�
Qt��
x



t�MY
s�t��

P �t
�
t�MY
s�t��

P ��t


��
�y


�����# !�M� �����c


��



The �rst term in ��	��c
 is now handled as in ��	��a
���	��c
� to obtain

���Qt�M
x �Qt

xR
��t


�
�y

�� � !�M
 �����


Denote ��  � !� �M�	 By Lemma �	� and the de�nition ��	�
� P ��t
 converges to P g	 The continuity

of the mapping fP ��s
gt�Ms�t�� �
Qt�M

s�t�� P
��s
 now implies R��t
 � �P g�M Pu

x a	s	 Thus there

exists some t� such that for all t � t�� all components of R��t
 are greater than some positive ���

and �� depends only on P g	 Denote �  � �� ��	

Let �t denote the stationary probability of a Markov chain whose transition probabilities are

given by the matrix R��t
	 Since all components of R��t
 are strictly positive� �t exists and is

unique for all t � t�	 The convergence R��t
 � �P g�M now implies �see e	g	 ����
 limt�� �t � �g

since �g is the unique invariant distribution of �P g�M 	 Let t� � t� be such that k�t� �gk� � �� for

all t � t�	 For t 
 t� 

kQt�nM
x � �gk� � kQt�nM

x � �t��n���Mk� # k�t��n���M � �gk� �����a


� kQt��n���M
x �R�t # �n� �
M
� �t��n���Mk� # k�t��n���M � �gk�

� kQt��n���M
x �R��t# �n� �
M
� �t��n���Mk�

# kQt��n���M
x � �R�t# �n� �
M
� R��t# �n� �
M

k� # k�t��n���M � �gk�

� �kQt��n���M
x � �t��n���Mk� # �� # �� �����b


where ��	��b
 follows from Lemma �	�� ��	��
 and ��	��
	 Iterating ��	��
 we obtain 

kQt�nM
x � �gk� � �nkQt

x � �gk� #
���

�� �
� ��n #

���
�� �

�����


Since !� and hence �� can be chosen arbitrarily small� � is independent of this choice and since �n

converges to �� it follows that

lim
t���n��

kQt�nM
x � �gk� � �

from which it follows

lim
t��

Pu�Xt � � jX� � x
 � lim
t��

Qt
x � �g �����


This proves the �rst claim	

Now observe that from ��	��
� if !� � �g�y
 then Pu
x �Xt � y
 � !� only a �nite number of times	

By A�� �g�y
 � � for all y� so Lemma �	� and the argument following ��	�
 imply that

lim
t��

Pu�At � ajXt � y�X� � x
 � pgajy

��



Since Pu�Xt � y�At � ajX� � x
 � Pu�Xt � yjX� � x
 � Pu�At � ajXt � y�X� � x
� �u exists

and is equal to �g	

In fact� ��	��
 allows to restate Lemma �	� in the following stronger form	

Lemma ����� Assume A� and �x some g � U�S
 and u � G�g
� Then limt�� P �t
 � P g�

Asymptotically stationary policies turn out to be a special case of ATS policies� as the next

Lemma shows	 Denote Ft  � �fHt���Xtg� �x y in X and de�ne

��y�n
  � the time of the nth visit strictly after � to state y�

Lemma ���� Under A�� if u � G�g
 then Fc � fpgajyg Pu
x a�s�

Proof� Fix a and y and de�ne

Ys  � �fXs � x�As � ag �Eu
x ��fXs � x�As � ag j Fs� s 
 �

St  �
Pt

s�� Ys

Yt and St are Ft�� measurable	 Moreover� fSt�Ft��� t 
 �g is a Pu
x Martingale	 Note that the

term in expectation in Ys can be expressed as 

Eu
x ��fAs � a�Xs � yg j Fs� � �fXs � yg �Eu

x ��fAs � ag j Fs� � �fXs � yg � us�a j Fs


� �fXs � yg � us�a j Hs���Xs � y
 �����


Note that Ut  �
Pt

s�� �fXs � yg is nondecreasing� Ft measurable and� by Lemma �	�� converges

to in�nity Pu
x a	s	 To apply a version of the Martingale Stability Theorem �� Theorem �	�� p	 ����

observe that by ��	��
�

�X
s��

U��
s E

	
jYsj

� j Fs



�

�X
s��

U��
s �fXs � yg� �����


With ��y�n
 as in ��	��
� Xt � y if and only if t � ��y�n
 for some n� and U��y�n� � n	 Thus ��	��


implies

�X
s��

U��
s E

	
jYsj

� j Fs



�

�X
n��

n�� �� �����


��



The Martingale Stability Theorem now implies that

lim
t��

StPt
s�� �fXs � yg

� � Pu
x a�s�

from which we obtain 

lim
t��

�
f tc�ajy
�

Pt
s�� �fXs � yg � us�a j Hs���Xs � y
Pt

s�� �fXs � yg

�
� � Pu

x a�s�

Since limt�� ut�a j Ht���Xt � y
 � pgajy Pu
x a�s� and

Pt
s�� �fXs � yg � � it follows that

lim
t��

f tc�ajy
 � pgajy Pu
x a�s�

which proves that Fc � fpgajyg P
u
x a	s	

We are now in a position to prove Theorem �	�	 We show that asymptotically stationary

policies are equivalent to the respective stationary policies� in that the costs associated with them

are identical	 Therefore� by Theorem �	�� whenever g � U�S
 is optimal under one of the cost

criteria� any "g � G�g
 is optimal as well	 In Section � we construct optimal AS policies for ACOP	

Theorem ��	� Assume A�� Then for any stationary g � U�S
� any "g � G�g
 and any x�

�i	 Cea�x� "g
 � Cea�x� g


�ii	 Cav � Cea�x� g
 P 
g
x a�s� and P g

x a�s�

�iii	 Caed�x� "g
 � Caed�x� g


The results �i	��iii	 hold also for the costs associated with dk��� �
 � k � �� �� � � � �K�

�iv	

lim
N��

jCN
ed�x� "g
� E
g�Ced�XN � g
jX� � x�j � � �����


lim
N��

jDN�k
ed �x� "g
�E
g�Dk

ed�XN � g
jX� � x�j � � � � � k � K �����


Consequently� whenever g above is optimal for COPea� COPav � COPaed or COPsd� so is any "g�

Proof� �i
 From Lemma �	� we have �
g � �g and hence

lim
t��

�

t # �

tX
s��

Pu�Xs � y�As � a j X� � x
 � �g�y� a


��



Hence $Fsa�x� u
 � f�gg � $Fsa�x� g
	 The result then follows from ��	�
	

�ii
 By Lemma �	�� Fc � fpgajyg P 
g
x a	s	 The result �ii
 then follows from Lemma �	�	

�iii
 Since by Lemma �	� �
g�y� a
 exists and is equal to �g�y� a
� the derivation in Theorem �	�

applies verbatim to yield

Caed�x� "g
 � ��� 
���Cea�x� g
 � Caed�x� g
 � �����


These arguments obviously hold also for dk��� �
 � k � �� �� � � � �K	

�iv
 From ��	�
 it follows that

E
g�Ced�XN � g
jX� � x� �
�X
t�N


t�N
X
y�a

X
z

c�y� a
P g�Xt � y�At � ajXN � z
P 
g�XN � zjX� � x


�����


Let uN be the policy that uses "g at t � N and then uses g	 Then

lim
N��

jCN
ed�x� "g
� E
g�Ced�XN � g
jX� � x�j

�
X
y�a

c�y� a


�
�X
t�N


t�N
�
P 
g�Xt � y�At � ajX� � x
� PuN �Xt � y�At � ajX� � x


��
�����


Since P 
g�Xt � y�At � ajX� � x
 � P 
g�Xt � yjX� � x
 � P 
g�At � ajXt � y�X� � x
 it follows

by Lemma �	� and by de�nition of AS policies that the right hand side of ��	��
 converges to zero

as N � �� which establishes ��	��
	 The argument for ��	��
 is identical	 The last claim of the

Lemma follows then from the de�nitions ��	�a�b
	

�� ESTIMATION AND CONTROL

In this section we introduce an optimal adaptive policy� based on 
probing� and on the method

of ���	 Recall that we assume no prior information about the transition probabilities� except that

A� holds	

��� Estimation of the transition probabilities�

De�ne

"P t
zay  �

Pt
s�� �fXs�� � z�As�� � a�Xs � ygPt

s�� �fXs�� � z�As�� � ag

��



If the denominator is zero then "P t is chosen arbitrarily� but such that for every z and a� "P t
zay is a

probability distribution	 In order that

lim
t��

"P t
zay � Pzay Pu

x a�s� ����


for all states z� y � X and a � A� it is su�cient that each state is visited in�nitely often and

moreover� that at each state� each action is used in�nitely often	 If this condition is met� then ��	�


holds by the strong law of large numbers� as we show in ��	��
���	��
	

By Lemma �	�� each state y is indeed visited in�nitely often Pu
x a	s	 under any policy u	

