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Preface

In network engineering, and more generally in complex systems, there is often

a tradeoff between simplicity of mathematicial tools, formulas or numerical

approaches on the one hand, and accuracy on the other hand. We analyze

such a situation in cellular radio networks. We propose a spatial fluid model

network that allows to establish a simple formula of a characteristic of cel-

lular radio networks, the interference factor f. This one, useful for network

dimensioning and control purposes in the cellular context, simplifies consider-

ably the computation complexity needed to obtain accurate results, without

over-simplifying the model which could have resulted in large inaccuracies.

There have been previous approaches that attempted to obtain simple

formulas for network dimensioning and control purposes in the cellular con-

text.

One of the main sources of inaccuracies lies in the fact that though the

interference factor depends on the position of the mobile in the cell, the

computation of f does not take it into account.

The goal of our approach is to propose a model that is more accurate in

taking into account the distance of a mobile to the base station, and is still

simple enough to lead to close form formulas.
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Chapter 1

Introduction

1.1 Motivation

In network engineering one often needs mathematicial tools for dimension-

ning purposes and for optimisation of resources. In that context, and more

generally in complex systems, there is often a tradeoff between simplicity

of formulas or of numerical approaches on the one hand, and accuracy on

the other hand. In this thesis we analyze such a situation in cellular radio

networks.

A mobile (MS) connected to its serving base station (BS) receives signal

and interferences. The amount of interferences due to the other BSs of the

network depends on many parameters such as their transmitting powers,

positions and number, pathloss (including the shadowing an the fast fading

effects), topology, environment (rural, urban, other)...

Any analysis of cellular radio systems (dimensioning, quality of service,

radio resources management...) has to take into account the interferences

effects. This is the reason why it is necessary to evaluate their influence,

as precisely as possible. The different kind of studies and developement

of models existing in the literature in that objective, based on simulations,

approximations, mathematical analyses, empirical approaches ...(see section

1.2), did not allow to derive a simple analytical expression of the downlink

17



18 Introduction

interference factor, which takes into account the mobile position.

The analysis is not easy. Since each base station has an influence on

each mobile of the network, even in a infinitesimal way, a global analysis

has to take into account a great number of constraints or parameters. Let

consider for example a dimensioning problem. Let assume a simplified model

of the reality, where the only parameters of the analysis are the positions of

the transmitters and receivers and the transmitting powers. Since each base

station has an influence on each mobile of the system, the system to analyze

has to answer to a great number of constraints expressed by a great number

of non independant equations.

The problem has a high complexity, even with such a simple modelization

of the reality. In a cellular radio network, the other-cell interference factor

f is an important parameter characterizing these interferences. It represents

the ’weigth’ of the network on a given cell. The precise knowledge of the

interference factor allows the derivation of networks characteristics such as

outage probabilities, capacity evaluation and admission control mechanisms.

A mobile entering a cell can be seen as a ’source’ or ’generator’ of inter-

ferences for the other mobiles already present in the cell. Indeed, in uplink

the mobile interfers, as a transmitter, with the other mobiles. And in down-

link since the entering mobile needs radio power from its serving BS, this last

one has to transmit power and interfers with the other BS. As a consequence

a mobile entering a cell increases its load. To analyze the specific overload

generated by the new entering mobile, one has to take into account the in-

terference factor. Moreover the BS transmitting power towards the mobile

also depends on that factor.

A precise knowledge of the interference factor is necessary to evaluate

the influence of a mobile in a cell and a network. It appears interesting to

determine with a high accuracy the interference factor, whatever the mobile

location. Indeed, the interference factor plays a role in many cases, and in

particularly for:

• the dimensioning process
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• the quality of service determination

• the system management: mobile scheduling analysis, radio resources

management, optimization...

Dimensioning.

The estimation of cellular networks capacity is one of the key points before

deployment and mainly depends on the characterization of interference.

Since the interference factor has a strong influence on the transmitting

power of a base station, it affects the performance of cellular systems and in

particular their cell capacity. That factor plays a fundamental role in dimen-

sioning analysis. In particular, in the CDMA systems case, the coverage of a

given cell strongly depends on the traffic and the interferences coming from

the neighbors cells. There is a cell breathing [VerSe01]. Thus some margins

have to be taken into account during the planning process. One of the main

sources of inaccuracies of the existing approaches lies in the fact that though

the interference factor depends on the position of the mobile in the cell, the

computation of f does not take it into account. An accurate estimation of

that parameter would allow a network design avoiding overestimating mar-

gins. As a consequence, an investigation of the interference characteristics

based on the location of a user seems useful.

For these reasons, a precise knowledge of f whatever the mobile location,

seems interesting.

In our analysis, we show that this factor directly depends on the density

of base stations, and can be used to determine the number of base stations

needed to answer a given traffic. In other terms it allows to analyze the ben-

efit of a densification of a network zone, for example to answer an increasing

traffic.

Quality of service.

The probability for a mobile to enter a cell is an important quality of service

(QoS) parameter. The outage probability can be calculated using the inter-
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ference factor. Since the interference factor depends on the location of the

entering mobile, a spatial outage probability can be determined. This last

one expresses the probability for a mobile to enter the cell, at a given distance

from its serving BS. Other quality of service indicators can be calculated as

for example the sojourn time characterizing the total average time lasted in

a cell by mobiles using a non real time service.

The calculation of the interference factor, with a high accuracy whatever

the mobile location, is interesting in these cases too, and particularly to

determine the spatial outage probability.

Mobile management.

As already observed, since the interference factor characterizes the load gen-

erated by a mobile, its knowledge allows to determine with a high precision

the influence of any mobile in a cell or a network. It thus enables to compare

different admissions control strategies. As a consequence, it and can help

vendors to adopt a given strategy and /or policy according to their specific

constraints.

The design of efficient and fair transmission scheduling policies consti-

tutes one of the current problems for the third generation cellular networks.

In particular, the quality of service (QoS) control related to the flow is not

new in the context of the networks integrating several services. The principal

problem is to control the throughput in a manner which is effective for the

use of the resources of the network, and advantageous for the operator by

taking into account the impact on the perceived quality of the application,

the capacity and the coverage of the network.

The analysis and the optimisation of scheduling constitute also a start-

ing point to study and optimize the load of the network and the dimensioning

of the networks and cells. An objective can be to design scheduling and access

control policies.

A precise evaluation of the influence of any mobile in a cell, which needs a

precise knowledge of the interference factor, is necessary in the aim to analyze

them and optimize their impact on the capacity, and the quality of service of
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real-time and best effort applications. And then, tools of optimization theory

and optimal control can be used to identify the adequate policies. Stochastic

and probabilistic analysis make it possible to quantify the perceived quality

corresponding to the suggested policies.

1.2 Previous approaches

There have been previous approaches proposed to model the interference

factor f (see for example [Vit01] [Ev99] [FoLi01] [Ata01] [Alm01] [Owe02]

for the uplink and [Vit02] [Gil91] [Ela05] [Bac01] [BoP01] [Tjh01] for the

downlink). Many among them assumed f as a constant. The interference

received at a base station from other cells can be written as fP where P is the

power received by the base station from mobiles in its own cell. This approach

can be used to approximate the quality of a signal received by a mobile using

the ratio ‘Signal to Interferences’ and then to use it for power and rate

control, for call admission decisions etc. That assumption (f is a constant)

can be justified in the uplink case, for example when the traffic distribution is

considered as uniform. In the downlink, the justification of that assumption

is more difficult. Indeed, since the mobiles receive an interfering radio power

depending on their location, the interference factor strongly depends on this

one. To analyze and determine the interference factor, different methods were

used. Though some analytical approaches exist, up to now, the evaluation

of the interference factor has been mainly done by using simulations.

Pioneering works on the subject [Vit01] were mainly focusing on the up-

link. Working on this link, [Ev99] derived the distribution function of a ratio

of path-losses, which is essential for the evaluation of external interference.

The authors approximate the hexagonal cell with a disk of same area. Based

on this result, Liu and Everitt propose in [Liu06] an iterative algorithm for

the computation of the interference factor, also on the uplink. [Ata01] pro-

poses an empirical model for the inter-cell interference factor in the uplink
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of a CDMA cellular system. [Kola1] analyzes the uplink interference factor

and compares to upper bounds given by [Vit01].

[StaLe1] and [StaLe02] propose an approximation analysis of the uplink

othercell interference distributions using a fix-point based approach and for

inhomogeneous UMTS networks. [LiEv01] proposes an analytical characteri-

zation of other-cell interference in the uplink of CDMA networks. It is based

on an iterative method for solving fixed-point equations employed to deter-

mine the mean and variance for lognormal approximation of the other-cell

interference.

[KolWi01] uses simulation and modelling to obtain the other-cell interfer-

ence factor for CDMA systems and proposes comparisons with upper bounds

results. In [Alm01], the authors obtain the analytical values of the mean and

the standard deviation of the intra-cell and inter-cell interference for the

reverse link of CDMA systems.

Some simulation statistics of measured uplink f-factor are given in [Owe01]

over different Monte-Carlo snapshots.

[BaR01] deals with numerical average values of f-factor for different envi-

ronment conditions.

The authors of [BoSt01] introduce a ’frequency reuse factor’ F for the

reverse link, related to the interference factor f as F = 1
1+f

which allows to

establish a pole capacity formula.

On the downlink, [Vit02] and [Vit03] aimed at computing an average

interference factor over the cell by numerical integration in hexagonal net-

works. They did not take into account the distance between the mobile and

its serving base station in the calculation of the interference factor.

In [Gil91], Gilhousen et al. show that, particularly for terrestrial network,

the interference suppression feature of CDMA systems can result in a capacity

increase. They provide Monte Carlo simulations and obtain a distribution of

the total interference.

In [Ela03] and [Ela05], other-cell interference is given as a function of the

distance to the BS. They however only determined an upper bound of the
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other cell interference.

Baccelli et al. [Bac01] consider a random network approach, base stations

are randomly distributed, to analyze the influence of geometry on the com-

bination of inter-cell and intra-cell interferences in the downlink in the case

of large CDMA networks. They use an exact representation of the geom-

etry of the downlink channels to define scalable admission and congestion

control schemes, They study the capacity of these schemes when the size of

the network tends to infinity using stochastic geometry tools. The authors

of [BaB01] consider a random network approach to provide spatial block-

ing probabilities. The authors rely on an approximated formula for f , the

interference factor is nevertheless not their main concern. Their approach

is based on an exact representation of the geometry of both the downlink

and the uplink channels. The authors show that the associated power allo-

cation problems have solutions under constraints on the maximal power of

each station/user. The analysis is implemented in such a way that each base

station only has to consider the load brought by its own users to decide on

admission. The global feasibility of the power allocation is ensured.

The authors of [BoP01] analyze data transmission on the downlink of

cellular networks. Considering a HSDPA/HDR system, the base station

transmitting power is time-shared between a dynamic number of mobiles.

They derive analytical performances, in terms of blocking probability and

data throughput. The impact of interference on cell capacity is studied by

considering two types of homogeneous networks: linear networks, where BS

are equidistant and placed on a common infinite line, and hexagonal net-

works, where cells are hexagons of the same size and cover the entire plane.

In both cases, all the base stations BS are assumed active and transmitting

at the same power. The authors make the choice of considering only the first

ring of interferers. They can then express the first ring interference by an

approximated formula. Although simple, this approximation is not validated

by simulations.

Chan and Hanly [Chan01] precisely approximate the distribution of the
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other-cell interference. They develop an analysis to approximate and obtain

bounds of it. They provide a spatial Poisson point pattern. model of traffic

in CDMA network, and show how the theory of Poisson processes can be

applied to provide statistical information about interference levels in the

network. Considering a large number of interference they use a Gaussian

approximation and calculate a bound of the outage probability at a given

cell. The formulas they provide are however difficult to handle in practice.

The authors of [MasTa] propose an other-cell-interference factor distribution

model for the downlink of CDMA systems. They provide a pdf (probability

density function) expression first assuming only one interferer, then they

generalize the expression they established to a multiple case interferers. They

analyze uniform and non-uniform traffic situations and find a bound for the

total other-cell interference.

In [SeK01] the authors analyze the performance of the packet data trans-

mission DS/CDMA downlink. They define a downlink other-cell-interference

factor as the ratio between the total power received by a mobile coming from

the other base stations to the total power received by its own BS.

In the model proposed by the authors of [GeEi01], the definition of other-

to-own-cell interference ratio is slightly different from the classical one. The

authors include the orthogonality loss factor, which applies to the own-cell in-

terference. This form lacks an explicit physical interpretation, since the value

of the orthogonally factor captures an effect that is related to despreading

the signal.

[Mat01] compute the other-cell interference factor of a CDMA system

for a three-dimensional air-to-ground cellular-like network consisting of a

set of uniformly distributed base stations and airborne mobile users. The

interference factor is found larger than that for terrestrial propagation models

and depends approximately logarithmically upon both the cell height and

cell radius. The analysis proposed by the authors of [?] provide the mean

expression of the downlink other-cell-interference factor, and an experimental

variation of this mean value, as a function of the distance by considering it
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as a sum of random variables. Their analysis does not allow to explicit its

expression for each area of the cell with/without shadowing.

