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ABSTRACT

We consider the adaptive control of �nite�state Markov chains� where the optimal performance

is characterized through the minimization of a long�run average cost functional� subject to con�

straints on several other such functionals	

In contrast with the unconstrained problem� applying the control which is optimal for the

current parameter estimates 
�certainty equivalence� control may not yield optimal performance	

This problem is related to the fact that a feasible set of a Linear Program is not� in general�

continuous in the parameters	

Under mild structural and feasibility conditions we exhibit two explicit adaptive control policies

for the case where the transition probabilities are unknown� which are optimal under the constrained

optimization criterion	 These policies rely on a powerful estimation scheme of �probing�� which

provides consistent estimators for the transition probabilities	 This scheme is of independent inter�

est� as it provides strong consistency under a large number of adaptive schemes� and is independent

of any �identi�ability� conditions	

As an application we derive an optimal adaptive policy for a system of K competing queues

with countable state space� and for which the constrained criteria arise naturally in the context

of communication networks	
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INTRODUCTION

The problem of adaptive control of Markov chains has received considerable attention in recent

years� for motivation and existing results see e	g	 the survey paper by Kumar ����� Militio and Cruz

����� the book by Hernandez�Lerma ���� and references therein	 In the setup considered there� the

transition probabilities of a Markov chain are parameterized� and the �true� parameter value is

not known	 One then tries to devise a control policy which minimizes the long�run average cost�

based on some estimate of the parameters	 Sch�al ���� introduced an asymptotic discounted cost

criterion and studied the related adaptive optimal policies 
see also Hernandez�Lerma and Marcus

���������� and the extensions ������� to incomplete state information	 In the constrained problem

���� the optimization criterion is the minimization of a long�run average cost 
�	�a� but subject to

several constraints� given also in terms of long�run average�cost functionals 
�	�b	

Below we formulate and solve the problem of optimal adaptive control of �nite state Markov

chains� under average�cost constraints	 We assume no prior information about the transition proba�

bilities and their dependence on the control	 This is formalized by taking the transition probabilities

as the unknown parameters	 The precise model and basic assumptions are given in Section �	

Adaptive policies for the case of a single constraint were �rst introduced by Makowski and

Shwartz ������� using the Lagrange approach of Beutler and Ross ���	 This approach is� however�

limited to a single constraint	 Altman and Shwartz ��� obtain an optimal adaptive policy for the

�nite�parameter case	 The situation here is considerably more complicated than the unconstrained�

single constraint or �nite�parameter cases since� as Example �	� illustrates� the 
�certainty equiva�

lence� approach of using current estimates to compute the optimal control may fail	 The di�culty

is that the optimal non�adaptive control may have discontinuities as a function of the constraints�

for the following reason	 Even when all parameter are known� the only available approach to the

computation of optimal policies is through an associated Linear Program 
Derman ����� Hordijk and

Kallenberg ����� Altman and Shwartz �����	 Thus under the �certainty equivalence� paradigm� the

computation of approximate controls from parameter estimates is necessarily carried out through

a Linear Program whose coe�cients are estimated on�line	 However� it is well�known that the

feasible region of a Linear Program and hence also the optimal solution may exhibit discontinuities

as a function of the coe�cients	 Example �	� illustrates the two di�culties with the �certainty

equivalence� approach when utilizing a Linear Program� existence of solutions� and convergence of

the controls	 This makes it a non trivial task to derive conditions under which the �approximate

problems� possess solutions� and these solutions converge to the optimal solution	
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The �classical� Linear Program 
Derman ����� Hordijk and Kallenberg ���� and a di�erent

one 
using the �Policy Time Sharing� idea of Altman and Shwartz ����� associated with the non�

adaptive constrained problem are recalled in Section �	 We describe two classes of policies� which

are suitable for adaptive problems� Action Time Sharing 
Section �	� and Policy Time Sharing


Section �	�	 While the �rst is computationally more attractive� the second can be extended in

some cases to systems with countable state space 
Section �	�	�	 In Section � we present general

�probing� methods for modifying policies so as to obtain strongly consistent estimators	 The

advantage of this approach is that it alleviates the usual identi�ability problem of adaptive control

����	

If we assume the availability of some �continuous� method to compute policies based on these

estimators� then it is shown that the adaptive policy which combines probing with the substitution

of current estimates into the control rule is optimal	 In order to develop adaptive policies for the

constrained problem it is necessary to overcome the discontinuities in the feasible region of the

Linear Program	 The theory of sensitivity analysis for Linear Programs ��� is used in Section �

to resolve this issue	 As a result we obtain controls which converge to the optimal policy 
i	e	

�self tuning� is achieved	 It remains to be shown that this convergence of the controls implies

optimality� i	e	 that under the adaptive policy minimal cost is achieved and the constraints are

met	 In particular� we need to establish that probing does not increase the cost	 This is shown by

an application of the results of Altman and Shwartz ����� on �time�sharing policies� 
Lemma �	��

Lemma �	�	

The resulting optimal adaptive policies for constrained problems are obtained under weak con�

ditions� they possess a natural structure and can be implemented using simple standard operations	

The underlying methods are quite �exible� and o�er an alternative even to adaptive methods of

unconstrained optimization �������	 The general �probing� approach presented here and in partic�

ular the adaptive algorithms are useful in other situations as well� this is illustrated through an

application to a countable state space system of K competing queues ���	 Altman and Shwartz ���

obtain optimal controls for the constrained non�adaptive problem	 In this paper we obtain optimal�

adaptive� and implementable policies for the constrained optimization problem of this system	