By an appropriate 
probing� �described below
 we shall obtain
P�

s�� �fXs�� � z�As�� � ag �

� Pu
x a�s� for all z � X� a � A� implying consistent estimation	

The adaptive policies below de�ne actions at stopping times � when particular states are

visited	 The connection between this de�nition and the de�nition of AS policies is given in the

following Lemma	 Recall the de�nition ��	��
 of ��y�n
	

Lemma ���� Assume A�� Then u � G�g
 i� for every a� y we have Pu
x a�s�

lim
n��

Pu
x �A��y�n� � ajF��y�n�
 � pgajy ����


���y�n
 was de�ned below Lemma ��
�	�

Proof� Assume u � G�g
	 Since ��y�n
 
 n and is �nite Pu
x a�s� �Lemma �	�
 we have

Pu�A��y�n� � ajF��y�n�
� pgajy �

�X
t�n

�f��y�n
 � tg
h
Pu�At � ajF��y�n�
� pgajy

i
����


To proceed� we need to show that Pu
x a	s	�

�f��y�n
 � tgPu
x �At � ajF��y�n�
 � �f��y�n
 � tgPu

x �At � ajHt���Xt � y
 ����


Let Y  � �fA��y�n� � ag�f��y�n
 � tg	 Clearly Eu
x �Y jF��y�n�
 � �f��y�n
 � tgEu

x �Y jF��y�n�
� so

that for each set B � Ft

Eu
x

�
�B �E

u
x �Y jF��y�n�


�
� Eu

x

�
�B�f��y�n
 � tg � Eu

x �Y jF��y�n�

�

� Eu
x

�
Eu
x ��B�f��y�n
 � tg � Y jF��y�n�


�
� Eu

x ��B � Y �
����


��



where the second equality follows since by de�nition of F��y�n�� for every Ft measurable random vari�

able Z� Z ��f��y�n
 � tg is F��y�n� measurable	 By a similar argument� �f��y�n
 � tgEu
x �Y jF��y�n�


is Ft measurable� so that Eu
x �Y jF��y�n�
 is Ft measurable and by ��	�
� Eu

x �Y jF��y�n�
 � Eu
x �Y jFt
	

Now

Eu
x �Y jFt
 � �f��y�n
 � tg

X
z

Pu
x �At � ajHt���Xt � z
 � �fXt � zg

� �f��y�n
 � tgPu
x �At � ajHt���Xt � y


����


which completes the proof of ��	�
	 Using the de�nition ��	�
� equations ��	�
���	�
 yield

Pu
x �A��y�n� � ajF��y�n�
� p

g
ajy �

�X
t�n

�f��y�n
 � tg
h
Pu
x �At � ajHt���Xt � y
� p

g
ajy

i

� ��n


�X
t�n

�f��y�n
 � tg � ��n


����


and ��	�
 follows	

To prove the converse assume ��	�
 holds	 Then there exists !��n
 � !��n� 

 such that �outside

a set in � of probability Pu
x zero
� !��n
 � � as n � �� and

���Pu
x �A��y�n� � ajF��y�n�
� pgajy

��� �
!��n
 Pu

x a�s� Since n � ��y�n
 we obtain from ��	�
 

Pu
x �At � ajHt���Xt � y
� pgajy �

tX
n��

�f��y�n
 � tg �
h
Pu
x �At � ajHt���Xt � y
� pgajy

i

�

tX
n��

�f��y�n
 � tg
h
Pu
x �A��y�n� � ajF��y�n�
� pgajy

i ����


Since ��y�n
 is �nite Pu
x a	s	� ��	�
 implies for each s � t

lim
t��

sX
n��

�f��y�n
 � tg
h
Pu
x �A��y�n� � ajF��y�n�
� pgajy

i
� � Pu

x a	s	 ����


On the other hand�

tX
n�s��

�f��y�n
 � tg
h
Pu
x �A��y�n� � ajF��y�n�
� pgajy

i
� !��s


tX
n��

�f��y�n
 � tg � !��s
 �����


which can be made arbitrarily small by choosing s large enough	 Combining ��	�
���	��
� it follows

that limt�� Pu
x �At � ajHt���Xt � y
� pgajy � � Pu

x a�s� which concludes the proof	

��



��� The adaptive policy

De�ne B  � the space of matrices f
ayg such that for each state y� f
ay � a � Ag is a probability

distribution on A	 Let g be some optimal stationary policy for COP	 Let � be the stationary policy

de�ned by �ajy � jAj�� for each a� y	 Fix a decreasing sequence �r � � such that
P�

� �r � ��

and an increasing sequence of times Tr with T� � �	 Tr are the times at which we update the

estimate	 Suppose we are given a sequence & � f&r � r � �� �� ���g where each &r � B depends on

the estimates of the transition probabilities "Pzay� z� y � X� a � A and is an approximation of g	

Such control laws are introduced in ���� and are based on sensitivity analysis of Linear Programs