The literature does not provide a simple analytical expression of the downlink

interference factor, which takes into account the mobile location.

1.3 Our approach: a Fluid Network Model

The goal of our approach is to propose a model that is accurate in taking

into account the distance of a mobile to its serving base station, and is still

simple enough to lead to close form formulas.

We propose a spatial fluid model that allows to obtain an explicit ex-

pression of the downlink interference factor. That expression allows to

simplify considerably the computation complexity needed to obtain accurate

results, without over-simplifying the model which could have resulted in large

inaccuracies.

The interference factor is generally defined as the ratio of other-cell interfer-

ence to inner-cell interference. In our analysis, interference factor is rather

defined as the ratio of total other-cell received power to the total inner-cell

received power. Although very close to the first one, this last definition is

interesting for three reasons. Firstly, total received power is the metric that

mobile stations (MS) are really able to measure on the field. Secondly, f

represents now a characteristic of the network and does not depend on the

considered MS or service. At last, the definition of f is still valid if we con-

sider cellular radio systems without inner-cell interference. In this last case,

the denominator of f is reduced to the useful power.

To establish an analytical expression of f , we need a network model. Classical

models mostly consider hexagonal networks [Vit03] [BoP01] or ’random ones’

where base stations are randomly distributed [Bac01] [BaB01].
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In contrast to previous works in the field, the modelling key of our approach is

to consider the discrete set of BS entities of a cellular network as a continuum.

Continuum approach in physics sciences

In many situations, a great set of discrete entities may be observed as a

continuum in physics sciences.

In electromagnetism, the electrical charges are in many cases considered

as a continuum with a given density, to analyze macroscopic systems. In

mechanics, the analysis of gravity effects is determined by considering a mass

density. In thermodynamic systems, many analyzes assume atoms in term

of density, to analyze their macroscopic properties.

In fact, the approach considering a great set of discrete entities as a

continuum with a given density allows to determine macroscopic properties

of the systems, without the complexity of the calculations due to the number

of entities. That approach gives results with a sufficient precision to allow

analyzing and understanding the reality observed in many situations.

For example, sending satellites around the Earth needs a precise knowl-

edge of its gravitation field. It is however not necessary, in many cases, to

calculate the gravitation field generated by each element constituting the

Earth (atoms, molecules or stones): an approach considering a mass contin-

uum (with the knowledge of mass density) is sufficient.

In many situations, the determination of an electrical field generated by

a great set of electrical charges does not need to consider the field generated

by each discrete charge. The knowledge of a continuum charge (with the

knowledge of a charge density) is sufficient.

In thermodynamics, the temperature of a gas in a closed system can be

determinated by using the Maxwell-Boltzman theory applied to each atom

or molecule of that gas. It can also be calulated by applying the equation

linking the volume, the pressure and the temperature. Though that last

approach is simpler than the first one, the two methods give the same values

in most classical cases. Differences appear only when microscopic effects are
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analyzed.

Continuum approach in radio network analysis

The method used in physics sciences can be applied to radio network analysis.

A great number of studies consider a set of discrete ’entities’ as a continuum.

In particular, mobiles can be described as a mobile density and traffic can

be considered as a fluid, to drive macroscopic analysis of radio systems such

as dimensioning or optimisation. Indeed, in many situations, a macroscopic

analysis is sufficient.

In queueing analysis, performances can also be analyzed by considering

a fluid approach. The fluid flow representation proposed by the authors of

[KuM01] is an approximation to cell-level behavior in which cell-level details

are smoothed into a steady rate of fluid flow. The authors of [MiG01] exploit

fluid modeling of the data traffic to present a general methodology for the

analysis of a network of routers supporting active queue management with

TCP flows.

Recently, the authors of [ToTa01] described a network in terms of macro-

scopic quantities such as the node density. The authors investigate the spatial

distribution of wireless nodes that can transport a given volume of traffic in a

sensor network. They assume a massively dense network: there are so many

nodes, that is ’does not make sense to specify their placement in terms of the

positions of individual nodes’ (as said by the authors).

Assuming massively dense wireless networks, Toumpis [Tou01] presents

a few examples on the optimal design of these ones. He shows that these

networks contain such a large number of nodes that a macroscopic view of

them emerges. Though not detailed, that one preserves sufficient information

to allow a meaningful network optimization.

The same idea is used in [Jac04] for ad hoc networks, to analyze the

routing of the information in the case of massively dense ad-hoc networks. In

his approach, the author assumes a very high density of nodes and unlimited

networks.
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Fluid model network

Since in the model we propose the base stations of a network are replaced

by an equivalent continuum of transmitters which are spatially distributed

in the network, we denote it a fluid network model. This also means that

the transmitting power is now considered as a continuum field all over the

network.

The fluid approach we propose is however quite different than the existing

ones in physics and radio analysis. These last ones assume a great set of

entities (atoms, massively dense radio nodes) to tend towards a fluid limit of

the system. This one allows to calculate macroscopic quantities. In contrast,

in this thesis we establish the accuracy of the cellular network fluid model

we develop whatever the density of base stations, even when this one is very

low and whatever the network size, even when this last one is very limited.

Since the network fluid model is accurate even for very few transmitting base

stations in the network, we will rather denote it as a fluid approximation.

Since the fluid model takes into account networks characteristics, such as

the pathloss parameter, the shadowing and the topology of the system (see

chapter 8), it can be used for any kind of environment. Our model takes into

account the whole inter-cell interference and gives results close to the ones

obtained by planning tools (see remark 7.7.1) which take into account a real

environment.

In this thesis, the network access considered is constituted by a set of trans-

mitters (denoted base stations BS) whose transmitting channels share a com-

mon radio frequency bandwidth, like in CDMA systems. Since we mainly

focus on these last ones, though our approach is still valid for other systems,

like OFDMA (WiMAX), TDMA (GSM) or even ad hoc networks, we present

some recalls about them.
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1.4 Reminder about UMTS system

The UMTS (Universal Mobile Telecommunications System) is based on a W-

CDMA (Wideband Code Division Multiple Access) technology. It represents

one of the the third generation mobile transmission systems. It was stan-

dardised by the ETSI and defined by the ITU. It was developed to deliver

multimedia mobiles services (as voice, data) with a high quality, a high rate

(for operators/ service providers/users): The range of throughputs offered

to connections can reach 2Mbps locally, and up to 384 Kbit/s for greater

distances. These high throughputs require a larger frequency bandwidth. A

sa consequence, a 5MHz carrier has been chosen for the WCDMA.

The UMTS was developed in a ’tool box’ approach, in the aim to describe

the mechanisms of the mapping of services (QoS, transport formats, trans-

port channels, codages, physical channels etc...). For each service, the codage

and of the physical channel associed is the choice of the vendor. Indeed, the

UMTS is developed as a multi-service system. The main idea is to define a

certain number of global parameters, sufficient precise to describe a service

in term of QoS, and neverthless global to be able to describe any service in

this feature even the ones which do not exist yet.

The UMTS has the ability to offer a dynamical resource allocation. The

choice of CDMA technology mainly lies on its flexibility (see [OJR01] and

[PEH01]). It allows to improve the use of limited radio resource and to

offer a quality of service according to the users needs. However, since the

performances of CDMA systems are limited by the interference level, it is

necessary to develop radio resources managements algorithmes and mobile

admission control ones. One of the main challenges of CDMA networks is to

maximize network capacity and offer quality of service answering the users

needs.

The UMTS offers four classes of services: ”conversational”, ”streaming”,

”interactive” and ”background” which cover real-time and ”best-effort” ap-

plications. The UMTS allows moreover offering variable throughputs. In

particular, for the voice service, the UMTS will use the AMR (Adaptive
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Multi-rate) codec which offers eight different transmission rates, from 4.75

kbps to 12.2 kbps, and which can vary in a dynamical way every 20ms.

1.5 Organization

This thesis is organized as follows:

In chapter 2 we present the frame of our analysis. The interference model

is introduced and the basic derivations of cellular radio network. We first

define the downlink interference factor f as the ratio between external

received power experienced by a mobile coming from all the base stations

of the network and internal received power coming from the base station it

belongs to. The definition we propose is quite different than the common one

which only considers a ratio of interferences. Since it represents the ’weight’

of the network on a given mobile, we show that it characterizes cellular radio

systems. Though we mainly focus our analysis on CDMA systems since

they are typically systems where the downlink interference factor represents

a fundamental parameterfocus, that one can however be applied to other

system such as OFDMA, WLAN or GSM ones.

In chapter 3 we develop the fluid network model. Using this approach, we

establish an analytical expression of the interference factor. Since in a real

network, the base stations are a discret set, and not a continuum, we validate

our model by comparing it to a simulated hexagonal network. And we show

through Monte Carlo simulations that the obtained formula provides a very

good approximation of f . This closed formula accounts for the cell radius,

the network size and the path-loss exponent. We establish the accuracy of

the fluid model whatever the density of base stations, even when it is very

low and whatever the network size, even when it is very limited.

In chapters 4, 5 and 6, we propose some possible applications, as an

analytical study based on the fluid model, in the case of CDMA networks.
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The chapter 4 analyzes the capacity of a cell and a network based on

a CDMA frequency division duplex (FDD) technology, in term of mobile

number.

As an application of the fluid model, we calculate the capacity of a cell

in term of number of mobiles, and analyze the densification as solution to an

increasing traffic. The fluid model approach allows to analyse and compare

instantaneously different solutions with the aim to adapt the network, or a

given zone of the network, to an increasing traffic demand. The sectorisation,

and a comparison of these two means to anwer a traffic demand, is developed

in chapter 7.

In the chapter 5, we propose a study control policy for a multiservice

case, considering two types of services non real time ones (NRT) and real

time ones (RT), in a CDMA network. We develop a simplified mathematical

model that allows us to analyze the performance of call admission control

combined with GoS control in a WCDMA environment with integrated RT

and NRT traffic. Performance measures, as call blocking probabilities and

expected transfer times, are then computed by modeling the CDMA system

as a quasi-birth-and-death (QBD) process. We establish these performances

depend on a parameter, the average interference factor, which is function of

the exponential pathloss factor, and show the fluid model can be used to

determine analytically this one.

In the chapter 6, the fluid model is used to analyze the global outage

probability: we get a simple outage probability approximation by integrating

f over a circular cell. In addition, as f is obtained as a function of the

distance to the BS, we derive a spatial outage probability, which depends on

the location of a newly initiated call. As downlink is often the limited link

w.r.t. capacity, we focus on this direction, although our framework can easily

be extended to the uplink.

Since one of the hypothesis on which the calculation of the interference
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factor lays is a radial and deterministic pathloss depending on the distance

between the transmitter and the receiver, we propose two refinements in the

chapters 7 and 8. Moreover an extension to the uplink is developed in the

chapter 9, too.

In the chapter 7, we propose a first refinement by considering a pathloss

also depending on the antenna gain: this last approach enables to analyze

networks with sectored cells. As an application, a comparison between the

sectorisation of a network (i.e. to add directional antennas in the existing

base station sites) and a densification (i.e. to add new sites) is proposed.

Considering a fluid network approach, we first establish the expression of the

interference factor for a three-sectored network. We validate this approach

comparing it to a numerical computed network. We compare, as solutions

to an increasing traffic, the densification to the sectorisation. And we show,

this model enables to analyse the mobile admission in CDMA networks. We

end by generalizing our model for a q-sectored network, with q ≥ 1.

In chapter 8, we propose a second refinement by taking into account the

shadowing effect and more generally the effects of each specific environment

(urban, rural, streets buildings)... since in a real network, the pathloss also

depends on the local environment (terrain, buildings, trees). As a conse-

quence, the radio link can be modelled by a term which expresses that the

power received at any point of the system depends on the distance r from the

transmitter (the line-of-sight path), and the environment (terrain, buildings,

trees). The first term depends on the type of the global environment, urban

or rural, and may moreover depend on the type of cells: macro or micro. The

last term, the shadowing, is generally modelled as a lognormally distributed

function [Stu01].

Using the fluid network approach, we express the interference factor’s

mean value and standard deviation, and analyze the influence of different

network’s parameters: cell radius, exponential pathloss parameter, distance

of the mobile to its serving base station.
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And in chapter 9, we analyze the uplink in term of fluid model. We

show the uplink analysis can follow an analogue way as the downlink one,

done in the chapter 3. We develop, and validate, an uplink fluid model of

the network, define an uplink interference factor, and establish an explicit

formula of this parameter. The key modelling of the approach we develop is

to consider the discrete entities of the network, BS and MS, as continuum.

As an application, we propose an analytical admission control study for

the two links, which takes into account the whole network around a given

cell.
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Chapter 2

Interference factor

The aim of this chapter is to present the frame of our analysis, and to intro-

duce the downlink interference factor parameter which represents a charac-

teristics of cellular radio networks.

2.1 Introduction

In this chapter, the interference model is introduced and the basic derivations

of cellular radio network. We first define the downlink interference fac-

tor f . It represents the ratio between external and internal received power

experienced by a mobile. We show that it characterizes cellular radio sys-

tems. Though our analysis is focused on CDMA systems, it can be applied to

any system where transmitting nodes generate interferences such as OFDMA

ones.

