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Abstract

In this paper we develop the theory of constrained Markov games. We consider the
expected average cost as well as discounted cost. We allow different players to have dif-
ferent types of costs. We present sufficient conditions for the existence of stationary Nash
equilibrium. Our results are based on the theory of sensitivity analysis of mathematical
programs developed by Dantzig, Folkman and Shapiro [9], which was applied to Markov
Decision Processes in [3]. We further characterize all stationary Nash equilibria as fixed

points of some coupled Linear Programs.
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Nash equilibrium.

1 Introduction

Constrained Markov decision processes arise in situations when a controller has more than one
objective. A typical situation is when one wants to minimize one type of cost while keeping other
costs lower than some given bounds. Such problems arise frequently in computer networks and
data communications, see Lazar [20], Spieksma and Hordijk [16], Nain and Ross [23], Ross and
Chen [26], Altman and Shwartz [1] and Feinberg and Reiman [12]. The theory of constrained
MDPs goes back to Derman and Klein [10], and was developed by Hordijk and Kallenberg [15],
Kallenberg [18], Beutler and Ross [6, 7], Ross and Varadarajan [27] Altman and Shwartz |2, 3],



Altman [4, 5], Spieksma [32], Sennott [28, 29], Borkar [8], Feinberg [11], Feinberg and Shwartz
[13, 14] and others.

In all these papers, a single controller was considered. A natural question is whether
this theory extends to Markov games with several (say N) players, where player i wishes to
minimize C?, subject to some bounds V;j,i =1,...,N on the costs Cij, 7 =1,...,B;. Although
a general theory does not exist, several applications to telecommunications have been analyzed,
see [17, 19]. The problem studied in these references is related to dynamic decentralized flow
control by several (selfish) users, each of which seeks to maximize its own throughput. Since
voice and video traffic typically require the end-to-end delays to be bounded, this problem was
posed as a constrained Markov game. For (static) games with constraints, see e.g. Rosen [24].
Some other theoretical results on zero-sum constrained Markov games were obtained by Shimkin
[30]. A related theory of approachability for stochastic games was developed by Shimkin and
Shwartz [31], and extended to semi-Markov games, with applications in telecommunications,
by Levi and Shwartz [21, 22].

In this paper we present sufficient conditions for the existence of stationary Nash equi-
libria. Our results are based on the theory of sensitivity analysis of mathematical programs
developed by Dantzig, Folkman and Shapiro [9]. This theory was applied to Markov Decision
Processes in [3], and we rely on this application here. We further characterize all stationary

Nash equilibria as fixed points of some coupled Linear Programs.

2 The model and main result
We consider a game with N players, labeled 1,..., N. Define the tuple {X, A,P,c,V} where

e X is a finite state space. Generic notation for states will be x, y.

e A = {A;},i =1,..,N is a finite set of actions. We denote by A(zx) = {A;(z)}; the
set of actions available at state x. A generic notation for a vector of actions will be
a = (ay,...,ay) where a; stands for the action chosen by player i. Denote K = {(z,a) :
z€X, a€ A(zr)} and set K; = {(z,a;) 1z € X, a; € Ai(z)}.

e P are the transition probabilities; thus Pga, is the probability to move from state = to y

if the vector a of actions is chosen by the players.



o c= {cZ},z =1,...N,j=0,1,..., B; is a set of immediate costs, where CZ : K — R. Thus

player 7 has a set of B; +1 immediate costs; ¢! will correspond to the cost function that is

to be minimized by that player, and ¢/, j > 0 will correspond to cost functions on which

some constraints are imposed.

oV = {Vf},z =1,..,N, j=1,.., B; are bounds defining the constraints (see (3) below).

Let M;(G) denote the set of probability measures over a set G. Define a history at
time ¢ to be a sequence of previous states and actions, as well as the current state: h; =
(w1,a1,...,7¢ 1,a; 1,7¢). Let Hy be the set of all possible histories of length t. A policy u® for
player i is a sequence u’ = (u},u},...) where u; : Hy — M;(A;) is a function that assigns to
any history of length ¢, a probability measure over the set of actions of player i. At time ¢,
the controllers choose independently of each other actions a = (ay,...,an), where action a; is
chosen by player i with probability u:(a;|h:) if the history h; was observed. The class of all
policies defined as above for player i is denoted by U*. The collection U = x ¥ ,U? is called the

class of multi-policies (x stands for the product space).