�� MODEL AND ASSUMPTIONS�

Let fXtg
�
t�� be the state process� de�ned on the �nite state space X � �� �� ���� N � the action At

taken at time t takes values in the �nite action space A	 To simplify the notation we assume that in

any state x all actions in A are available 
although the results are independent of this assumption	
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Denote by ht �� 
X�� A�� ����Xt� At the history of the process up to time t	 If the state at time t

is x and action a is applied� then the next state will be y with probability

Pxay �� P 
Xt�� � y j Xt � x�At � a � P 
Xt�� � y j ht�� � h�Xt � x�At � a 
���

A policy u in the policy space U is described as u � fu�� u�� ���g� where ut is applied at time epoch

t� and ut��
� j ht�Xt�� is a conditional probability measure over A	 Each policy u induces a

probability measure denoted by Pu on the space of paths � �� 
X � A� which serves as the

canonical sample space	 The corresponding expectation operator is denoted by Eu	

A Markov policy u � U
M is characterized by the dependence of ut�� on Xt�� only� i	e	

ut��
� j ht�Xt�� � ut��
� j Xt��	 A stationary policy g � U
S is characterized by a single

conditional probability measure pg�jx over A� under g� Xt becomes a Markov chain with stationary

transition probabilities� given by P g
xy �

P
a�A p

g

ajxPxay	 The class of stationary deterministic

policies U
SD is a subclass of U
S� and every g � U
SD is characterized by a mapping g � X� A

so that pg�jx � �g�x�
� is concentrated at the point g
x for each x	

Let fc
x� a� dk
x� a � k � �� ����Kg be 
real valued cost functions and de�ne

Cx
u � lim
t��

�

t
Eu

�
tX

s��

c
Xs� As j X� � x

�

���a

Dk
x
u � lim

t��

�

t
Eu

�
tX

s��

dk
Xs� As j X� � x

�
k � �� ����K 
���b

Given the real numbers fVk � k � �� ����Kg� de�ne the constrained optimization problem COP�

minimize Cx
u subject to Dk
x
u � Vk � � k � K 
���

In this paper we assume that the transition probabilities Pxay are unknown	 We thus solve

the adaptive constrained problem ACOP� which is to �nd an optimal policy for COP based on

the available information 
i	e	 using on�line estimation to update and improve the policy	

Throughout the paper we impose the following assumptions under the true parameters�

A�� The state space forms a single positive recurrent class under any policy in U
SD	

A�� COP is feasible� i	e	 there exists some u � U for which 
�	� holds	

A� is a standard assumption that holds for many queuing systems 
see e	g	 Section �	 The analysis

can be extended to include certain transient states� at a cost of technical complications	
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We use the following notation� �fAg is the indicator function of the set A and �a
x is the

Kronecker delta function	 B is the closure of a set B� and jBj is the number of elements in the


�nite set	 For sets fHng in the IR
l we use the 
slightly nonstandard notation 
see e	g	 ����

limn��Hn �� fx � IRl � x � limn�� xn� for some sequence xn � Hng�

limn��Hn �� fx � IRl� for some in�nite subsequence xnr � Hnr � x � limr�� xnrg	

Thus limn��Hn contains all limits of converging sequences� whereas limn��Hn contains all

accumulation points	 Note that limn��Hn �� ��m���
�
n�mHn 
the standard de�nition does not

include the closure	 If limn��Hn � limn��Hn then write limn��Hn � limn��Hn	

�� THE NON�ADAPTIVE CASE

All the available methods for computing optimal policies for the 
non�adaptive constrained problem

rely on associated Linear Programs	 Two such programs are presented below	

��� An optimal time�sharing policy for COP�

Policy Time Sharing 
PTS policies where introduced by Altman and Shwartz ��� �� ���	 First

note that since both action space and state space are �nite� we can order all stationary deterministic

policies as fg�� g�� ���� glg� with l � jU
SDj � jXj � jAj � 
N  �jAj	 De�ne a �cycle� as the time

between two consecutive visits to state �	 A PTS policy is characterized ����� by a l dimensional

vector � � f��� ��� ���� �lg� and the following properties�


� � During each cycle� a �xed stationary deterministic policy is used	


� � �i is the limiting proportion of the number of cycles during which policy gi is used	


The formal de�nitions are in Section �	�	�	 Thus the �i are necessarily positive and sum to �	

Any PTS policy with parameter � is denoted by !�	 Note that there are in�nitly many PTS policies

with a given parameter �� since 
�"
� identify a whole class of policies	 However� it will be seen

below that the distinction between policies with the same parameter � is of no consequence in our

case� in particular� by 
�	�"
�	� these policies have the same costs	

Let �i be the expected cycle duration when using the deterministic policy gi	 It is shown in

��� that the cost Cx
!� is obtained as limit 
rather than the lim in 
�	� and

Cx
!� �
lX

i��

zi
�C
gi 
���

is independent of the initial state x� where zj
� is given by

zi
� � �i�i

hPl

j�� �j�j

i��

���

�



The same linear representation holds for Dk
x
!�	 Denote by

!# the subset of PTS policies which are

best for problem COP� i	e	 feasible policies for which the cost C
!� is no greater than that of any

other feasible PTS policy	 Since obviously �i � � for each i it follows from 
�	� and 
�	� that !#


or the corresponding vectors � can be obtained as follows	 Solve the Linear Program�

LPpts � �nd z �� fz�� ���� zlg that minimizes
Pl

i�� ziC
gi� subject to

lX
i��

ziD
k
gi � Vk � � k � K�

lX
i��

zi � �� zi 	 � for � � i � l 
���

If z satis�es the equality and nonnegativity constraints in 
�	� de�ne �
z by the inverse of 
�	��

�i �
zi
�i

hPl
j��

zj
�j

i��

���

Any z which is feasible for LPpts� i	e	 satis�es 
�	�� de�nes a feasible PTS policy through � �

�
z� and vice versa	 In particular� let B denote the set of optimal solutions of LPpts	 The set

# �� f�
z � z � Bg then satis�es !# � f!� � � � #g	 In fact� any vector in # de�nes an optimal

policy for COP 
and not only best among PTS policies� as the following result shows ����

Lemma ���� Under A� COP is feasible i� LPpts is� If A� also holds� then any PTS policy !�

where � � # is optimal for COP�

��� An optimal stationary policy for COP ���� ����	

Let now z be a jXj � jAj dimensional real matrix and consider the following Linear Program�

LPs� Find z that minimizes
P

y�X

P
a�A c
y� az
y� a subject to�

X
y�X

X
a�A


�x
y
 Pyaxz
y� a � � � � x � N 
���a

X
y�X

X
a�A

dk
y� az
y� a � Vk � � k � K 
���b

X
y�X

X
a�A

z
y� a � � 
���c

z
y� a 	 � y � X� a � A 
���d

Denote the set of optimal solutions of LPs by B	 For any z that satis�es 
�	�a� �	�c� �	�d de�ne

the matrix �
z through 
�	�� Lemma �	� below establishes that � is well de�ned	

�ay 
z ��
z
y� aP

a��A z
y� a�

���
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Each matrix � de�nes a stationary policy� say 	 through p�ajy � �ay 	 Denote # �� f�
z � z � Bg	

The Linear Program LPs is related to the COP in the following way ����	

Lemma ���� Under A�� LPs is feasible i� A� holds� If z satis�es ���	a� ��	c� ��	d
 then �ay 
z

is well de�ned� If a stationary policy g is de�ned by pg
ajy � �ay 
z� then

P
a z
y� a � 
g
y�

Conversely� for each stationary g� z
y� a �� 
g
y � pg
ajy satis�es ���	a� ��	c� ��	d
� In partic�

ular� for each � � B the stationary policy 	 de�ned by p�ajy � �ay 
� is optimal for COP� andP
y�X

P
a�A dk
y� a�
y� a � Dk
	� � � k � K and

P
y�X

P
a�A c
y� a�
y� a � C
	�

Some important properties of LPs which are needed later are collected below	

Lemma ��� ��� p	 ���� Under A�� �i
 there is at least one z that satis�es constraints ���	a
� ���	c


and ���	d
 and �ii
 any such z has� for each state y� at least one non�zero component z
y� a �

Lemma ���� Under A� there are exactly N�� linearly independent equations among ���	a
� ���	c
�

Proof� Summing over x � �� �� �� ���� N in 
�	�a shows that these equations are linearly dependent	

Suppose there are L � N independent equations among 
�	�a and 
�	�c	 Consider the feasible

region de�ned by 
�	�a� 
�	�c and 
�	�d	 $From standard results on Linear Programs� there exist

some feasible z with at most L non�zero components	 But this contradicts Lemma �	� 
ii	

Conclusion� In both the PTS and the stationary cases one obtains a Linear Program of the form�

LP�� Find z that minimizes c � z� subject to g
z � �� and

z 	 � 
���a

dk � z � Vk � � k � K 
���b

where g is a vector of a�ne functions 
and the scalar product is the summation over all common

indices	 It will sometimes be convenient to use generic notation for the inequality constraints� and

we shall� without further mention� replace 
�	�a��	�b with the single inequality f
z � � 	 If the

stationary method is used then we omit one 
redundant equality constraints in 
�	�a so that by

Lemma �	� in either method all the equality constraints are linearly independent	

Denote by B the set of z%s which are optimal for LP�	 Note that B is closed and convex	 If

B is a singleton then we denote its single element by �	 The set # as de�ned below 
�	� or 
�	�

is clearly also closed� but not necessarily convex	

�� THE ADAPTIVE CASE� PROBING APPROACH�
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Below we show that the solution of ACOP can be decomposed into two phases� the estimation�

and the control	 In this section we obtain strongly consistent estimators� assuming only A�	 After

each step� the new information obtained dictates an update of the estimation and hence of the

policy in use	 One standard way to do so is to solve the non�adaptive problem COP through LP�

while substituting the estimates instead of the real 
unknown coe�cients in the Linear Program	

The resulting policy is then used till the next estimate is obtained� this is known as the �certainty

equivalence� principle	 There are two di�culties with this approach	 The �rst is a continuity

problem� in Section � we give conditions under which� if the estimation is consistent� then the

policy converges 
�self tuning� and the policy is optimal	 The second di�culty is that under a

Certainty Equivalence policy it is not generally possible to construct consistent estimators	 In this

section we shall assume that for each possible value of the parameter� we are already given some

control laws for which convergence does occur� this is formalized below	 Under this additional

condition and A� we construct consistent estimators using a probing approach� and show that the

costs obtained when all parameters are known are also achieved in the adaptive case	 Hence the

estimation does not a�ect the cost� even though probing controls� which are not close to to the

optimal control� are used to enhance the estimation	

��� The Time Sharing approach

����� Estimation of the costs

The �rst method involves the estimation of C
gi and D
k
gi for all l deterministic policies gi

and � � k � K	 Throughout subsection �	� we use PTS policies only	 Denote

�
� �� minft � ��Xt � �g � �
j  � �� minft � �
j�Xt � �g	

The nth cycle is thus the period ��
n� �
n �� and during each cycle� by property 
� of PTS

policies a �xed deterministic policy is used	 We impose property 
� also in ��� �
�	 Let

�i
� �� minft � ��Xt � � and policy gi is used during the cycle beginning at time tg	

�i
j  � �� minft � �i
j�Xt � � and policy gi is used during the cycle beginning at time tg	

bi
n�� the total time during which gi was used during the �rst n cycles	

mi
n�� the number of cycles during which gi was used during the �rst n cycles	

Property 
� of a PTS policy !� thus requires that for i � �� ���� l� limn�� n��mi
n � �i with

probability one 
under A�� in any realization of any PTS policy the number of cycles becomes

in�nite as t�� with probability one ��� and hence the de�nitions above are valid	
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The costs under policy gi are estimated as