2.2 Interference Model and Notations

In this section, we introduce the interference model and give the notations

used throughout the chapter.

37
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2.2.1 Network

We consider a cellular radio system with B base stations (BS) and U mobile

stations (MS) and we focus on the downlink. Since we assume all the BS

transmit power at the same frequency, we focus on CDMA systems. If a

mobile u is attached to a base station b (or serving BS), we write b = ψ(u).

Soft handover (SHO) situations are not considered here. The position of

station u is denoted x(u). Notice that “position” may include location and

antenna pointing and gain. To simplify the presentation, position will just

refer to a geographical location in a plane, x = (x1, x2) ∈ <2. The location

of a base station is, as usual, called a site, and we assume omni-directionnal

antennas, so that a base station covers a single cell.

2.2.2 Propagation

The propagation path gain gb,u designates the inverse of the pathloss L be-

tween stations b and u, gb,u = 1/Lb,u. If a propagation path is considered

between a BS and a particular location x, the corresponding path gain will

also be denoted by gb,x. In this way, we assimilate gb,x(u) and gb,u by a

slight abuse of notation, and more generally we will assimilate throughout

the chapter u and x(u).

2.2.3 Power

The following power quantities are considered:

• Pb,u is the useful transmitted power from station b towards mobile u

(for user’s traffic);

• Pb = Pcch + ΣuPb,u is the total power transmitted by station b, Pcch

represents the amount of power used to support broadcast and common

control channels.



2.2. INTERFERENCE MODEL AND NOTATIONS 39

• pb,u is the power received at mobile u from station b; we can write

pb,u = Pb gb,u;

• Sb,u = Pb,u gb,u is the useful power received at mobile u from station

b (for traffic data); since we do not consider SHO, we can write Su =

Sψ(u),u = Sb,u.

2.2.4 Interferences

The total amount of power experienced by a mobile station u belonging

to a cell b in a cellular system can be split up into several terms: useful

signal (Sb,u), interference and noise (N0). It is common to split the system

power into two terms: pb,u = Pint,u + Pext,u, where Pint,u is the internal

(or own-cell) received power and Pext,u is the external power (or other-cell

interference). Notice that we made the choice of including the useful signal

Sb,u in Pint,u, and, as a consequence, it has to be distinguished from the

commonly considered own-cell interference.

With the above notations, we define the interference factor in u, as the

ratio of total power received from other BS to the total power received from

the serving BS b:

fu = Pext,u/Pint,u (2.1)

The quantities fu, Pext,u, and Pint,u are location dependent and can thus

be defined in any location x as long as the serving BS is known.

We can express the interference factor as:

fu =
1

Pbgb,u

B∑
i6=b

Pjgj,u (2.2)

As a special case we notice that for a homogeneous network and traffic (uni-

formly distributed), all the base stations transmit the same power. The

interference factor can thus be expressed as



40 Interference factor

fu =
1

gb,u

B∑
i6=b

gj,u (2.3)

These expressions (2.2 and 2.3) show that, although very close to the

common definition [HoT01] that considers a ratio of interferences, this new

definition of f is interesting for the following reasons:

• Firstly, the total radio power received by a mobile Pext,u + Pint,u is a

metric easy and simple to be measured by that mobile.

• Secondly, using this definition, the parameter f represents a charac-

teristic of the network. It does not depend on any considered MS or

service, but only on the number of base stations, their positions and

transmitting power and the pathloss. This last one depends on the

environment (urban, rural...): it can be considered characterizing a

network zone. We moreover observe that in a case of an homogeneous

network, the interference factor does no more depend on the base sta-

tion transmitting power.

• At last, that definition of f is still valid when the considered cellular

system has no inner-cell interference. In this case, the denominator of f

is reduced to the useful power. So that definition of interference factor

can be applied to other systems than CDMA, as for example OFDMA

(WiMAX) or TDMA ones (GSM with frequency hopping), and can be

extended to ad-hoc networks.

2.2.5 Transmitting channels orthogonality

In downlink, a coefficient α may be introduced to account for the lack of

orthogonality between physical channels in the own cell (see for example

[NeM01]). Note that α, 0 ≤ α ≤ 1, a priori depends on the location, and

should be noted αx. However this case is almost never considered. In the

rest of our analysis, we follow the common assumption that α is not location

dependent. An intra cell interference expressed as α(Pint,u−Sb,u) can appear

due to the transmitting powers towards the other mobiles of the cell.
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2.2.6 Signal to Interference Ratio

The signal to interference plus noise ratio (SINR)is denoted :

• γu the SINR evaluated at station u;

• γ∗u the target SINR for the service requested by station u.

2.2.7 Basic Derivations

The signal to interference plus noise ratio will be used as the criteria of radio

quality. Assuming mobiles use only one service, γ∗u is the target SINR for the

service requested by MS u. This figure is a priori different from the SINR

evaluated at mobile station u. However, we assume perfect power control,

so γu = γ∗u for all users. In the UMTS case, we assume that perfect power

control (PC) is performed for all users ([LaWN01][HiB01]), the SINR γu

experienced by a mobile has to be at least equal to the target value γ∗u.

Remark

As a consequence of the perfect power control, at each moment the trans-

mitting power Pb,u is adapted to the propagations conditions for the mobile

to receive the power he needs. It means that Pb,u is not a constant. As a

consequence the total transmitting power Pb of the base station b should not

be constant, even in a homogeneous network. However we can assume that

statistically, when some mobiles need a lower power, others need a higher one.

And the total transmitting power is about constant. With the introduced

notations, the SINR experimented by u can be derived (see e.g. [Lagr05]):

γu =
Su

α(Pint,u − Su) + Pext,u +N0

(2.4)

where the term α(Pint,u − Su) represents the intra cell interferences.

For an UMTS System, we can write:

γ∗u =
Su

α(Pint,u − Su) + Pext,u +N0

(2.5)
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And for an OFDMA system, there is no internal interference, so we can

consider that α(Pint,u− Su) = 0. From the expression (2.4), and introducing

the parameter

βu =
γu

1 + αγu
(2.6)

we can express Su as:

Su = βuPint,u(α+ Pext,u/Pint,u +N0/Pint,u) (2.7)

and the transmitted power for MS u, Pb,u = Su/gb,u, using relations Pint,u =

Pbgb,u and f = Pext/Pint as:

Pb,u = βu(αPb + fuPb +
N0

gb,u
). (2.8)

For an isolated cell fu = 0, the term fuPb vanishes. As a consequence, in a

multi-cell situation, the interference factor well characterizes, as a network,

the system we analyze. Indeed this parameter gives the influence of the

network, especially the number, the positions and the power transmissions

of the base stations, on a mobile belonging to a given cell b of a CDMA

network. Without this term, the network ’disappears’. Since it represents

the relative weight of the network on a cell, to analyze such a network, it

appears interesting to have an analytical expression of f .

Remark

Though we mainly focused on systems based on a CDMA access technology,

the interference factor represents the ’relative weight’ of the network on a

mobile belonging to a given cell also in the case of OFDMA based systems

or TDMA ones.
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2.3 Base station transmitting power

Assume that there are M mobiles in the cell b, the total output power Pb of

BS b is given by:

Pb = Pcch +
∑
u

Pb,u, (2.9)

where Pcch is the power dedicated to the common channels. And so, according

to Eq.2.8, we can express the total transmitting power of the base station as:

Pb =
Pcch +

∑
u βu

N0

gb,u

1−∑
u βu(α+ fu)

. (2.10)

The minimum transmitting power towards the mobile u is given by the

relation (2.8). It points out the different effects useful power has to overcome

to reach the target SINR when PC is activated: internal interference, external

interference and noise. Let notice that for an isolated cell, there are no

external interferences: the parameter fu disappears. If moreover the third

term N0/gb,u is low compared to the first one αPb, the minimum transmitting

power towards the mobile u, which can be expressed as

Pb,u = βuαPb, (2.11)

does no more depend on the pathloss.

2.4 Concluding remarks

In this chapter, we defined the downlink interference factor f as the

ratio between external and internal received power experienced by a mobile

belonging to a cell of a cellular radio network. We moreover showed that it

can characterize, as a network, a cellular radio system.
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Chapter 3

Fluid Model for Cellular

Networks

The aim of this chapter is to develop an analytical cellular network model.

Since we consider the base stations of the network as a continuum, we denote

it a fluid model. Using this approach, we establish an analytical expression

of the interference factor. In a real network, the base stations are a discret

set, and not a continuum, so we validate our model by comparing it to a

classical hexagonal model network. We show the accuracy of the fluid model

even for a very low density of BS and for a very limited size of network.

3.1 Introduction

In this chapter, the ’so called’ fluid model leading to the expression of f

is presented and an analytical formula approaching the factor f is derived

using this model. We indeed show [Kel01] that the ratio between external

and internal power can be well approximated by an analytical formula in all

points of the cell. This closed formula accounts for the cell radius, the network

size and the path-loss exponent. We validate this fluid model comparing it

by simulation to a regular hexagonal layout. We show through Monte Carlo

simulations that the obtained formula provides a precise approximation of f .

45
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We end by proposing different possible applications of the fluid model as the

network densification, quality of service, and mobile management analysis.

3.2 Assumptions

The key modelling step of the model we propose consists in replacing a

given fixed finite number of base stations by an equivalent continuum of

transmitters which are spatially distributed in the network. This means that

the transmitting power is now considered as a continuum field all over the

network. As already detailled in section 1.3, in physics sciences, many kind of

systems (electromagnetic, mechanics, thermodynamic ones) can be analyzed

as a continuum. In radio network analysis too, there are studies [ToTa01]

[Jac04] which consider the discrete transmitting nodes of adhoc systems as

a continuum, in term of node density.

When a uniform traffic and a uniform BS density are assumed (homoge-

neous network), and using a model where the pathloss gb,u is only a function

of the distance r (between the base station b and the mobile u), fu only

depends on that distance. So the interference factor which was written as

a function of u (with an index u) can now be written as a function of r.

Since the density of BS is considered as uniform, it also means that mobiles

positioned at the same distance from the BS have the same interference fac-

tor. In fact, all the mobiles positioned on circles whose centre is the serving

BS b have thus the same pathloss and the same interference factor. In this

context, the network is characterised by a base station density ρbs [Kel01].

We assume that mobiles and base stations are uniformely distributed in the

network, so that ρbs is constant. As the network is homogeneous, all base

stations have the same output power Pb.

We can notice that classical network models also consider either hexagonal

or random base stations distributions. They are considered as homogeneous

but locally they are not, since the power received at a point of the cell depends

not only on the distance r between the serving BS and the mobile, but also
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on an angle θ characterizing the relative positions of the base stations.

3.3 Basic Model

We focus on a given cell and consider a round shaped network around this

centre cell with radius Rnw. Half the distance between two base stations is

Rc (see figure 3.1).

2Rc

Continuum

Rc

Rnw of base stations

Figure 3.1: Network and cell of interest in the fluid model. The distance between two
BS is 2Rc and the network is made of a continuum of base stations.

For the assumed omni-directional BS network, we use a propagation

model where the path gain, gb,u, only depends on the distance r between

the BS b and the MS u. The power, pb,u, received by a mobile at distance

ru can be written pb,u = PbKr
−η
u , where K is a constant and η > 2 is the

path-loss exponent.

3.4 Interference Factor

Let’s consider a mobile u at a distance ru from its serving BS b = ψ(u).

Each elementary surface zdzdθ at a distance z from u contains ρbszdzdθ

base stations which contribute to Pext,u. Their contribution to the external

interference is ρbszdzdθPbKz
−η. We approximate (see further remark) the

integration surface by a ring with centre u, inner radius 2Rc − ru, and outer

radius Rnw − ru (see figure 3.2).
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Figure 3.2: Integration limits for external interference computation.

Pext,u =
∫ 2π

0

∫ Rnw−ru

2Rc−ru
ρbsPbKz

−ηzdzdθ

=
2πρbsPbK

η − 2

[
(2Rc − ru)

2−η − (Rnw − ru)
2−η

]
. (3.1)

Moreover, MS u receives internal power Pint,u from b, which is at distance

ru: Pint,u = PbKr
−η
u . So, the interference factor defined as fu = Pext,u/Pint,u

can be expressed by:

fu =
2πρbsr

η
u

η − 2

[
(2Rc − ru)

2−η − (Rnw − ru)
2−η

]
. (3.2)

Note first of all that fu does not depend on the BS output power. This is due

to the fact that we assumed an homogeneous network and so all base stations

transmit the same power. In our model, f only depends on the distance r to

its serving BS and can be defined in each location, so that we can write f as

a function of r, f(r).

f(r) =
2πρbsr

η

η − 2

[
(2Rc − r)2−η − (Rnw − r)2−η

]
. (3.3)

Thus, if the network is large, i.e. Rnw is big in front of Rc, fu can be further

approximated by:
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f(r) =
2πρbsr

η

η − 2
(2Rc − r)2−η. (3.4)

The expression (3.3) lays on the assumption of a network uniformly distrib-

uted with a constant BS density ρbs. We can notice that if it is not the case,

for example when ρbs depends on the location and thus has to be written as

ρbs(r, θ), the approach remains the same, only (3.1) differs. Our approach

enabled to establish the expression (3.2) of the interference factor f(r). This

one appears very simple and easy to calculate. It depends on

• the density of base stations ρbs,

• the radius of a cell Rc,

• the size of the considered network Rnw and

• the pathloss parameter η.