A stationary policy for player i is a function u’ : X — M;(A;) so that u'(-|z) €
Mi(A;(z)). We denote the class of stationary policies of player i by Us. The set Us = xN U}
is called the class of stationary multi-policies. Under any stationary multi-policy u (where the
u' are stationary for all the players), at time t, the controllers, independently of each other,
choose actions a = (ay, ...,ay ), where action a; is chosen by player i with probability u’(a;|z;)
if state x; was observed at time ¢. Under a stationary multi-policy the state process becomes a

Markov chain with transition probabilities Py, = 3=, Prayw(al).

For u € U we use the standard notation u~* to denote the vector of policies u*, k # ;
moreover, for v* € U?, we define [u—!|[v’] to be the multi-policy where, for k # i, player k uses
u®, while player i uses v’. Define U~ := U,cp{u~"}. For a € A(x) and a € A;(x), we use the

obvious notation a~*, [a~*|a], and the set A~ (x), i =1,...,N, =z € X.

A distribution f§ for the initial state (at time 1) and a multi-policy u together define a
probability measure Pg which determines the distribution of the stochastic process {X;, A;}

of states and actions. The corresponding expectation is denoted as E‘ﬁ‘



Next, we define the cost criteria that will appear in the constrained control problem.
For any policy u and initial distribution 3, define the %, j-discounted cost by

Ci (6,u) = (1 - 0) Y- '~ B4 (X,, A1) 1)

Cy(B,u) = lim nggCZ(Xt,At)- (2)

We assume that all the costs C*/, j = 1,..., B; corresponding to any given player i are ei-
ther discounted costs with the same discount factor a = «; or they are all expected average
costs. However, the discount factors a; may vary between players, and some player may have

discounted costs while others may have expected average costs.

A multi-policy u is called i-feasible if it satisfies:
CY(B,u) < V;j, for all j =1, ..., B;. (3)

It is called feasible if it is i-feasible for all the players ¢ = 1,..., N. Let Uy be the set of feasible
policies. A policy u € Uy is called constrained Nash equilibrium if for each player : = 1,...; N

and for any v such that [u~!|v?] is i-feasible,
CH(B,u) < CO(B, [u™"|')). (4)

Thus, any deviation of any player ¢ will either violate the constraints of the ith player, or if it

does not, it will result in a cost C*C for that player that is not lower than the one achieved by

the feasible multi-policy u.

For any multi-policy u, u® is called an optimal response for player i against u™" if u is
i-feasible, and if for any v such that [u—*|v?] is i-feasible, (4) holds. A multi-policy v is called
an optimal response against v if for every i = 1,..., N, v’ is an optimal response for player i

against u".

We introduce the following assumptions

e (II;) Ergodicity: If there is at least one player that uses the expected average cost criteria,

then the unichain ergodic structure holds, i.e. under any stationary multi-policy u, the
state process is an irreducible Markov chain with one ergodic class (and possibly some

transient states).



e (IIy) Strong Slater condition: For any stationary multi-policy u, and for any player i,

there exists some v* such that

CH(B,[u']) < V7, forall j=1,..,B;. (5)
We are now ready to introduce the main result.

Theorem 2.1 Assume that Iy and Ils hold. Then there exists a stationary multi-policy u

which is constrained-Nash equilibrium.