!Cn
gi �� �bi
n�
��

nX
j��

��j�����X
t���j�

c
Xt� At � �fgi is used during cylce jg 
���a

!Dk
n
gi �� �bi
n�

��
nX

j��

��j�����X
t���j�

dk
Xt� At � �fgi is used during cylce jg� � � k � K 
���b

To obtain consistent estimators� i	e	 that for a PTS policy u we have for all i

lim
n��

!Cn
gi � C
gi and lim
n��

!Dk
n
gi � Dk
gi Pu 
 a�s�

it su�ces to use every gi during in�nitely many cycles	 This is shown as follows� let

Yi
j ��

�i�j�����X
t��i�j�

c
Xt� At � �fduring the j
th cycle policy gi is usedg

If u is any PTS policy that uses gi in�nitely often� then Yi
n� n � �� �� ��� are i	i	d	 De�ne

EuYi
� ��Wi and recall Ebi
n � �i	 By the Strong Law of Large Numbers

lim
n��

!Cn
gi � lim
n��

Pn
j�� Yi
j

bi
n
�
limn�� n��

Pn
j�� Yi
j

limn�� n��bi
n
�

Wi

�i
� C
gi Pu a�s� 
���

where the last equality follows from Chung ��� pp	 ������	 A similar result holds for Dk
gi	

����� The optimal control�

Recall that under a PTS policy� some �xed deterministic policy is used during each cycle	

Denote by !Cn and !Dn the set of estimates f !Cn
gi� !D
k
n
gi� � � k � K� � � i � lg	 Suppose we

are given a sequence 
 �� f
r� r � �� �� ���g of approximations of an optimal � � # 
de�ned below


�	� which are parameterized by the estimators of the costs	 Let d
z� z� �� max��i�lfjz
i
z
�
ijg

and �x a decreasing sequence r � �	 In the following Algorithm �	� the r
th estimate of C and D is

substituted in 
r to yield a series �
r of approximations of some optimal �	 These in turn de�ne

a sequence of policies	 The performance of the Algorithm is obtained in Theorem �	� below	

Algorithm ����

�	 Set N� � � and r � �	

�	 Use gi during the Nr  ith cycle� � � i � l	
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�	 Calculate !CNr�l and
!Dk
Nr�l

to obtain �
r �� 
r
 !CNr�l�
!DNr�l	

�	 Starting from cycle Nr l � choose at the n
th cycle gi that satis�es� i � argminf

mi�n�
n


�i
rg	

�	 Continue until cycle Nr�� �� minfn � Nr  l  � � d�m�n�
n

� �
r� � rg	 Increase r by one and

repeat from step �	

Denote the policy resulting from algorithm �	� by � � �

� !C� !D

Theorem ���� Under A� �i
 Nr � � w�p�� all r� �ii
 !Cn
gi � C
gi and !Dk
n
gi � Dk
gi

w�p��� If moreover A� holds and the parameterized approximations 
 are continuous� i�e� if �ii


implies the convergence �
r� �� then Algorithm �� yields an optimal PTS policy for ACOP�

Proof� The �rst claim is established by induction	 By de�nition� N� � � � �	 Assume that

Nj ��� j � r	 We shall show that Nr�� is �nite as well	 Clearly for Nr � n � Nr���

d

�
m
n �

n �
� �
r

�
� d

�
m
n

n
� �
r

�
 
�

n

���

Now if the n �st cycle is not a probing cycle� then it is shown in the appendix that

d

�
m
n �

n �
� �
r

�
� max

�
n

n �
d

�
m
n

n
� �
r

�
�
�l

n �

�

���

Since there are exactly l probing cycles between Nr and Nr�� and since d
�m�Nr�

Nr
� �
r

	
��� 
�	�

and 
�	� imply that step � is concluded in a �nite time� and �i
 is established	 It immediately

follows that probing cycles are used in�nitely often� and hence by the argument following 
�	�


ii holds	 To establish the last claim note that by hypothesis� 
ii implies �
r � � so step � of

Algorithm �	� implies that limr��Nr
��mi
Nr � �i for � � i � l	 As there are exactly l probing

cycles among the cycles Nr � n � Nr��� it follows from this and 
�	� that limn�� n��mi
n � �i

for � � i � l	 But this establishes that the adaptive policy is a PTS policy with parameter �	 By

Lemma �	� this policy is optimal� and the last claim is established	

Remarks� Theorem �	� shows that the �probing cycles� have no e�ect on the cost� the reason is

that they occur less and less frequently� so that they do not have any impact on the last limit	 The

decreasing frequency of probing is intuitively clear from the fact that r is decreasing� so that the

number of cycles it takes to �correct� the bias due to probing is increasing	

The information obtained during the non�probing cycles could also be used to improve the esti�

mation� and decrease the size of the probing periods	 This will increase the rate of convergence of

both estimators and controls	 The proofs are similar� but we shall not pursue these issues here	
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����� The countable case

When the state and action spaces are very large the Linear Program required by either methods

described in Section � becomes impossible to solve� and approximation schemes are required	 Yet in

some non�adaptive applications PTS policies have been successfully used to obtain optimal policies

using �nite Linear Programs 
e	g	 ��� even when the state space is countably in�nite	 Such a result

holds when the following condition can be veri�ed�

A�a� There is a �nite set G  U
SD� so that an optimal policy exists among PTS policies that

are obtained by switching between policies in G only	

A�b� Under every gi � G� Egi

hP������
s����� jc
Xs� Asj

i
��� and similarly for dk	

When A� holds� the optimal policy is obtained using exactly the same method as in section

�	�� where l stands for the number of stationary deterministic policies in the subset G	 It is easy

to check that the adaptive scheme described in Section �	�	���	�	� carries over as well	 In section �

an example of a queueing network is given where this method is applied	

��� Generalizing the stationary policies

����� Estimation of the transition probabilities�

The second method involves a direct estimation of the transition probabilities	 De�ne