The fluid approach we proposed may be applied to any system with interfer-

ences, like for example CDMA systems or OFDMA ones.

Remark about the integration domain

It is important to notice that the expression (3.1) of the interferences due to

the other base stations of the network is a combination of calculation and

empiric analysis. We denote d the distance between the mobile belonging to

the observed cell and the transmitter M located at u. The power received

by a mobile located at the distance r from its serving BS should rigorously

be expressed as the following exact expression (see figure 3.3):

Pext,u =
∫ 2π

0

∫ Rnw

Rc

ρbsPbK
∥∥∥~d∥∥∥−η ududθ

=
∫ 2π

0

∫ Rnw

Rc

ρbsPbK ‖~u− ~r‖−η ududθ (3.5)
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Figure 3.3: Network: continuum of base stations. Influence of a BS located at M(u, θ)
on a mobile located at r

and finally

Pext,u =
∫ 2π

0

∫ Rnw

Rc

ρbsPbK
(
u2 + r2 − 2urcosθ

)−η/2
ududθ (3.6)

That elliptic integral has no simple explicit expression. Our aim is however

to obtain an explicit expression of Pext .

So we can notice that:

• For a homogeneous network constituted by a discrete set of base sta-

tions regularly distributed in the plane, the closest base stations of the

serving base station b are located at a distance of 2Rc. So it can appear

reasonnable to consider that value as the low limit of the integration

domain.

• We notice moreover that the base stations of the network can be con-

sidered at a great distance from most of the receiver mobiles: So we

can write
∥∥∥~d∥∥∥−η ≈ ‖~u‖−η

• considering this last approximation, it is however needed to adapt the

integration domain: For a mobile located at a distance r from its serv-

ing base station b, the closest base stations of the network are located

at a distance 2Rc − r.
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These three reasons lead us to approximate the integration surface by

a ring with centre a mobile located at r, inner radius 2Rc − ru, and outer

radius Rnw − ru. With these approximations we obtain (3.1) as the explicit

expression of Pext.

Since the expression (3.2) allows calculating analytically the influence of a

network on each point of a given cell, it opens a large number of possibilities

of analysis for cellular networks such as CDMA ones: quality of service in-

dicators, planning analysis, or scheduling policies are also depending on this

parameter...(detailled in section 1.1). This closed-form formula will allow us

to fastly compute performance parameters of a CDMA network.

Before going ahead, it is however necessary to verify that approach and to val-

idate the different approximations we made in this model. The fluid model

makes some unusual assumptions: the network’s base stations set is con-

sidered as a continuum. The existing approaches [ToTa01] [Tou01] [Jac04]

considering the transmitting nodes as a continuum assume a massively dense

network. It means that the distance between two neibors transmitters is very

low. In a real network, the base stations do not constitute a continuum, and

moreover, the distance between two neighbors base stations can reach sev-

eral kilometers. As a consequence that assumption, on which we develop our

analysis, can seem not justified. That is the reason why we propose hereafter

a validation of the fluid model.

3.5 Validation of the Fluid Model

3.5.1 Simulation Methodology

To validate our network approach, we choose to compare it to a hexagonal

classical one. We calculate the interference factor values given by the contin-

uum set of base stations of our fluid model network, and the ones obtained

with a discrete set of base stations distributed according to a hexagonal pat-
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tern.

We will compare the figures obtained with Eq. (3.2) with those obtained

by simulations. The simulator assumes an homogeneous hexagonal network

made of several rings around a cell we analyze. Figure 3.4 shows an example

of such a network with the main parameters involved in the study.

The traditional hexagonal model is widely used, especially for dimensioning

purposes. That is the reason why a comparison of our model to a hexagonal

one is useful.

The validation of the fluid model is based on Monte Carlo simulations, with

snapshots approach.

3.5.2 MS locations

At each snapshot of the Monte Carlo simulation, random locations are drawn

for the mobile stations of the network. The number of mobile stations per

cell is fixed all along the simulation and their spatial distribution within one

cell is uniform. Path-loss model is implemented as described in section 3.2.

3.5.3 Serving base stations

A MS is served by the base station with the smallest path-loss, including

shadowing if considered. So, the MS is assumed to choose the best base

station and soft-handover is not taken into account.

Figure 3.4: Hexagonal network and main parameters of the simulation.
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Figure 3.5: Different ranges involved in the analysis: R the hexagonal cell radius, Rc

the half distance between two BS, and Re the radius of the equivalent disk.

The validation is done by computing f in each point of the reference cell and

averaging the values at a given distance from the BS. This computation can

be done independently of the number of MS in the cell and of the BS output

power.

We further analyze the influence of each parameter of Eq.3.2:

• the network size Rnw,

• the hexagonal cell radius R,

• the path-loss parameter η.

Remark

For the validation process, we choose to consider the hexagonal cell radius

R i.e. the distance between the base station and a vertex of the hexagon,

to be sure to take into account all the positions of the system. This choice

induces an over coverage of the zone located close to the cell limits. However,

any other choice, for example considering half the distance Rc between two

neighbors base stations, or the equivalent cell radius Re (i.e. the cell disk has

the same surface as the hexagonal one) would under cover the network.

We define R as the hexagonal cell radius, Rc as the cell radius, and Re

the radius of the equivalent disk.
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3.5.4 Simulation Results

Simulation parameters are the following:

• α = 0.7,

• η = 2.5, η = 3, η = 3.5 and η = 4,

• R = 0.5 Km, R = 1 Km, R = 1.5 Km and R = 2 Km,

• Rnw = 3Rc, Rnw = 5Rc, Rnw = 9Rc and Rnw = 21Rc . These sizes

correspond to 1 ring, 2 rings, 4 rings and 10 rings of cells around the

observed one.

• ρbs = (3
√

3R2/2)−1

Eq.3.2 is also plotted for comparison.

3.5.5 Accuracy of the fluid model

We observe the fluid model matches very well the simulations on an hexag-

onal for wide ranges of pathloss exponents (figures 3.6 and 3.7), cell radii

(figures 3.8 and 3.9) and network dimensions (figures 3.10 and 3.11). Until a

distance of 0.9R, the difference is minute. Only when distance is close to R,

a difference appears, which increases with η: around 9% for η = 3 and 12%

for η = 4. This is due to the fact that the fluid model is basically circular

and thus does not capture the extreme parts of the hexagon.

Note that the considered network size can be finite and chosen to charac-

terize each specific local network environment: figure 3.10 and 3.11 show the

influence of the network size. As a consequence, this model allows to develop

analyses adapted to each zone, taking into account each specific considered

network parameters.

We notice moreover that the fluid model can be used even for great dis-

tances between the base stations: We validated the model considering a

distance reaching 4 Km between the BS (see figure 3.9).
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Influence of the pathloss parameter η

Figure 3.6: Interference factor vs. distance to the BS; comparison of the fluid model
with simulations on a ten ring hexagonal network with a hexagonal cell radius R = 1 Km
for η = 2.5 (left) and η = 3 (right).

Figure 3.7: Interference factor vs. distance to the BS; comparison of the fluid model
with simulations on a ten ring hexagonal network and a hexagonal cell radius R = 1 Km
for η = 3.5 (left) and η = 4 (right).
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Influence of the hexagonal cell radius R

Figure 3.8: Interference factor vs. distance to the BS; comparison of the fluid model
with simulations on a ten ring hexagonal network and a pathloss exponent η = 3 for cell
radii R = 0.5 Km (left) and R = 1 Km (right).

Figure 3.9: Interference factor vs. distance to the BS; comparison of the fluid model
with simulations on a ten ring hexagonal network with a pathloss exponent η = 3 for cell
radii R = 1.5 Km andR = 2 Km (right).
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Influence of the network’s size Rnw

Figure 3.10: Interference factor vs. distance to the BS; comparison of the fluid model
with simulations on an one ring (left) and two ring (right) hexagonal network with cell
radius R = 1 Km and a pathloss exponent η = 3.5.

Figure 3.11: Interference factor vs. distance to the BS; comparison of the fluid model
with simulations on a four ring (left) and ten ring (right) hexagonal network with cell
radius R = 1 Km and a pathloss exponent η = 3.5.
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We conclude that the fluid model approach is accurate even for a very low

base station’s density : It allows to calculate the interference factor experi-

enced by a mobile, whatever its position in a cell, and to characterize cellular

radio networks.

3.5.6 Limits of the fluid model

Extreme values of the model parameters

We showed the fluid model matches very well the simulations on an hexagonal

network, for wide ranges of pathloss exponent, cell radii and network sizes.

It appears interesting to analyze until which limits the model matches. figure

3.12 and figure 3.13 show the fluid model is accurate even for very high and

very low pathloss, from η = 2.1 until η = 6.5, and for very high and very low

size of hexagonal cell radius, from R = 50 m until R = 10 km.

Our model considers a continuum of BS. As a consequence the interfer-

ence factor only depends on the distance r between a mobile and its serving

base station. The figures 3.6 to 3.13 show the accuracy of the fluid model.

However, considering an hexagonal network, it seems logical that the inter-

ference factor also depends on the angular position of the mobile at a given

distance. We analyze this point hereafter.

Radial dependency of the fluid model

The interference factor values obtained with a simulated discrete hexagonal

network allow drawing the curves of figure 3.14. The left-hand figure shows

the positions in the cell for which the interference factor are constant value:

It seems to be circles for distances 400, 600, 800 and 900 m from the serving

base station. On the right-hand, the interference factor is drawn as a function

of the distance by the fluid model and compared to the values given by the

simulated hexagonal network. They are very close to each other. We however

observe some differences. Until 0.9 R, these differences are less then 3%, and

they reach about 10% at the edge of the cell. It means that the real values
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Figure 3.12: Interference factor vs. distance to the BS; comparison of the fluid model
with simulations on a ten ring hexagonal network with a pathloss exponent η = 3 for cell
radii R = 50 meters (left) and R = 10 Km (right).

Figure 3.13: Interference factor vs. distance to the BS; comparison of the fluid model
with simulations on a ten ring hexagonal network and a hexagonal cell radius R = 1 Km
for pathloss exponent η = 2.1 (left) and η = 6.5 (right).
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of f experienced by a mobile located at (r, θ) mainly depend on the distance

r and very few on the angle θ of the position.

Figure 3.14: Iso-interference factor curves vs. position of the mobile, for an hexagonal
network.

Moreover, let us remind that the hexagonal pattern is only a represen-

tation of the reality. A real network is not hexagonal. We can conclude

that our approximation considering a dependence of the interference factor

only with the distance and not with the angle (the radial dependence of f)

represents a fair approximation.

Fluid and Hexagonal models

We validated the fluid model, comparing it to a simulated hexagonal one.

We especially established the accuracy of the fluid model for wide ranges of

distance between neighbor base stations, i.e. even for very low base stations

densities, wide ranges of pathloss exponent and wide ranges of network sizes.

Moreover, these expressions take into account the size zones Rnw to be con-

sidered, which can be chosen characterizing a typical environment (pathloss

exponent, urban, rural, macro or micro cells).

The fluid model and the traditional hexagonal model are two simplifications

of the reality. Though the latter is widely used, none is a priori better than
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the other.

3.6 Properties of the interference factor

We established, using (2.8), that the interference factor characterizes a CDMA

network. The expression (3.4), which reflects the topological and propaga-

tions properties of CDMA network, confirms moreover that result: It depends

on the pathloss exponent, the number of base stations, their sizes and their

positions. As a consequence, the properties of the interference factor give

informations on the properties of ’CDMA-type’ networks.

3.6.1 Insensitivity of the fluid model

We can notice that the interference factor is not directly dependant on the

size zone and on the size of the cell radius Rc but only on the relative position

of the mobile in the cell, and on the relative cell’s size to the network’s.

We denote v = r
Rc

, the relative distance of a mobile to its serving base

station, and Nc the number of cell rings around the considered one: we have

Rnw = (2Nc + 1)Rc. We thus can express from (3.2) and (3.4):

f(v) = 4
π
√

3
3

η − 2
(
v

2
)η
[
(1− v

2
)2−η − (Nc +

1

2
)2−η(1− v

2Nc + 1
)2−η

]
. (3.7)

and when Nc →∞:

f(v) = 4
π
√

3
3

η − 2
(
v

2
)η(1− v

2
)2−η. (3.8)

3.6.2 Influence of the system parameters

We observed in the validation section, the interference factor variations with

the system parameters Rnw, Rc and η. We notice that Rc =
√

3
2
R =

√
π
√

3
6
Re

The interference factor is:
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Figure 3.15: Fluid model interference factor vs. number of cell rings, for η = 2.5, η = 3,
η = 3.5, η = 4.

Figure 3.16: Fluid model interference factor vs. pathloss exponent η for different network
sizes.

• an increasing function of the network size Rnw (figures 3.10 and 3.11),

• an increasing function of Rc, for a given network’s size, and the cell

radius Rc has no influence on the interference factor as long as the

number of cell rings remains the same (figures 3.8 and 3.9). That

property is a consequence of the insensitivity property.