�e	g	 ���
	 In the following Algorithm we construct a policy u which is shown later to be optimal

for ACOP	

Algorithm ���� If Xt � y and y has been visited n times� and Tr � t � Tr�� then ut is de�ned

through 

ut��jHt���Xt
 � �n � � # ��� �n
 �&r� "PTr
 �����


Remark� A way to obtain each &r from the estimate "PTr is given in ���� and it involves solving two

Linear Programs	 One can choose Tr � q � r where q is some positive integer that is proportional

to the computation time of &r	

Theorem ���� Assume A� and assume that COP is feasible� Assume moreover that "PTr � P

implies that &r�PTr
 converges to g� Then the policy u obtained through Algorithm ��
 satis�es

u � G�g
 and is optimal for ACOP�

Proof� Pick some state y and an action a	 By Lemma �	� y is visited in�nitely often Pu
x a	s	 under

any policy u	 Recall the de�nition of ��y�n
 in ��	��
	 According to ��	��
 and the construction

of f�ng we have
P

n�� P �A��y�n� � a
 � �	 Hence by Borel Cantelli Lemma� at state y action

a is used in�nitely often	 Let ��y� a�m
 be the mth time that Xt � y�At � a	 It follows that

��y� a�m
 are �nite Pu a	s	 since the event fXt � y�At � ag occurs i	o	 Pu a	s	 It can be shown

that �fX��y�a�m��� � zg� m � �� �� ��� are i	i	d	 variables	 It then follows by the Strong Law of

Large Numbers that

lim
m��

Pm
j�� �fX��y�a�j��� � zg

m
� Pyaz Pu a�s� �����


But since Tr and ��y� a�m
 are �nite Pu a	s	 we have

lim
r��

"PTr
yaz � lim

r��

PTr
t�� �fXt�� � y�At�� � a�Xt � zg

�fXt�� � y�At�� � ag
�

��



� lim
m��

Pm
j�� �fX��y�a�j��� � zg

m
� Pyaz Pu a�s� �����


Since this holds for any y and a it follows that "PTr � P w	p	�	 Hence by hypothesis &r�PTr


converges to g� which implies by ��	��
 that Pu
x �A��y�n� � ajF��y�n�
 � pgajy	 Hence u � G�g


is an asymptotically stationary policy by Lemma �	�	 By Theorem �	� it is optimal for the case

of expected average costs� average costs� asymptotic expected discounted costs� and for Sch�al�s

criterion	


� APPENDIX

In this Section we generalize Sch�al�s original criterion to the constrained problem and show�

using Example �	� that there need not exist an optimal �or even an ��optimal
 policy for this

problem	

Call a policy u feasible with respect to COPSchal if

lim
n��

Eu
x

�
�X
t�n


t�ndk�Xt� At
� Vk

��
� � k � �� ����K

where �z��  � maxfz� �g	

Let C�
ed�x
 be the optimal value of COPed starting at X� � x	 A policy u is said to be optimal

with respect to COPSchal if it is feasible and

lim
n��

Eu
x

�����
�X
t�n


t�nc�Xt� At
� C�
ed�Xn


����� � �

Consider Example �	�� and note that for t 
 � we have P �Xt � �
 � ��� under any policy and

for any initial state	 For any policy u we have 

Eu
x

�
�X
t�n


t�nd�Xt� At
� V

��

 Pu

x �Xn � �
Eu
x

�
�
�
�X
t�n


t�nd�Xt� At
� V

�� ��Xn � �

�
A


 ���Eu
x


�
�X
t�n


t�nd�Xt� At
� V

� ��Xn � �

�

��



where the last inequality follows from Jensen�s inequality and the fact that the last expression is

always non�negative	 For it to converge to zero� it is clearly necessary that

lim
n��

Pu
x �An�� � a j Xn�� � �
 � � ����


But note that C��x
 � �fx � �gC���
 # �fx � �gC���
 where

C���
 �

�X
t��

�
���t � � � P g�

� �Xt � �

�

� ���

�
�

�� ���
� �

�
� ���

C���
 � �

But using Jensen�s inequality�

Eu
x

�����
�X
t�n


t�nc�Xt� At
� C�
ed�Xn


����� 
 Pu
x �Xn � �
Eu

x


�����
�X
t�n

�
t�nc�Xt� At
� C�
ed�Xn
�

����� jXn � �

�


 Pu
x �Xn � �


�����Eu
x

�
�X
t�n


t�nc�Xt� At
� �
��Xn � �

������
and therefore for u to be optimal it should follow asymptotically g�� i	e	

lim
n��

Pu
x �An�� � a j Xn�� � �
 � �

which contradicts ��	�
	 Therefore there does not exist any optimal policy� and moreover� there

exists an � � � such that any feasible policy is not even ��optimal �in the obvious sense
	

��
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