!P t
xay ��

Pt
s�� �fXs�� � x�As�� � a�Xs � ygPt

s�� �fXs�� � x�As�� � ag

If the denominator is zero then !P t is chosen arbitrarily� but such that for every x and a� !P t
xay is a

probability measure	 For this estimator to be consistent under some policy u� i	e	

lim
t��

!P t
xay � Pxay Pu a�s� 
���

for all states x� y � X and a � A� it is su�cient that each state�action pair is visited in�nitely

often	 If this holds� then the type of renewal argument leading to 
�	� also establishes 
�	� 
see

��� 
�	���
�	��	 It turns out 
��� Lemma �	� that under any policy u each state x is visited

in�nitely often Pu a	s	 By an appropriate �probing� 
described below we shall guarantee thatP�
s�� �fXs�� � x�As�� � ag �� Pu a�s� for all x � X� a � A� implying consistent estimation	

����� The optimal control�

��



To obtain an optimal policy for ACOP� the estimator !P t of the transitions Pxay is combined

with an updating rule for the control	 Clearly� the resulting policy cannot be stationary� neverthe�

less� we would like to apply the Linear Program LPs of section �	� as a tool for computing optimal

policies	 Altman and Shwartz ��� construct �Action Time Sharing� 
abbreviated ATS policies�

which generalize the stationary policies	 If
Pt

s��fXs � yg � � set f t
ajy �� �	 Otherwise de�ne

f t
ajy ��

Pt

s�� �fXs � y�As � agPt

s�� �fXs � yg

A policy u is an ATS policy with parameter � �� f�ay � y � X� a � Ag if limt�� f t
ajy � �ay Pu

a	s	 As in the case of PTS� the parameter � does not determine an ATS policy uniquely� and we

denote be !� any such policy	 All these policies achieve the same cost� as we show in Lemma �	�

below� and hence the notation !� does not cause di�culties	

Lemma ��� ��� Theorem �	�� The costs under a stationary policy 	 are also achieved by any ATS

policy !� for which �ay � p�ajy P �� a�s� Consequently� any policy for which such a limit � exists and

satis�es �ay � �ay for some � � # �given in ����

 is optimal for COP�

As in Section �	�	� assume we are given a sequence 
 �� f
r� r � �� �� ���g of approximations

of an optimal � � # 
de�ned below 
�	� which are parameterized by the estimators !Pxay� x� y �

X� a � A of the transition probabilities	 In the following Algorithm �	� the rth estimate of the

transition probabilities P is substituted in 
r to yield a series �
r of approximations of an optimal

� 
i	e	 � � #	 Let now d
z� z� �� maxfjz
y� a 
 z�
y� aj � y � X� a � Ag	 Fix a decreasing

sequence r � � and de�ne the sequences of 
random stopping times fTig
�
i�� and fSig

�
i�� as follows	

Set T� �� �	

For r 	 � de�ne Sr �� infft � Tr� each state has been visited at least jAj times after Trg	

Tr�� �� minft � Sr � d�f
t
�j�� �
r� � rg� where �
r is obtained at time Sr using 
	

Algorithm ����

�	 Set r � � and choose �
� arbitrarily	

�	 Let A � fa�� ���� ajAjg	 Probe by choosing action ai at the ith visit to state y after Tr	

�	 Use a� � argmina�Aff
t
ajy
�ay
r
�g whenever Xt � y except when probing	 Continue until

Sr	

�	 Calculate !PSr to obtain �
r � 
r
 !PSr	 If Xt � y then a� � argmina�Aff
t
ajy 
 �ay 
rg	

Continue until Tr� increase r by � and repeat from step �	

��



Denote the policy resulting from algorithm �	� by � � �

� !P	

Remark� As Theorem �	� shows� the controls used at �probing times� have no e�ect on the cost	

Since they occur less and less frequently they do not in�uence the conditional frequencies f t
ajy

as t�� 
see the remark following Theorem �	�	

Theorem ��	� Under A�� �i
 Tr � � and Sr � � for all r P� a�s� and �ii
 !PTr � P P� a�s�

Assume moreover A� and that the sequence 
 is continuous in the sense that �ii
 implies that �
r

converges to some optimal �� Then Algorithm �� yields an optimal ATS policy for ACOP�

Proof� 
i and 
ii are proved in the same way as in Theorem �	�	 By 
ii� the de�nition of Tr

and the hypothesis� under Algorithm �	� limr�� fTr
ajy � �ay for all a � A� y � X	 Using

arguments as in the proof of Theorem �	� it can be shown that in fact limt�� f t
ajy � �ay for all

a � A� y � X	 Hence the adaptive policy is in fact an ATS policy with parameter �	 by Lemma

�	� and from LPs 
Section �� this policy is optimal	 The details are omitted	

���� Comparison of the two methods

The number of estimated parameters and the number of coe�cients in the associated Linear Pro�

gram are of the order of jAjjXj under the PTS method� and jXj� � jAj under the second method	

Since both methods require solving Linear Programs 
for the control law� it follows that the second

method is much more e�cient than the �rst	 However� the PTS method has several advantages	

First� it enables to solve speci�c problems involving a countable state space 
Section �	 Second� it

easily generalizes to problems where the costs c
x� a and dk
x� a are not known a�priori and can

only be measured with some noise� for then the estimator 
�	� is consistent	

�� THE CONTROL LAWS

In order to construct an optimal policy� we needed a sequence 
 that enables us to obtain a

�converging� sequence of approximations �
n using estimates of some coe�cients of LP� 
Section

�	 If LP� has a unique solution � for the true parameters then �
n are estimates of that � and

the convergence implies� through 
�	� or 
�	�� that �
n � � as required in Theorem �	� 
�	�	

Below we implement the �certainty equivalence� approach of substituting the estimates in LP��

and illustrate via Example �	� the di�culties with this approach	 Denote by B the set of optimal

solutions of LP� 
under the true parameters	 We consider the case where the parameter estimates

converge 
this holds� for example� under the probing schemes of section �	 In Theorem �	� we