• an increasing function of the density of base stationsρbs

• a decreasing function of the pathloss exponent η (figures 3.6 and 3.7).
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3.7 Cellular network properties

The important parameters of the interference factor are:

• the pathloss exponent,

• the relative position of the mobile in the cell and

• the relative cell’s size to the network’s one.

Since the interference factor characterizes a cellular network, the cells of

an homogeneous network where the base station are regularly distributed and

where their transmitting powers are identical, have all the same properties

which do not depend on their sizes, but only on the relative position of the

mobiles in their cell (most of cellular networks can be considered as infinite).

We moreover established the influence of the pathloss exponent, which is

characteristic of any specific environment.

3.8 Fluid model limit uses

As observed in Section 1.3, different discrete entities can be considered as

a continuum in radio network analysis: mobiles, traffic quantities... Since

these quantities allow to analyze macroscopic properties of radio systems,

such as dimensioning or optimisation analysis, a macroscopic analysis is suf-

ficient. As a consequence, considering them as a continuum is sufficient.

About massively dense wireless networks, Toumpis [Tou01] expresses that a

macroscopic view of them emerges, which preserves sufficient information to

allow a meaningful network optimization. Following this point of view in the

fluid network model case, we can conclude that model is a priori useful to

analyze ’macroscopic quantities’ of radio networks (dimensioning, blocking

probabilities or radio resources management,...).

And what about the microscopic ones? For example is the cellular net-

work’s fluid model useful to analyze a given cell of a network in a different
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way than an other cell, or more precisely, is it useful to analyze networks with

non homogeneous traffic or base station distribution? This kind of analysis

constitutes one of our future study axes.

A first element of answer is nevertheless given in [Kel01] where a non

homogeneous network is considered. In this paper we consider a high level of

non homogeneity of the base station transmitting power all over the network.

That non homogeneity is taken into account by considering a limited devel-

opment of the BS transmitting power. We show that the fluid model allows

to calculate an accurate approximation of the interference factor taking into

account that non homogeneity. Moreover in other studies where a important

level of non homogeneity of the base station density and transmitting power

are assumed, we show that the fluid model is still accurate.

A second element of answer consists in comparing the values obtained

by the fluid model to the ones obtained by a simulation tool developed by

France Telecom, done on a non homogeneous network. The two means give

close values of network capacity (see remark in 7.7.1).

However, the useful limits of the fluid model seem to be reached for

networks with a given level of non homogeneity. We still need to determine

precisely these limits.

3.9 Concluding remarks

The goal of our approach was to propose an analytical model characterizing a

cellular radio network. This model had to be accurate in taking into account

the distance of a mobile to the base station, and still simple enough to lead

to closed form formulas. We moreover needed a not over-simplifying model,

otherwise it could have resulted large inaccuracies.

We proposed a spatial fluid model that allows to simplify considerably

the computation complexity needed to obtain accurate results. We first de-

fined a parameter, the interference factor f , which well characterizes cellular

networks. Considering the base stations as a continuum, we established an
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analytical expression of f , simple and easy to calculate. The network size

Rnw to be considered can be chosen characterizing a typical environment

(pathloss exponent, urban, rural, macro or micro cells). It moreover allows

calculating the precise influence of a mobile on a given cell, whatever its

position.

We validated the fluid model approach comparing it to a hexagonal sim-

ulated network. We especially established the accuracy of the fluid model

for wide ranges of distance between neighbor base stations, i.e. even for very

low base stations densities, wide ranges of pathloss and wide ranges of size

networks. Though the simplicity of formula we established, we showed its

high accuracy whatever the network parameters we considered. We particu-

larly showed its accuracy even for very low base stations densities, and very

limited zones.
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In this part, we propose some possible applications of the fluid model in

the case of CDMA networks.

The chapter 4 analyzes the capacity of a cell and a network, in term of

mobile number. Since the fluid model allows to determine with a high accu-

racy the power needed by a mobile, and since the total BS transmitting power

is limited, the capacity calculation becomes easy to determine. Afterwards,

the effect of a densification (by adding new base stations) is studied. At last

we show how the fluid model can be used for admission control mechanisms.

In the chapter 5, we propose a study control policy for a multiservice case.

The fluid model is used to determine analytically, an average interference fac-

tor depending on the exponential pathloss factor. Thanks to this parameter,

performance measures, as call blocking probabilities and expected transfer

times, are then computed by modeling the CDMA system as a quasi-birth-

and-death (QBD) process.

In the chapter 6, the fluid model is used to analyze the global outage

probability of a mobile entering a cell in a CDMA system. Since the interfer-

ence factor expression takes into account the location of a mobile in a cell, we

are able to derive a formula of a spatial outage probability. It expresses the

outage probability for a mobile entering the cell at a given distance from the

serving BS. That one gives a more precise knowledge of the quality of service

than the global one. It can allow a provider to do a better management of

the traffic, for example to improve the quality of service offered.

An other possible application: the Mobile Scheduling.

In the article [KeA02], the following problem of spatial downlink prioriti-

zation is analyzed. Mobiles enter a cell at locations that are determined

according to some probability distribution. Various priority policies can be

analyzed, where the assigned priority is given in terms of the distance of

the mobiles from the base station. This gives rise to a whole continuum of
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priority levels. The influence that the combined location density and prior-

ity policy have on the quality of service of the mobiles and on the network

overall performance is studied. Applying the model to a HSDPA system,

different quality of service indicators can be calculated as the sojourn time,

using a priority scheduling strategy, a processor sharing one and a first come

first served one. Three types of arrival flow, a uniform one, a non uniform

one and a flow which generates a constant load in the cell are assumed. A

numerical study based on the fluid model shows that the expected sojourn

time can be improved by a hybrid policy that defines two zones in the cell

and uses maximum SIR priority in one and minimum SIR priority in the

other.



Chapter 4

Capacity of a CDMA Network

The aim of this chapter is to use the fluid model to evaluate the capacity,

in term of number of mobiles, of a cell and a network based on a CDMA

technology. We analyze the densification as solution to an increasing traffic.

We finally show the fluid model can drive us to analyze admission control

policies.

4.1 Introduction

One of the aims of the planning and the dimensioning process of a network

consists to evaluate the number of base stations the network will need to the

forecast traffic. Indeed, it is important for a telecom provider to minimize the

cost of its network, and particularly the cost due to the base station number it

deploys. One of the elements which allows that evaluation is the calculation

of the number of mobiles a cell, a zone, and also the whole network, will

be able to handle. Moreover, an already existing radio network does not

necessarily answer the traffic demand. Either because the traffic evaluation

was not known with a sufficient accuracy during the dimensioning process,

or because the traffic demand increased since that one was built. Among the
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solutions to answer an increasing traffic in a already existing CDMA network,

a telecom provider can choose to densify the network, i.e., to install new base

stations. The analysis of this solution generally requires simulations.

For dimensioning a network or to analyze the advantages of a densifi-

cation as answer to an increasing traffic, the provider develops simulations

tools. These last ones need a preparation: an environment has to be created

and the network’s parameters have to be set. Moreover, they do not give

instantaneous results, may last an important time, and moreover, a great

number of simulations are generally required.

The fluid model approach allows to analyse and compare instantaneously

different solutions with the aim to adapt the network, or a given zone of the

network, to an increasing traffic demand. In spite of their simplicity, the

classical CDMA networks models which mostly consider hexagonal networks

do not give explicit and simple analytical expressions due to the complexity

of the analysis. Indeed, for the downlink, the interferences received by a

mobile are due to all the base stations of the network. They depend on their

transmitting powers, positions and numbers. With our approach, no complex

and time consuming computation are needed to obtain explicit expressions

of some important characteristics of the network such as the possibility for a

mobile to be admitted in the network.

Many studies were done to analyze the capacity of a cell and a network

(see for example [ChGo01] [CoM01] [WuC01] [VeS01] [TaS01] [ZaSol]). For

the uplink, the authors of [RaP01] give an analytical expression of a cell

pole capacity. The authors of [HiB01] give an analytical expression of a cell

capacity. They however need to develop a simulation approach to evaluate

the average interference factor F , which allows them to determine the pole

capacity. The authors of [AkPa01] calculate per-user interference and analyze

the effect of user-distribution on the capacity of a CDMA network. The

authors of [Ela03] proposed a calculation of the capacity of a multi cell UMTS

system. They however only determined an upper bound of the other cell

interference. Our model takes into account the whole inter cell interference
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and gives results close to the ones obtained by planning tools (see remark

Sectio 7.7.1) which take into account a real environment. For the uplink, the

authors of [RaP01] give an analytical expression of a cell pole capacity.

As an application of this model, we calculate the capacity of a cell in

term of number of mobiles, and analyze the densification as solution to an

increasing traffic. The sectorisation, and a comparison of these two means

to anwer a traffic demand, will be developed in chapter (7).

We finally show the fluid model can drive us to analyze admission control

policies.

Remark

Since the cell capacity of an UMTS network also depends on functions such

as power control, handover... that system is known as a softcapacity one.

4.2 Base station transmitting power

Let Pu,b be the power transmitted to mobile u from base station b. Assume

that there are M mobiles in cell b; the base station of that cell transmits at

a total power Pb given by (see also remark 2.3)

Pb =
M∑
j=1

Pj,b + PCCH , (4.1)

where PCCH designates the power transmitted on common channels (CCH)

[HoTo]. Note that this last term is not power controlled, and so it can be

modeled by adding a constant power. Also it is assumed not to depend on b.

The equation (2.8) gives the minimum transmission power of a traffic

channel from a base station to a mobile. Basic algebra yields the following:

Pb =
PCCH +

∑
u βu

N0

gb,u

1−∑
u βu(α+ fu)

. (4.2)

In downlink CDMA dimensioning, since the total amount of base station

power required limits the capacity, it is important to estimate it. In order to
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calculate the total base station power in our problem, we have to calculate

the transmitted power Pj,b for each mobile separately, and substitute them in

(4.1). In order to obtain a simplified formula, we could replace gu,b, fu,b, αu

by single parameters A,F, α. These values can initially be chosen by taking

the simple average for gu,b, fu,b, α over all u = 1, . . . ,M . Their accuracy

can then be improved based on actual measurements for the mean total base

station output power. We will refer to this, albeit somewhat imprecisely, as

an “average approximation”. Such an approximation has been used in many

downlink dimensioning models for CDMA, see e.g. [HiBe, HoTo, SiH01], as

it provides an easy way to estimate the pole capacity.

Since the fluid model gives a precise value of these parameters for each

individual connection, we can evaluate analytically the pole capacity with a

better precision. It can result a more useful dimensioning of the link.

4.3 Cell load and capacity

4.3.1 Base station power limitation

In most cases, the maximum base station output power determines the max-

imum loading supported by the system. We now further assume that the

common channels transmitted power is a fraction ϕ of the maximum base

station’s output power Pmax, i.e.,

Pcch = ϕPmax. (4.3)

Then, according to the transmitting power limitation of base stations, we

express (from 4.2) that the power Pb is limited by its maximum value Pmax

as

∑
u

βu(α+ fu) +

∑
u βu

N0

gb,u

Pmax
≤ 1− ϕ. (4.4)

Consequently, we can define the system’s nominal cell’s capacity as Θϕ =

1− ϕ. and the nominal capacity required by a connection to be
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Lu = βu(α+ fu) +
βu

N0

gb,u

Pmax
. (4.5)

This last expression means that each mobile u generates some kind of

load Lu in the cell which corresponds to the nominal capacity required by a

connection, expressed by the right hand of (4.5).

In other terms, the cell’s load defined as

LDL =
∑
u

Lu (4.6)

represents the ratio between the total power required by mobiles and the

maximum BS transmitting power. This load is due to an interference term

Linterf expressed as

Linterf =
∑
u

βu(α+ fu), (4.7)

and a thermal Noise term LN0 .

LN0 =

∑
u βu

N0

gb,u

Pmax
(4.8)

Remark: OFDMA system

In OFDMA, the data is multiplexed over a great number of subcarriers. The

expression (2.4) can be written

γu =
Pb,ugb,u∑B

i6=b Pjgj,u +N0

(4.9)

and using (2.2)

γu =
1

fu + N0

Pb,ugb,u

(4.10)

Since N0

Pb,ugb,u
<< fu when the cell radius is less than 1 km, we can negligt

this term and write
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γu =
1

fu
(4.11)

The OFDMA frequency bandwidth is shared between guard subcarriers

and useful subcarriers allocated to mobiles. We define ϕOFDMA as the fraction

of the bandwidth dedicated to guard subcarriers.