3 Proof of main result

We begin by describing the way an optimal stationary response for player ¢ is computed for
a given stationary multi-policy u. Fix a stationary multi-policy w. Denote the transition
probabilities induced by players other than i, when player i uses action a;, by P%! = {’P;ﬂ;,y
where
'P;L;li.y = Z Hulm(alkc)any, a= [a_i|ai].
a~tc A~ l#£i
That is, we consider new transition probabilities to go from z to y as a function of the action

a; of player 4, for fixed stationary policies of players [, [ # 4. Similarly, define

Fwa)= Y [[d(@l)d@a)  a=Ilalal.

a“te At 1A

Next we present a Linear Program (LP) for computing the set of all optimal responses
for player i against a stationary policy u~*. The following LP will be related to both the
discounted and average case; if the ¢th player uses discount costs, then a; below will stand for
its discount factor. If it uses the expected average costs then «; below is set to 1. Recall that
B is the initial distribution.

LP(i,u):

Find 2* := {2*(y, )}y, that minimizes C*?(z) := Z Z 2 (y, a)z(y, a) subject to:
yeX acA,(y)

Yo Y zy.a) [&-(y) - af;&i] =[1-q]B(r) r€X (6)

yeEX a€A;(y)



Cz) =3 Y dy,a)z(y.a) <V) 1<) < B (7)
yeX acA;(y)

z(y,a) > 0, Z Z z(y,a) =1 (8)

yeX acA;(y)
Define T'(,u) to be the set of optimal solutions of LP (i, u).

Given a set of nonnegative real numbers z = {z(y,a),y € X,a € A;(y)}, define the
point to set mapping y(z) as follows: If 3°, 2(y, a) # 0 then vy(z) = {2(y,a)[>, 2(y,a)] "1}
is a singleton: for each y, we have that v,(z) = {7y(z) : @ € Ai(y)} is a point in M;(A;(y)).
Otherwise, vy(z) := Mi(A;(y)), i.e. the (convex and compact) set of all probability measures
over A;(y). Define g’(z) to be the set of stationary policies for player ¢ that choose, at state y,
action a with probability in vy (z).

For any stationary multi-policy v define the occupation measures

F(B,v) = {f'(B,v;y,a) 1y € X, a € Ai(y), i =1,..,N}

as follows. Let P(v) be the transition probabilities of the Markov chain representing the state
process when the players use the stationary multi-policy v. If player ¢ uses the discounted cost
a; < 1, then

Fi(Bvsy,a) = (1 — ) Y B(x) (Z af_l[P(v)s]my> v'(aly)- (9)

reX s=1

If player i uses the expected average cost then

F1(B,v5y, a) = 7°(y)v' (aly),

where 7V is the steady state (invariant) probability of the Markov chain describing the state

process, when policy v is used (which exists and is unique by Assumption II;).

Proposition 3.1 Assume II;-IIy. Fiz any stationary multi-policy u.
(i) If z* is an optimal solution for LP(i,u) then any element w in g*(2*) is an optimal stationary

response of player i against the stationary policy u ™.

satisfies f1(B3,v) = 2*.
(ii) Assume that w is an optimal stationary response of player i against the stationary policy

u™t, and let v := [u”*|w]. Then f(B,v) is optimal for LP(i,u).

Moreover, the multi-policy v = [u™"|w]



(iii) The optimal sets T'(i,u), i = 1,...,N are convez, compact, and upper semi-continuous in
u™", where u is identified with points in x| Xzex Mi(A;i(x)).

(iv) For each i, g*(z) is upper semi-continuous in z over the set of points which are feasible for
LP(i,u) (i.e. the points that satisfy constraints (6)-(8)).

Proof: When all players other than i use %, then player i is faced with a constrained
Markov decision process (with a single controller). The proof of (i) and (ii) then follows from
[3] Theorems 2.6. The first part of (iii) follows from standard properties of Linear Programs,
whereas the second part follows from an application of the theory of sensitivity analysis of
Linear Programs by Dantzig, Folkman and Shapiro [9] in [3] Theorem 3.6 to LP(%,u). Finally,

(iv) follows from the definition of g*(z). [ |

Define the point to set map

U X'filMl(K:i) — Z{X'filMl(K:z)}
by
U(z) = x4 T(i, 9(2))

where z = (21,...,2n), each z; is interpreted as a point in M (K;) and g(2) = (¢'(z1),...,9~ (2n))-

Proposition 3.2 Assume II1-IIy. In the case that no player uses the expected average cost
criterion, assume further that, for some n > 0, the initial distribution satisfies 3(x) > n for all

x. Then there exists a fived point z* € ¥(z*).