��



provide conditions under which if �
n are a sequence of solutions for the �approximate� LP�� then

any limit is in B� i	e	 limn��f�
ng  B	 This implies limn��f�
ng  #	 In Section � we

combine the results of Sections ��� to obtain optimal adaptive controls for several systems	

Roughly speaking� the �certainty equivalence� 
ce control is obtained by substituting the

estimates generated by Algorithm �	� 
�	� into LP�� and de�ning 
r in Step � of Algorithm �	�


Step � of Algorithm �	� as the solution of LP�n	 For both methods� the Linear Program takes

the form 
cf	 LP� 
�	�

LP�n � Find z
n that minimizes cn � z subject to g

n
z � �� z 	 � and

dkn � z � Vk � � k � K

where the coe�cients in LP�n are obtained through the estimation scheme	 Choose �
� arbitrarily

but such that �i
� 	 � � � i � l and
Pl

i�� �i
� � �	 Let B
n be the set of solutions of LP�n	

If B
n is empty� i	e	 LP�n is not feasible then set �
n �� �
n 
 �	 Otherwise� pick any one

element of B
n and denote it by �
n	 This de�nes a control �
n through either 
�	� or 
�	�	

The certainty equivalence approach was used successfully in many unconstrained problems ����	

In the constrained adaptive case some serious di�culties arise	 For simplicity� these are illustrated

through a parameterized ACOP� although we may anticipate similar problems in our case	

Example ���� Let X �� f�� �g� A �� fp� qg� V� � 
V� � V	 � 
V
 � �� with transitions

Py�p�� � Py�q�� � �
 Py�p�� � �
 Py�q�� � �� y � �� �

The costs are given by c
�� p � c
�� q � c
�� p � � and c
�� q � ��

d�
x� a � �fx � �� a � pg � b�� d�
x� a � 
�fx � �� a � pg � b��

d	
x� a � �fx � �� a � qg � b�� d

x� a � 
�fx � �� a � qg � b��

where a and b are parameters	 Note that the four inequality constraints impose two equality

constraints	 We shall illustrate the continuity problems that arise in the corresponding Linear

Program when � is replaced by a series �n � � and when b is replaced by a series bn � b	

The Linear Program corresponding to COP using stationary policies takes the form

LP� Find z that minimize
P

a�y z
a� yc
a� y � z
�� q subject to�

X
y����

X
a�p�q


��
y
 Pya�z
y� a � 
�
 �z
�� p
 �z
�� p  �z
�� q  
� 
 �z
�� q � � 
���a

��



b��z
�� p � b��z
�� q � � 
���b

X
y�a

z
y� a � � z
y� a 	 � 
���c

Where one redundant equality constraint was omitted� as indicated below LP�	 Let � be any

optimal solution of the LP	 For any � �� ��� the feasible region contains at most the single point

z
�� p � z
�� q � b� z
�� p � 

�b ��  �
 ���
 ������ z
�� q � 
b
 �  ����
 �����

for all b such that 
�	�c holds	 In particular� for b � ���� all z
�� � are equal to �	��	

For � � ��� the feasible region is nonempty for b � ���� only� and then it consists of a hyperplane

z
�� p  z
�� q � ��� � z
�� p � z
�� q � ����

Conclusion� we can anticipate two problems when using the certainty equivalence control law�


i LP�n is not feasible for some 
perhaps in�nitely many n even though LP� is feasible	 In our

example� this is the case when � � ��� is �xed and b is replaced by estimates di�erent than �	��	


ii If b � ���� is �xed and � � ��� is unknown and is replaced by some estimates� the respective �

which determines the optimal policy for ACOP is given by �p� � �q� � ���� �
p
� � �� �

q
� � � whereas

whenever the estimate of � is not equal �	�� the approximating control is �p� � �q� � �p� � �q� � ���	

Thus we can expect suboptimal behavior	

In order to understand and overcome these problems� we use the well known theory of sensi�

tivity analysis for Linear Programs	 We begin with a lemma of Dantzig� Folkman and Shapiro ���

which gives conditions for the convergence of �
n to B � the solution set of LP�	 Let ff� fng�

fg� gng be a�ne functions with domain IRl and ranges in IRm and IRm
�

respectively� such that

fn � f� and gn � g pointwise	 Given a Linear Program 
e	g	 LP� with l decision variables�

f � 
f�� f�� ���� fm 
f
n represents the m inequality constraints and g 
gn represents the m� equal�

ity constraints	 Given any function � from IRl to IR and a set H � IRl� de�ne M
�jH to be the

subset of H where � achieves its minimum� i	e	 M
�jH �� fx � H � �
x � inff�
yjy � Hgg	

Denote H
f� g �� fx � IRl j f
x � �� and g
x � �g� this is the feasible set of the Linear Program

associated with f� g	

Lemma ��� ��� Theorem I	�	�� Assume that limn��H
fn� gn � H for some set H� Let � and

f�ng be linear functions such that �n � � pointwise� Then

lim
n��

M
�njH
f
n� gn M
�jH 
���

��



Thus convergence of sets of optimal solutions of LP%s depends on convergence of feasible sets	

Denote

I �� fi j � � i � m� fi
x � � for all x � H
f� gg� fI �� ffi� i � Ig and denote the rank of the

matrix whose jIj m� rows are the coe�ciences of the linear functions fi� i � I� and gj� � � j � m�

by rank
fI � g	

Lemma ��� ��� Cor	 II	�	�� Assume that limn�� rank
f
n
I � g

n � rank
fI� g and that H
f� g is non

empty� Then either limn��H
fn� gn � H
f� g or H
fn� gn is empty for in�nitely many n�

In order to apply the previous Lemmas to LP�n we need the following hypothesis	

A��� COP is feasible when replacing the inequalities in 
�	� by strict inequalities� i	e	 by