For an OFDMA system, we can define a load. It represents the fraction

of the bandwidth used by mobiles at each time, and can be written

LϕOFDMA
=

M∑
u=1

γufu (4.12)

4.3.2 Fluid Model Analysis

We assume a mobile distribution density ρms, a cell’s area Scell, and a pahtloss

model given by pu = PbKr
−η. Using the fluid model approach, we can rewrite

(4.2) as:

Pb =
PCCH +

∫ R
0

∫ 2π
0 ρmsβN0K.r

1+ηdrdθ

1− β(
∫ R
0

∫ 2π
0 ρms(α+ f(r))rdrdθ)

. (4.13)

Considering a uniform mobile distribution in the cell, we have:

Pb =
PCCH + ρmsβN0K

∫ R
0

∫ 2π
0 r1+ηdrdθ

1− βρmsScell(α+ 1
Scell

∫ R
0

∫ 2π
0 f(r)rdrdθ)

. (4.14)

We denote F the downlink interference factor mean in the cell:

F =
1

Scell

∫ Re

0

∫ 2π

0
f(r)drdθ (4.15)

and we introduce the parameter A

A = K
1

Scell

∫ Re

0

∫ 2π

0
r1+ηdrdθ (4.16)

after calculations, since we have Scell = πR2
e:

A =
2

5
KRη

e (4.17)
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We denote nms = ρmsScell . The expression 4.4 can be written:

nMSβ(α+ F ) + nMS(A
N0

Pmax
) ≤ 1− ϕ (4.18)

The maximum number of mobiles a cell can handle (pole capacity) is thus

given by:

nMS =
1− ϕ

β(α+ F )(1 + A N0

Pmax(α+F )
)

(4.19)

We moreover can write, as long as long as the Noise is negligible (which

is a reasonnable assumption for a cell radius less than 1 km):

nMS =
1− ϕ

β(α+ F )
(4.20)

Using the expression of the interference factor f given by the fluid model

3.3 and denoting u = r
Rc

and a = Rnw

Rc
, we can write

F = 24−η(
Rc

Re

)4 1

η − 2

∫ Re
Rc

0
uη+1[(1− u

2
)2−η − a2−η(1− u

2a
)2−η]du (4.21)

The relation (Rc

Re
)2 = π

√
3

6
drives us to finally write:

F = 22−ηπ
2

3

1

η − 2

∫ Re
Rc

0
uη+1[(1− u

2
)2−η − a2−η(1− u

2a
)2−η]du (4.22)

The expression of F only depends on the pathloss parameter η and on

the relative network’s to cell size ratio a. For large networks, F does no more

depend on the network’s size, since the mean interference factor tends to an

asymptotic value Flim when a→∞. We have

Flim = 24−η(
Rc

Re

)4 1

η − 2

∫ Re
Rc

0
uη+1[(1− u

2
)2−η]du (4.23)

Considering the expression 4.19, we observe the pole capacity of a cell

depends on:
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• the environment characterized by the pathloss factor η,

• the cell’s size,

• the thermal Noise,

• the maximum transmitting power,

• the target SINR,

• the orthogonality factor,

• the power ratio dedicated to the common channels.

We can conclude from (4.19) that in a homogeneous network, a provider

can increase the capacity of a cell by decreasing its radius or by increasing

the maximum base station’s transmitting power.

This result is particularly important during the deployment process of

radio CDMA networks, to determine the zone covered by a BS. It also plays

a role when the provider chooses to add base stations as a solution to an

increasing traffic. Since a densification process increases the number of base

stations in a given zone, their cell radius decreases and consequently the

capacity of each cell is less sensitive to the thermal noise.

We notice that the fluid model allows to calculate the capacity of a cell

analytically by using the equation (4.4). And when we consider a uniform

mobile distribution, the calculation is based on (4.14). In this case, the fluid

model allows to calculate an simple average value of f and g. However,

even when that distribution is not uniform, the expression (4.13) enables

a calculation of the capacity, as long as we can determine the analytical

expression of the mobile distribution ρms(r, θ) which depends on the mobile

location.
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4.4 Numerical Analysis

We present hereafter a numerical analysis, with α = 0.7, ϕ = 0.2 and γ =

−16dB (voice service) a thermal Noise N0 = −104dBm.

4.4.1 Mean interference factor

Using (4.22), we calculate the mean values of F as a function of η (Table

4.4.1) for an infinite network’s size: F is a decreasing function of η. This

result shows that the relative influence of the network on mobiles in a given

cell is lower when the pathloss increases.

η 2.5 2.7 3 3.3 3.5 3.7 4 4.5

F (η) 1.72 1.16 0.76 0.55 0.46 0.39 0.31 0.24

Table 4.1: Influence of the pathloss on the interference factor F

4.4.2 Mean Cell Capacity

The mean cell capacity depends on the cell radius, the thermal Noise and

the total transmitting power of the base station.

The figure 4.1 shows the influence of the cell radius ( X axis Rc in Km)

and the BS transmitting power limitation on the cell capacity (curves drawn

for 5W < Pmax < ∞). Since the transmitting power is limited, the relative

importance of the thermal Noise increases (see also Table 4.2) when the cell

radius increases. As a consequence, the cell capacity decreases. This figure

also shows that for an unlimited base station transmitting power (Pmax →
∞), the cell capacity is not limited by its radius: it stays constant whatever

the cell radius. Furthermore, the influence of the thermal Noise appears only

for radii larger than 800 m, and becomes really important for Re > 1 Km.

Considering the typical value of Pmax is 20W , we also observe that until a
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radius of 800 meters, the maximum transmitting power can be divided by 4

(5 W) without generating a high degradation of the cell capacity. This one

decreases from 34 (for Pmax = 20W ) to 31 mobiles per cell (for Pmax = 5W ):

the cell loss represents less than 10%.

The relative importance of the thermal Noise is highlighted on Table 4.2,

done for Pmax = 20W . That table shows that for a cell radius Rc of 1 Km

the relative importance of the load due to the thermal Noise term represents

only 5% of the total load of the cell. And the decrease of mobile number is

only 6%(= 34−32
32

). But that influence increases rapidly when the cell radius

increases. It reaches 58% of the total load of the cell and the cell capacity

decrease reaches about 40% (from 34 to 21 mobiles), when the cell radius Rc

is 2 Km.

Figure 4.1: Cell Capacity (mobile number) vs Cell Radius with a BS transmitting power
varying from 5W to 100W .

4.5 Densification of a network zone

We first consider a CDMA network’s zone with a radius of 10 Km, and a

initial cell radius Rc = 3 Km. We observe (figure 4.2) that the number of
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mobiles handled by that zone linearly increases when the number of base

stations increases (Rc decreases). We also observe that increase depends on

the maximum transmitting power of the base stations: since the cell radius

remains relatively high (about 1 km, the thermal Noise plays a role in the

capacity (see expression 4.19).

Now, considering a CDMA network’s zone with a radius of 3 Km, and

a initial cell radius Rc = 1 Km, the mobiles number handled by that zone

linearly increases when the number of base stations increases (figure 4.3).

However, that increase does not depend on the maximum transmitting power

of the base stations: the thermal noise is negligible.

Figure 4.2: Capacity of a network’s zone of radius 10 Km: Number of mobiles vs number
of BS in that zone .

4.6 Application to Call Admission Control

In a CDMA system, the number of mobiles is limited by the interferences or

by the transmitting power of the base stations. The telecom providers need

to apply an admission control, to be able to offer the subscribers a quality of
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Re(km) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3

A N0

Pmax

1
α+F

(%) 0.02 0.2 0.9 2.5 5 10 17 28 42 58 120 220

nth 34 34 34 33 32 31 29 27 24 21 15 10

Table 4.2: Thermal Noise Relative Influence, for η = 3.5 and Pmax = 20W

Figure 4.3: Capacity of a network’s zone of radius 3 Km: Mobile number vs number of
BS in that zone .

service as close as possible to the one they ask for. For the downlink, any ad-

mission control has to take into account the base station transmitting power’s

limitation. To illustrate our analytical model, we proposed an analysis of the

capacity of the system in term of number of mobiles. Any kind of admis-

sion control policy can be derived using our analytical model. Considering

that the thermal Noise is negligible, we established from the expression (4.4),

that a mobile entering the cell increases the load by a factor βu(α+fu) which

corresponds to the ratio Pb,u/Pb. It means that mobiles with high quality

of service demand (high βu), and far from the BS (high fu) induce a more

important overload than the ones close the BS and with low QoS demand.

This result is well known. However with our analysis, it becomes possible

to quantify precisely the overload induced by each mobile and to choose a

policy according to the needs of the providers. As an example, the operator
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can choose, in some given configurations, to refuse the admission of mobiles

which induce a too high load. Only the mobiles inducing a load less than

a given threshold value would be admitted. Or he can impose a decrease of

the throughput of mobiles which are far from the BS in the aim to decrease

the load they induce. So its knowledge opens a large set of possible analyses.

4.7 Concluding remarks

The fluid model allowed us to analyze the capacity of a cell (and thus can

be used in the planning and dimensioning process) and the solution based

on a network’s densification to answer an increasing traffic. We instantly

obtained explicit expressions of the capacity without any computation, and

focused on the influence of the thermal Noise and the BS maximum trans-

mitting power. We particularly established that for high density networks,

it is not necessary to increase base stations transmitting power. Since our

analytical model enables to know the influence of a mobile on a given zone

of a network whatever its position, it can also be used to analyze admission

control policies.
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Chapter 5

Admission in Multiservice

CDMA

We consider in this chapter a WCDMA system with two types of calls: real

time (RT) calls that have dedicated resources, and data non-real time (NRT)

calls that are treated using a time-shared channel (such as the HDR or the

HSDPA). We consider reservation of some resources for the NRT traffic and

assume that this traffic is further assigned the resources left over from the

RT traffic. The grade of service (GoS) of RT traffic is also controlled in

order to allow for handling more RT calls during congestion periods, at the

cost of degraded transmission rates. We consider both the downlink (with

and without macrodiversity) as well as the uplink and study the blocking

probabilities of RT traffic as well as the expected sojourn time of NRT traffic.

We further study the conditional expected sojourn time of a data connection

given its size and the state of the system. Finally, we extend our framework

to handle handover calls.
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5.1 Introduction

Important performance measures of call admission control policies in systems

with heterogeneous service classes are the probability of rejection of calls of

different classes as well as the sojourn time of non-real time transfers. In

order to be able to compute these and to design the call admission control

policies, a dynamic stochastic approach should be used based on statistical

assumptions regarding the call arrival processes and durations, as well as

data transfer sizes.

In this context, a classical approach widely used in cellular networks is

based on adaptively deciding how many channels (or resources) to allocate

to calls of a given service class, see e.g. [FaZ01, LeZ01, LiC01]. Then one

can evaluate the performance as a function of some parameters (thresholds)

that characterize the admission policy, using Markov chain analysis. This

allows to optimize and to evaluate tradeoffs between QoS parameters of the

different classes of mobiles. This approach, natural to adopt in TDMA or

FDMA systems, can also be followed in the case of a CDMA system, even

though the notion of capacity is much more complex to define. For the uplink

case in CDMA, the capacity required by a call has been studied in the context

of call admission, see e.g. [TaGO01, KoL01, ?].

We focus here on two types of calls, real-time (RT) and non-real time

(NRT) data transfers. Whereas all calls use CDMA, we assume that NRT

calls are further time-multiplexed (which diminishes the amount of interfer-

ence, thus increasing the available average throughputs). This combination of

time multiplexing over CDMA is typical for high speed downlink data chan-

nels, such as the High Speed Downlink Packet Access (HSDPA) [PaD01] and

the High Data Rate (HDR) in CDMA-2000 systems [BeB01].

Similarly to the uplink analysis [NiA01], we propose a simple model that

allows us to define in the downlink case the capacity required by a call of

a given class when it uses a given grade of service (transmission rate). In

particular, we also consider the case of macrodiversity. We then propose a

control policy that combines admission control together with a control of
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the grade of service (GoS) of real-time traffic. Key performance measures

are then computed by modeling the CDMA system as a quasi-birth-and-

death (QBD) process. We obtain the call blocking probabilities and expected

transfer times, already available for the uplink case in [NiA01]. We further

obtain (both for the uplink and downlink) another important performance

measure: the expected transfer time of a file conditioned on its size. We study

the influence of the control parameters on these performance measures. We

finally extend the model to handle handover calls.

The structure of the chapter is as follows. We begin by introducing in

Sections 5.2, 5.3 and 5.4 the frameworks corresponding to the downlink,

with and without macrodiversity, as well as the uplink of a CDMA system.

Using power control arguments, we obtain for all three cases the transmission

rates for various classes of calls which are compatible with given signal to

noise and interference ratios. We then introduce in Section 5.5 the basic

control actions: call admission and control of GoS. The statistical modeling

of the system is presented in Section 5.6. It is then used in Section 5.7

for an extensive numerical investigation. The extension of the model and

the analysis to handover traffic is given in Section 5.8, and we conclude the

chapter in Section 5.9.

5.2 Downlink

We use a model similar to the one presented in [HiBe]. Let there be B base

stations. The minimum power received at a mobile u from its base station

b is determined by a condition concerning the signal to interference ratio,

which should be larger than some constant

γ :=
Es
N0

Rs

W
Γ, (5.1)

where Es/N0 is the energy per transmitted bit (of type s) to interference

density, W is the WCDMA modulation bandwidth, and Rs is transmission

rate of the type s call. The constant Γ accounts for the random behavior of
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a signal due to shadow fading and imperfect power control; more specifically,

to account for this randomness we study a probabilistic condition

Pr(γu > γ) > 1− χ, (5.2)

where χ is a small constant that represents a desired bound on outage prob-

ability.