Proof: By proposition 3.1(i) and (9), it follows that under the stated conditions, all solutions
z* of LP(i,u) satisfy Y, z*(z,a) > 7' for some ' > 0. But under this restriction the set
vy(2) is a singleton, and hence the range of the function ¢*(z) is also single points. The proof
now follows directly from Kakutani’s fixed point theorem applied to ¥. Indeed, by Proposition
3.1 (iii) and (iv), I'(4,g(z)) is a composition of two upper semi-continuous functions: ¢(-), and
I', which have convex compact ranges. Hence V¥ is upper semi-continuous in z, and has a
compact range. Since g(-) can be considered as a regular (that is, not set valued) function, the

composition also has a convex range. Therefore the conditions of Kakutani’s Theorem hold. B



Proof of Theorem 2.1: Under the conditions of Proposition 3.2, the proof is obtained by
combining Proposition 3.1 (i) with Proposition 3.2. Indeed, Proposition 3.1 (i) implies that for
any fixed point z of ¥, the stationary multi-policy g = {g*(z%);i = 1, ..., N} is constrained Nash
equilibrium. It therefore remains to treat the case where all players use a discounted criterion

and, moreover, the initial distribution £ satisfies 3(x) = 0 for some x.

Given such f, let 3, be a sequence of initial distributions satisfying 3,(z) > 7, > 0
and (,(x) — B(x) for each = (so that n, — 0). Let u, be a constrained Nash equilibrium
multi-policy for the problem with initial distribution §,: this was just shown to exist. If we
identify the multi-policies u, with points in x| x,ex M1(A;(z)), then they lie in a compact
set. Let u be any limit point. We claim that w is a constrained Nash equilibrium multi-policy
for the problem with initial distribution 8. To show this we need to establish that

(i) u satisfies (3) for each i, and
(ii) if [u~?|v?] is i-feasible, then (4) holds.

From (1) it follows that all costs are linear (hence continuous) functions of the frequencies
f(B,v) which are, in turn, continuous functions of (3,v) (see (9)). In fact, the costs are linear
in 3. Therefore the costs C%(3,u) are continuous in (3,u). Since (3) holds for (8,,u,), the
continuity implies that it holds for (8, u) and (i) is established.

Now fix some 7 and suppose that v' is such that [u=|v] is i-feasible. Note that it is
possible that, for some i, [u;,*|v’] is not i-feasible for any n large. However, by assumption Iy,
we can find some ¥ so that (5) holds. Fix an arbitrary e and note that (5) holds also if we
replace 9 by v! = €9 + (1 — €)v’. By the continuity and the linearity we established in proving

(i) above, this implies that [u,’|v?] is i-feasible for all n large enough. Therefore,

COB,u) = lim C%(Bn,un)

< lim €6y, [ug"[ve])
= CY(B, [u™"[vg))-
Using the continuity again, we have

(8, [u™v]) = lim €08, [u™"[of])

and (ii) follows. [ ]



Remark 3.1 (i) The Linear Program formulation LP(i,«) is not only a tool for proving the
existence of a constrained Nash equilibrium; in fact, due to Proposition 3.1 (ii), it can be shown

that any stationary constrained Nash equilibrium w has the form w = {¢*(z%);i = 1,..., N}
for some z which is a fixed point of ¥. Indeed, if w is a constrained Nash equilibrium then it
follows from Proposition 3.2 that f(8,w) is a fixed point of W.

(ii) It follows from [3] Theorems 2.4 and 2.5 that if z = (2%, ..., 2V) is a fixed point of ¥, then any
stationary multi-policy g in x,g¢*(z*) satisfies C*/(83,g) = C*I(z),i = 1,...,N,j = 0, ..., B;.

Conversely, if w is a constrained Nash equilibrium then

CH(Bw) =Y 3 fi(Bwiy,a)c(y,a)

yeEX acA;(y)
(and f(B,w) is a fixed point of V).
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