Dk
z 
u � Vk � � k � K

Note that under A�� there also exist a stationary policy g and a PTS policy !� such thatDk
z 
g � Vk

and Dk
z 
!� � Vk � � k � K	 For K � � this is immediate due to Lemma �	� and Lemma �	�	

For K � �� let v be any policy that satis�es Dk
z 
v � Vk � � k � K	 Consider

COP%� �nd a policy u that minimizes DK
z 
u� such that D

k
z 
u � Dk

z 
v � � k � K 
 �	

It is feasible since v satis�es the constraint	 Hence according to Lemmas �	� and �	� there exist an

optimal PTS policy !� and an optimal stationary policy g� from which the claim follows	

We show that A� and A�� imply the hypotheses of Lemma �	� and that under A�"A�� the

feasible sets of LP�n are empty only a �nite number of times	 We then apply Lemma �	� to obtain

the convergence of the set of optimal solutions of LP�n	

Lemma ���� Under A�� A�� is equivalent to H
f� g �� � together with I � �� and implies

rank
fnI � g
n � rank
fI� g for all n�

Proof� Since g is full rank 
see Conclusion in Section � I � � implies rank
fnI � g
n � rank
fI� g

for all n	 Assume H
f� g �� �	 Since the feasible set of LP� is convex� I � � is equivalent to

the requirement that there exists some z that satis�es g
z � � and f
z � �	 $From Lemma �	�


stationary case or from the representation 
�	�� �	� 
PTS� it follows that I � � implies A��	 On

the other hand� we conclude from Lemma �	� or 
�	�� �	� that A�� implies the existence of some

stationary 
or PTS policy v whose corresponding z 
in the representation of LP� satis�es

dk � z � Vk � � k � K g
z � � 
���

��



We shall construct some z� satisfying both 
�	� and z� � �� which corresponds to some other

stationary or PTS policy	 Consider �rst the case that LP� is obtained from the PTS approach	

From 
�	���	� it follows thatDk
v is continuous in z	 Hence by picking some z� that satis�es z� � �

and
P

i z
�
i � � but close enough to z� 
�	� still holds	 In the stationary case� by construction� z

satis�es 
�	� and g
z � � 
z is obtained by z
y� a � 
v
y � pvajy	 Pick any other stationary

policy w that satis�es pw
ajy � �� a � A� y � X	 Let z

��
y� a � 
w
y � pw
ajy 	 By assumption A� and

Lemma �	�� z�� satis�es z�� � � and g
z�� � �	 Let z� �� 
�
 �z  �z�� where � is some positive

constant	 By choosing � small enough� z� � � and clearly satis�es 
�	�	

Lemma ��	� Assume A��A��� Assume that for all but a �nite number of n� there exists some

point zn that satis�es gn
zn � � and zn 	 �� Then H
fn� gn is at most �nitely often empty�

Proof� Consider the auxiliary Linear Program

LP�n � Find z and � that minimize �� subject to g
n
z � �� z 	 � and

djn � z � V j  � 
���

Denote the optimal � by �n	 Let H �
n denote the set of 
z� � satisfying the constraines in LP�n	

Let LP�� denote the Linear Program obtained by replacing gn by g and djn with d
j in LP�n	 It

follows from A�� that for both the PTS and the stationary cases� the solution �� of LP�� satis�es

�� � �	 Since the state and action spaces are �nite� there exists some positive constant L such

that Dk
x
u � L for all policies u and all k	 Thus by choosing �� � L  maxkfj V

k jg we have


zn� �
� � H �

n� so that by hypotheses H
�
n is nonempty except for a �nite number of times	 De�ne

&fn as the respective inequality constraints in LP�n	 Note that g
n is exactly the function de�ning

LP�n	

$From Lemma �	� and 
�	� it easily follows that

I �� fi j � � i � m� &fi
x � � for all x � H �
�

&f� gg � �

As in Lemma �	� we conclude rank
&fnI � g
n � rank
&fI� g for all n	 It then follows from Lemma

�	� that the feasible sets H �
n converge to H

�
�	 We claim that �n � � for all large enough n	 To

prove the claim� assume the converse	 Then� since H �
n is bounded and nonempty for all large n�

there exists a subsequence ni such that � � �ni � �� and 
z�n� �
ni� 
z�� �� where � 	 �	 But by

Lemma �	� applied to the subsequence ni� �
ni � �� � �� a contradiction� and the claim follows	

Thus LP�n is feasible for all n large� so that H
f
n� gn is at most �nitely often empty	

��



Using the previous Lemmas� the following Theorem gives conditions for limn��f�
ng  B�

and for the convergence of �
n to �� given that B � f�g	 Using Theorems �	� and �	�� the last

convergence implies optimality of the certainty equivalence approach	 Recall that B 
Bn is the set

of optimal solutions of LP� 
LP�n	 De�ne f� g 
f
n� gn as in LP� 
LP�n respectively	

Theorem ��
� Consider LP�n� Under A��A�� �i
 limn��B
n  B� �ii
 limn��f�
ng  B

and �iii
 if moreover LP� corresponding to the true parameters has only one solution� i�e� B � f�g�

then limn�� �
n � ��

Proof� For either PTS or stationary case� there is a point zn such that g
n
zn � � and z 	 � for

all n	 By Lemma �	�� Hn is at most �nitely often empty� and Lemma �	� implies 
i	 Pick any

sequence zn � B
n and let ni be a subsequence along which zni converges	 Then 
ii follows by

applying 
i to that subsequence	 
iii is immediate from the last argument and 
ii	

	� APPLICATIONS�

By way of conclusion� we give some speci�c results on the ACOP problem	

	�� The �nite ACOP

Let us introduce an assumption� whose signi�cance we discuss below	

A� At the true parameter values� LP� possesses a unique solution �	

Theorem 	��� Assume A�� A�� and A�� Then Algorithm �� ��� respectively
� using the sequence


ce� provides an optimal PTS �resp� ATS
 policy for ACOP�

Proof� By Theorem �	� the sequence 
ce possesses the continuity property requeired in Theorem