Remark

The transmission rate Rs depends on the signal to noise ratio. Specifically, we

consider the model proposed in [NiA01]. We thus modelize the transmission

rate to be linear in the signal to noise ratio. This model can describe the low

SNR regime of Shannon capacity [Shan01]:

Rs ∝ ln2(1 + γ) (5.3)

Considering a log-normal distribution of the SINR, SINRu = 10ξu/10,

where ξu ∼ N(µξ, σξ), it can be derived that the largest Γ that satisfies the

above probabilistic condition is given by [KoL01, NiA01]:

log Γ =
σ2
ξ

20h
− Q−1(1− χ)σξ

10
, (5.4)

where h = 10/ln10 and Q(x) =
∫∞
x

1√
2π
e−

t2

2 dt.

Any other causes of randomness, most notably fast fading, can be taken

into account the same way by considering a different distribution, e.g. a

Rayleigh fading distribution [Sklar97].

We next consider two service classes, denoted by s = {1, 2} (that will

correspond to RT and NRT traffic, respectively). Let γs be the target SINR

ratio for mobiles of service class s, α the orthogonally factor, and let

βs =
γs

1 + αγs
. (5.5)

We now focus on a given cell, and assume that it contains Ms mobiles of

class s.
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Using the average approximation (which considers that all the mobiles

have the same average interference factor F see Section 4.2), we finally get

for the total output power of base station b:

Pb =
PCCH +N0A

∑
s βsMs

1− (α+ F )
∑
s βsMs

. (5.6)

Fluid model

In particular for a uniform mobile distribution, the parameters F and A can

be evaluated with the fluid model (see the expressions 4.22 and 4.16).

Considering a negligible thermal Noise, we define the downlink loading

(4.4) as: LDL =
∑
s(α+ F )βsMs, this gives

Pmax =
N0A

∑
s βsMs

Z2

, where Z2 = (1− ϕ)− LDL. (5.7)

In most cases, the maximum base station output power determines the

maximum loading supported by the system. We can define the system’s

nominal capacity as Θϕ = 1 − ϕ, and the nominal capacity required by a

connection (which was denoted Lu in expression (4.5)) to be

∆(s) := (α+ F )βs. (5.8)

We note that βs will allow to depend on Ms, s = 1, 2. Combining this with

(5.1) and with (5.5) we get the throughput of a connection s, that “uses a

capacity ∆(s)”:

Rs =
∆(s)

α+ F − α∆(s)
× N0W

EsΓ
. (5.9)

5.3 Downlink with macrodiversity

In this section, we extend our analysis by considering the downlink macro-

diversity case. Our approach is inspired by [HiBe] who considered the single

service case1. A mobile i in macrodiversity is connected to two base stations,

1We extend the context here to refer more generally to macrodiversity, and not only
the soft handover procedure.
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b and l. b is defined to be the station with larger SINR. Following [HiBe]

we assume that the Maximum Ratio Combining is used and hence the power

control tries to maintain

γi = γi,b + γi,l. (5.10)

where γi is given by the constant in (5.1). We have Ωi ≤ 1 where

Ωi =
γi,l
γi,b

. (5.11)

This gives for the combined γi [HiBe]:

γi =
(1 + Ωi)Pb,i/gb,i

α(Pb − Pb,i)/gi,b + fi,bPb/gb,i +N0

. (5.12)

The transmission power becomes

Pb,i = κi(αPb + fb,iPb + gb,N0),

where

κi =
γi

1 + Ωi + αγi
. (5.13)

Let there beM mobiles in a cell b (we shall omit this index) of which a fraction

τ is in macrodiversity. We assume that by symmetry, the base station of

that cell transmits also to a number τM of mobiles that are geographically

situated in neighboring cells. Then the total base station output power can

be calculated as

Pb =
(1−τ)M∑
i=1

Pb,i +
2τM∑
j=1

Pb,j + PCCH ,

where the notations i,j in the sums should be understood to refer to single

link and macrodiversity mobiles, respectively. The power for a single link

user should be calculated the same way as in 5.2.

We now consider two classes of services s = {1, 2} corresponding to RT

and NRT mobiles. We make the following “average approximations”, sim-

ilarly to the previous section: For a given service class s = {1, 2}, Ωi is
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replaced by a constant Ωs (its average over all mobiles of the same service as

i); we also replace fb,i by one of two constants FNMD and FMD, where FNMD

(resp. FMD) corresponds to an average value of fb,i over mobiles which are

not in macrodiversity (and which are in macrodiversity, resp.). Likewise, we

replace gi,b by one of the two constants ANMD and AMD. This gives the total

power of a base station b:

Pb =
Z1

Z2

as long as Z2 is strictly positive, where

Z1 := (1− τ)
∑
s=1,2

MsβsA
NMDN0 + 2τ

∑
s=1,2

MsκsA
MDN0

and

Z2 := (1−ϕ)−(1−τ)
∑
s=1,2

Msβs(α+FNMD)−2τ
∑
s=1,2

Msκs(α+FMD). (5.14)

Again, we can define the system’s nominal capacity as Θε = 1− ϕ, and the

capacity required by a connection of type s = 1, 2 to be ∆(s) = (1−τ)βs(α+

FNMD) + 2τκs(α+ FMD). Combining this with (5.1) and (5.13), we get

∆(s) = (1−τ)· Rs · ζs
1 + αRsζs

(α+FNMD)+2τ · Rs · ζs
1 + Ωs + αRsζs

(α+FMD). (5.15)

Here, ζs = EsΓ
N0W

and we have considered the rate Rs of a connection equal,

irrespective if a mobile is in macrodiversity or not. Solving for Rs, this leads

to a quadratic equation giving two values, of which we retain the positive.

5.4 Uplink

We briefly recall the capacity notions from the case of uplink from [NiA01].

Define for s = 1, 2,

∆̃s =
Es
N0

Rs

W
Γ, and ∆′(s) =

∆̃(s)

1 + ∆̃(s)
. (5.16)
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The power that should be received at a base station originating from a type s

service mobile in order to meet the QoS constraints is given by Z1/Z2 [NiA01]

where

Z1 = N0∆
′(s)

and

Z2 = 1− (1 + fUL)
∑
s=1,2

Ms∆
′(s)

(N0 is the thermal noise power at the base station, fUL is some constant

describing the average ratio between inter and intra cell interference, and Ms

is the number of mobiles of type s in the cell). Also in this case Z2 ≥ ε for

some ε > 0. We can thus define the system’s nominal capacity as Θε = 1− ε,
and the capacity required by a connection of type s = 1, 2 to be ∆(s) =

(1 + fUL)∆′(s). Combining this with (5.16) we get

Rs =
∆(s)

1 + fUL −∆(s)
× NoW

EsΓ
. (5.17)

5.5 Admission and rate control

In the design of an admission and rate control scheme for heterogeneous

services we will consider that RT calls, which have more stringent QoS re-

quirements, have priority over system resources. NRT traffic, on the other

hand, has no guaranteed bit rate and can be served in a processor-sharing

fashion. However, to prevent RT calls from overwhelming the link we will

also assume that a portion of the system resources is reserved for NRT traf-

fic. Further, to also achieve a multiplexing gain for RT calls, we will allow a

limited rate degradation for such traffic.

We consider here a fair transmission rate scheme, such that mobiles which

belong to the same service class (NRT or RT) transmit or receive at the same

rate. For NRT traffic, for which fast-time multiplexing will be considered,

this can be viewed as a fair implementation of an HSDPA or HDR scheme

where transmission to each mobile takes place at the same average rate. For
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this, an underlying scheduler is also assumed that allocates time slots in

proportion to the peak feasible rates of mobiles, in order to achieve the same

average rate.

These basic principles of admission and rate control are made more ex-

plicit in the following. One must also have in mind that either the uplink or

the downlink can be the bottleneck of a CDMA system at one time or an-

other; so from an engineering perspective one should focus only on the more

restrictive direction when accepting calls. In our paper, all the notations will

be understood to relate to that direction.

5.5.1 Capacity reservation

We assume that there exists a capacity LNRT reserved for NRT traffic. The

RT traffic can use up to a capacity of LRT := Θϕ − LNRT .

5.5.2 GoS control of RT traffic

UMTS will use the Adaptive Multi-Rate (AMR) codec that offers eight dif-

ferent transmission rates of voice that vary between 4.75 kb/s to 12.2 kb/s,

and that can be dynamically changed every 20 ms. The lower the rate is,

the larger the amount of compression is, and we say that the grade of service

(GoS) is lower. For simplicity we shall assume that the set of available trans-

mission rates of RT traffic has the form [Rmin, Rmax]. We note that ∆(RT )

is increasing with the transmission rate. Hence the achievable capacity set

per RT mobile has the form [∆min
RT ,∆

max
RT ]. Note that the maximum number

of RT calls that can be accepted is Mmax
RT = bLRT/∆min

RT c. We assign full rate

Rmax
RT (and thus the maximum capacity ∆max

RT ) for each RT mobile as long

as MRT ≤ NRT where NRT = bLRT/∆max
RT c. For NRT < MRT ≤ Mmax

RT the

capacity of each present RT connection is reduced to ∆MR = LRT/MRT and

the rate is reduced accordingly (e.g. by combining (5.1), (5.5) and (5.8) for

the case of downlink).
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5.5.3 Fast time multiplexing for NRT traffic

The capacity C(MRT ) unused by the RT traffic (which dynamically changes

as a function of the number of RT connections present) is fully assigned to one

single NRT mobile, and the mobile to which it is assigned is time multiplexed

rapidly so that the throughput is shared equally between the present NRT

mobiles. The available capacity for NRT mobiles is thus

C(MRT ) =

 Θε −MRT∆max
RT , if MRT ≤ NRT ,

LNRT , otherwise.

The total transmission rate Rtot
NRT of NRT traffic for the downlink and uplink

is then given respectively by

Rtot
NRT (MRT ) =


C(MRT )

α+F−αC(MRT )
× NoW

EsΓ
for DL,

C(MRT )
1+fUL−C(MRT )

× NoW
EsΓ

, for UL

DL : Rtot
NRT (MRT ) =

C(MRT )

α+ F − αC(MRT )
× NoW

EsΓ
, (5.18)

UL : Rtot
NRT (MRT ) =

C(MRT )

1 + fUL − C(MRT )
× NoW

EsΓ
. (5.19)

The expression for downlink with macrodiversity is derived similarly, albeit

being more complex.

Remark 1. The expressions that we have obtained for the total through-

put available for NRT traffic may be in practice non-accurate due to the

many approximations we use, such as using the averaged values f and F

in the above equations. Since these expressions are used later in a dynamic

context, the price of changing the expressions to complex ones can render

the later Markovian analysis infeasible. To be able to have better precision,

we need to sacrifice the generality of the model.
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5.5.4 Remark

Using a Monte Carlo simulator tool developed by France Telecom R&D, we

ran a simulation to test some of the simplifications that we used in this paper

concerning the downlink to check the value of Rtot.

Some mobiles using a voice service are randomly generated in a cell lo-

cated in a UMTS network environment. For each random generation, the

simulation calculates the local downlink interference factor parameter fi for

each mobile. The number of mobiles of a cell N cell
MS is limited by the total

load of the cell which has to be inferior to 100%. We calculate the total

throughput of the cell as follows:

Rtot = 12.2N cell
MSkb/s

We obtain an average number of mobiles for the cell, as the ratio between

the total number of mobiles generated N tot
ms considering all the generations,

to the number of generations Ngen.

N cell
MS =

N tot
MS

Ngen

= 27.6 mobiles.

We obtain a total throughput of

Rtot = 336kb/s.

We obtain an average interference factor per mobile as follows:

F =

Ntot
MS∑
i=1

fi

N tot
MS

= 1.13.

We then use the following analytical calculation:

Rtot = N cell
MS

1− ϕ

N cell
MS(α+ F )− α(1− ϕ)

ϕ is the fraction of the BS power dedicated to common channels. 1-φ is the

capacity of the cell. In our simulations we have ϕ = 0.14 and α = 0.79.
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With the analytical method we obtain Rtot = 379kb/s. The difference

between the two values is

379− 336

379
= 11%

The total throughput is thus close the simulated one.

5.6 Stochastic model and the QBD approach

In this section we proceed to study a stochastic traffic model and examine

steady-state performance measures of the system. We consider the total

nominal capacity to remain fixed throughout the system lifetime. This is true

in case capacity is limited by base station (DL) output power or interference

(UL) and the channel environment conditions do not change very extremely,

so that given the rate and power adaptation the same maximum loading is

achieved at any time instant. We also assume that for the time-multiplexing

of NRT calls an appropriate scheduling scheme is feasible such that each

mobile transmits or receives instantaneously at a rate given by (5.18), and

they all obtain the same average rate.

Model. We assume that RT and NRT calls arrive according to indepen-

dent Poisson processes with rates λRT and λNRT , respectively. The duration

of a RT call is exponentially distributed with parameter µRT . The size of

a NRT file is exponentially distributed with parameter µNRT . Interarrival

times, RT call durations and NRT file sizes are all independent.

The departure rate of NRT calls depends on the current number of RT

calls:

ν(MRT ) = µNRTR
tot
NRT (MRT ).