�	� 
�	�� from which the result now follows	

The value of this result is limited mainly by assumption A�� since A� is a weak assumption


which can also be slightly relaxed� while A�� is close to the necessary assumption A�	 The

di�culty with A� is that it does not hold for all values of the parameters� while on the other hand

one clearly cannot check this assumption at the unknown value of the parameters	 It is possible to

obtain a result such as Theorem �	� without assuming A�	 For this we need to extend Theorem �	�


�	�� and change the Certainty Equivalence control	 This change is necessary since a policy which

uses alternately one of two optimal actions may not be optimal 
this is in contrast with controls

obtained through Dynamic Programming for the unconstrained case	 We shall not pursue these

matters here� since the technical complications are considerable	 Note that assumptions such as

��



A� or other continuity assumptions are common in the litterature of adaptive problems 
see e	g	

Theorem �	� p	��� or the example in page ��� of ����	

However� note that the set of parameters for which A� does not hold is small in the following

sense	 The feasible set of LP� is a polyhedron� and the minimization in LP� is equivalent to �nding

the shortest vector 
whose direction is determined by c from the hyperplane through the origin

which is perpendicular to c� to the boundary of the polyhedron	 If there are two directions for

which this vector has the same length� then the slightest change in the appropriate parameter will

change this� and we are back in the situation where the optimal solution is unique� i	e	 A� holds	

Formally� if we consider all parameters as beloging to some Euclidean space IRn� then the Lebesgue

measure of the set of parameters for which A� does not hold is zero	

This fact can be utilized to �force� uniqueness as follows	 It su�ces to add to the cost c a

small randomized perturbation� were the randomiztion possesses a density� then it can easily be

seen that with probability one 
with respect to the randomization A� holds� while the costs can

be kept arbitrarily close to optimal by choosing small perturbation	

Thus assumption A�� can be overcome using extensions of the theory presented here� yielding

�optimal policies	

Parametrized models� In many applications 
see ���� it is natural to have a parameterization of

the unknowns in the system� and these need not include all parameters of LP�n	 It is obvious that

any parameter that depends continuously on the parameters estimated in Algorithm �	� 
�	� can

also be estimated consistently	 Moreover� under such parameterization� if the optimal control as a

function of the parameter is continuous� then Theorem � holds	

	�� Application to a queuing system�

In this section we apply Algorithm �	� of section �	� to solve an adaptive problem for the

following discrete�time queuing model with countable state space�

At time t� M j
t customers arrive to queue j� � � j � J 	 Each input stream is received in

an in�nite capacity bu�er	 Arrivals are independent from slot to slot� and the arrival process

Mt � fM�
t � ����M

J
t g forms a renewal sequence with �nite means �j 	 During a time slot 
t�t �

a customer from any class j� � � j � J may be served� according to some policy� which is a

prespeci�ed dynamic priority assignment	 If served� with probability �j it completes its service and

leaves the system� otherwise it remains in its queue	 The state Xt � fX�
t �X

�
t � ����X

J
t g represents

a J dimensional vector of the di�erent queues% size at time t	 Altman and Shwartz ����� solve the

non�adaptive problem with a countable state space and with constraints on the average size of

��



several queues	 They considered the following linear cost functions� c
Xt� At �
PJ

j�� cjX
j
t and

dk
Xt� At �
PJ

j�� d
k
jX

j
t for � � k � K� where cj and d

k
j are non�negative constants	

We denote COPqueues and ACOPqueues the problems COP and ACOP with the above dynamic

and cost structure	 Assume the standard stability condition on the tra�c intensity � ��
PJ

j��
�j
�j

�

�	 This is a su�cient condition for A� 
see ���	 Altman and Shwartz used PTS policies to solve this

problem in �����	 They show that in fact one can restrict to the �nite class of PTS policies obtained

by switching only between the l � J ' di�erent priority policies gi� each time the queues are empty	

In fact� Assumption A� 
introduced in �	�	� holds ��� when the second moment of the number

of arrivals per time�slot is bounded	 As indicated in �	�	�� this implies that an optimal policy for

COPqueues is obtained as in Section � 
see ���	 Moreover� an optimal policy for ACOPqueues is

obtained following the probing approach of Sections �	�	���	�	�	

In this queueing example LPpts and 
�	���	� can be simpli�ed	 In fact ��� the �i%s are equal

for all the priority policies gi� hence instead of 
�	���	� the cost can be expressed as Cx
!� �Pl

i�� �iC
gi and LPpts reduces to

LPqueues� �nd � that minimizes
Pl

i�� �iC
gi� subject to

lX
i��

�iD
k
gi � Vk � � k � K�

lX
i��

�i � �� �i 	 � for � � i � l

Denote B the set of optimal solutions of LPqueues	 Similarly to Lemma �	�� we have ���

Lemma 	��� Under A�� COPqueues is feasible i� LPqueues is� If A� holds� then any PTS policy

!� that satis�es � � B is optimal for COPqueues�

Thus the simple form that LPpts and 
�	���	� take simpli�es the calculations	 Except for that�

ACOP is solved following Section �	�	���	�	�	

Theorem 	��� Assume A�� A�� and assume that LPqueues has a single optimal solution B �

f�g� Then Algorithm �� yields an optimal policy for ACOPqueues� when using the control law 
ce

�introduced in Section �


Proof� By Lemma �	�� Assumption A�� holds	 Hence by Theorem �	� the control law 
ce yields

�
n � �	 According to Section �	�	� we can use Theorem �	� since Assumption A� hold� which

establishes the Theorem	

APPENDIX

��



Proof of ����� For n � Nr  l� let Jn �� fi � mi�n�
n

� �i
rg� and d
�
n ��

Pl
i�� j mi
n
 n�i
r j	

Note that since
P

i
mi�n�
n

� � �
P
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