QBD approach. Under these assumptions, the number of active sessions

in all three models (downlink, with and without macrodiversity and uplink)

can be described as a QBD (quasi-birth-and-death) process, and we denote

by Q its generator. We shall assume that the system is stable. The stationary



5.6. STOCHASTIC MODEL AND THE QBD APPROACH 97

distribution of this system, π, is calculated by solving:

πQ = 0, (5.20)

with the normalization condition πe = 1 where e is a vector of ones of proper

dimension. The vector π represents the steady-state probability of the two-

dimensional process. We partition π as [π(0), π(1), . . .] with the vector π(i)

for level i, where the levels correspond to the number of NRT calls in the

system. We may further partition each level into the number of RT calls,

π(i) = [π(i, 0), π(i, 1), . . . , π(i,Mmax
RT )], for i ≥ 0. The entries of π are ordered

lexicographically, i.e. π(k, i) precedes π(l, j) if k < l, or if k = l and i < j.

The generator matrix Q is given by

Q =


B A0 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0 · · ·
0 0

. . . . . . . . .

 , (5.21)

where the matrices B, A0, A1, and A2 are square matrices of size (Mmax
RT +1).

The matrix A0 corresponds to a NRT connection arrival, given by A0 =

diag(λNRT ). The matrix A2 corresponds to a departure of a NRT call and is

given by A2 = diag(ν(j); 0 ≤ j ≤ Mmax
RT ). The matrix A1 corresponds to the

arrival and departure processes of RT calls. A1 is tri-diagonal as follows:

A1[j, j + 1] = λRT

A1[j, j − 1] = jµRT

A1[j, j] = −λRT − jµRT − λNRT − ν(j)

. We also have B = A1 +A2. We follow a matrix-geometric approach for the

solution of the QBD process. Assuming a steady-state solution exists, π is

given by [neuts]:

π(i) = π(0)Ri. (5.22)

where R is the minimal non-negative solution to the equation:

A0 + RA1 + R2A2 = 0. (5.23)
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The vector π(0) is obtained from the normalization condition, which in ma-

trix notation writes as: π(0)(I −R)−1e = 1.

Note that the evolution of number of RT calls is not affected by the

process of NRT calls and the Erlang formula can be used to compute their

steady state probability, and in particular, the probability of blocking of a

RT call:

PRT
B =

(ρRT )M
max
RT /Mmax

RT !∑Mmax
RT

j=1 (ρRT )j/j!
,

where ρRT = λRT/µRT . This is the main performance measure for the RT

traffic. For NRT calls the important performance measure is expected so-

journ time which is given by Little’s law as

TNRT = E[MNRT ]/λNRT .

Conditional expected sojourn times. The performance measures

so far are similar to those already obtained in the uplink case in [NiA01].

We wish however to present more refined performance measures concerning

NRT calls: the expected sojourn times conditioned on the file size and the

state upon the arrival of the call. We follow [Nun01] and introduce a non-

homogeneous QBD process with the following generator Q∗ [Nun01] and the

corresponding steady state probabilities π∗:

Q∗ =



B A0 0 0 · · ·
(1/2)A2 A

(2)
1 A0 0 0 · · ·

0 (2/3)A2 A
(3)
1 A0 0 · · ·

0 0 (3/4)A2 A
(4)
1 A0 · · ·

0 0
. . . . . . . . . . . .


, (5.24)

where the matrices A0, A2, B are the same as introduced before, and A
(k)
1 , k ≥

2 is the same as A1 defined before except that the diagonal element is chosen

to be minus the sum of the off-diagonal elements of Q∗, i.e.

A
(k)
1 [i, i] = −λRT − iµRT − λNRT −

k − 1

k
ν(i).
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The conditional expected sojourn time of a NRT mobile given that its size

is v, that there are i RT mobiles and k− 1 NRT mobiles upon it’s arrival, is

obtained from [Nun01, Corollary 3.3 and remarks in § 8.3]:

Tk,i(v) =
v

R∗ − ρ∗
+ 1k,i

[
I − exp

(
vR−1Q∗

)]
w, (5.25)

where

R∗ :=
∑
k,i

π∗(k, i)Rtot
NRT (i), R = diag

[
1

k
Rtot
NRT (i)

]
,

ρ∗ :=
λNRT
µNRT

,

1k,i is a vector of proper dimension whose entries are all zero except for the

(k, i)-th entry whose value is 1, and w is the solution of

Q∗w =
1

R∗ − ρ∗
R · 1k,i − 1k,i.

The entries of R along the diagonal are ordered lexicographically in (k, i).

Remark 2. Expression (5.25) simplifies considerably in case the capacity

allocated to NRT calls is fixed. Suppose that the number of RT sessions stays

fixed to i throughout the system lifetime (this can be used as an approxima-

tion when the average duration of RT sessions is very large). The service rate

is constant, Rtot
NRT (i). Then we can study the system as an M/M/1 queue

with processor sharing, for which we can easily derive from [Coffman70]:

Tk(v) =
v/Rtot

NRT (i)

1− ρ′
+ [k(1− ρ′)− ρ′]

1− e−(1− ρ′)µNRT · v

µNRTRtot
NRT (i)(1− ρ′)2

(5.26)

provided that ρ′ :=
λNRT

µNRTRtot
NRT (i)

< 1 (ergodicity condition).

The equation is obtained by translating to time units: A job of v size

units requires a service time v/Rtot
NRT (i), if it were served alone in the system.

Furthermore, the distribution of service time requirement is also exponential

with mean 1/(µNRTR
tot
NRT (i)).

To illustrate the role of the conditional sojourn time, we use (5.26) to

compute the maximum number k of NRT calls present at the arrival instant
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of an NRT call (we include in this number the arriving call) such that the

expected sojourn time of the connection, conditional on its size and on k, is

below 1 sec. This is depicted in figure 5.1. For example, if the mean size

Figure 5.1: Maximum number of NRT connections upon arrival such that

the conditional expected sojourn time is below 1 sec, as a function of the

mean size of the file

of the file is 100 Kbits then its conditional expected sojourn time will be

smaller than 1 sec as long as the number of mobiles upon arrival (including

itself) does not exceed 12. This figure is obtained with Rtot
NRT (0) = 1000

kbps, λNRT = 1 (we took no RT calls, i.e. i = 0).
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5.7 Numerical results

In this section, we examine basic performance parameters when RT and NRT

traffic is integrated in the link, according to our transmission and rate control

scheme. We consider the following setting illustrated in Table 5.7, based on

standard WCDMA parameter values (cf. [HoTo]). Unless stated otherwise,

the data are for both the downlink (DL) and uplink (UL).

Transmission rate of RT mobiles min max

4.75 kbps 12.2 kbps

ERT/N0 7.9 dB (12.2 kbps, UL)

11.0 dB (12.2 kbps, DL)

ENRT/N0 4.5 dB (144 kbps, UL)

4.8 dB (384 kbps, DL)

Mean NRT session size 1/µNRT = 160 kbits

Mean RT call duration 1/µRT = 125 s

Call arrival rates λRT = λNRT = 0.4

Intercell interference factors UL : f = 0.73 DL : F = 0.55

Non-orthogonality factor (DL) a = 0.64

Chip rate W = 3.84 Mcps

Fraction of power for SCH, CCH channels ϕ = 0.2

Table 5.1: Numerical Values.

Moreover, in our numerical investigation we have chosen a very small

value of ε (ε = 10−5), such that with negligible thermal noise an average

mobile is located a few hundred meters from the base station2. Of course,

2We have considered a thermal noise level of -100 dBm, and a path loss exponent 4 in an
urban environment [HoTo]. This roughly yields a power of about 20 Watt in the downlink
(transmitted output power of a base station), and 1 Watt in the uplink (transmitted power
from a mobile).
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in a more realistic application the value of ε must be selected more carefully

and separately for the uplink and downlink. We assumed here that the target

Es/N0 depends only on the class of traffic s but not on the number of mobiles.

The constant Γ is computed so as to guarantee that the probability that

the target C/I is satisfied is 0.99. It corresponds to a standard deviation

constant σ = 0.5 (see [NiA01]).

Influence of NRT reservation on RT traffic.

In figure 5.2 we depict the average cell capacity in terms of the average

number of RT mobiles for both uplink and downlink as a function of the

reservation threshold for NRT traffic. We see that it remains almost constant

(50 mobiles per cell) for up to 50% of the load.

Figure 5.2: Mean number of RT calls in a cell as a function of the reservation

level for NRT traffic.

In figure 5.3 we present the blocking rate of RT traffic. At a reservation

LNRT of 50% of the maximum load, the dropping rate is still lower than 1%.

Influence of NRT reservation on NRT traffic.

The figure 5.4 shows the impact of the reservation threshold LNRT on the

expected sojourn time of NRT calls both on uplink and downlink. We see that
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Figure 5.3: Blocking rate for RT calls as a function of the reservation level

for NRT traffic

the expected sojourn times become very large as we decrease LNRT below

0.15% of the load. This demonstrates well the need for such a reservation.

In the whole region of loads between 0.16 to 0.5 the NRT expected sojourn

time is low and at the same time, as we saw before, the rejection rate of RT

calls is very small. Thus, this is a good operating region for both RT and

NRT traffic.

Conditional expected sojourn time.

The reservation limit LNRT is taken to be 0.27 in Figure 5.5, 5.6. In Figure

5.5 we depict the expected sojourn time conditioned on the number of NRT

and RT calls found upon the arrival of the call both being k and on the file

being of the size of 100 kbits. The number k is varied in this figure.

Figure 5.6 depicts for various file sizes, the maximum number k such that

the conditional expected sojourn time of that file with the given size is below

1 sec. k is defined to be the total number of RT calls as well as the total

number of NRT calls (including the call we consider) in the cell. We thus

assume that the number of NRT and of RT calls is the same, and seek for

the largest such number satisfying the limit on the expected sojourn time.
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Figure 5.4: Expected sojourn times of NRT traffic as a function of the NRT

reservation

Note, in comparison to figure 5.1, the decrease in the maximum number of

mobiles, since RT calls now exist in the system.

5.8 Extension to handover calls

So far in the paper, arrivals of new and handover calls in the CDMA cell had

been succinctly incorporated in a single rate and thus not treated differently.

We now wish to differentiate between these calls. We assume that RT new

calls (resp. NRT new calls) arrive with a rate of λNewRT (resp. λNewNRT ) where as

the handover calls arrive at rate λHORT (resp. λHONRT ). We assume that RT calls

remain at a cell during an exponentially distributed duration with parameter

µRT .

From a QoS perspective, avoiding blocking of handover calls is considered

more important than avoiding blocking of new ones. So we define a new

threshold M
New
RT < Mmax

RT . New RT calls are accepted as long as MRT ≤
M

New
RT , whereas handover RT calls are accepted as long as MRT ≤ Mmax

RT .

The behavior of NRT calls is as before. Define ρRT = λRT/µRT (the same
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Figure 5.5: Conditional expected sojourn time of an NRT mobile as a func-

tion of the number of mobiles in the cell

as before, corresponding to the total arrival rate) and ρHORT = λHORT /µRT . Let

pRT (i) denote the number of RT mobiles in steady state. It is given by

pRT (i) =


(ρRT )i

i!
pRT (0), if 0 ≤ i ≤M

New

RT

(ρRT )M
New
RT (ρHORT )i−M

New
RT

i!
pRT (0), if M

New
RT ≤ i ≤Mmax

RT

where pRT (0) is a normalizing constant given byM
New
RT∑
i=0

(ρRT )i

i!
+

Mmax
RT∑

i=M
New
RT

(ρRT )M
New
RT (ρHORT )i−M

New
RT

i!


−1

.

The QBD approach introduced before can be directly applied again to

compute the joint distribution of RT and NRT calls, and in particular, the

expected sojourn time of NRT calls.

A numerical example.

We consider the uplink case of the CDMA system. The input data are the

same as before, except that now a fraction of 30% of arriving RT calls are due
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Figure 5.6: Maximum number of NRT connections upon arrival such that

the conditional expected sojourn time is below 1 sec, as a function of the size

of the file

to handovers. In figure 5.7 we present the impact of the choice of the NRT

threshold on the blocking rate of RT mobiles. We also illustrate the impact

of the differentiation between new and handover calls. The middle curve is

obtained with no differentiation. The total dropping rate of the model with

handover differentiation is larger, but the dropping rate of calls already in

the system (that arrive through a handover) is drastically diminished (the

curve called “Dropping”).

5.9 Summary and conclusions

We have developed a simplified mathematical model that allowed us to an-

alyze the performance of call admission control combined with GoS control

in a WCDMA environment with integrated RT and NRT traffic. RT traffic

has limited adaptive rate functionalities and priority over resources whereas

NRT traffic obtains by time sharing the capacity left over by the RT traffic.
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Figure 5.7: RT dropping probabilities

As performance measures we studied the blocking rate of RT traffic and

the sojourn times of NRT traffic. We illustrated through numerical examples

the importance of adding reserved capacity LNRT for NRT traffic and demon-

strated that this reservation can be done in a way not to significantly affect

RT traffic. More specifically, we saw that the blocking rate of RT traffic was

small and quite robust to the choice of LNRT , over a large interval of values.

For NRT traffic, we investigated not only the average sojourn time but also

the conditional expected sojourn time given the file size and the number of

RT and NRT mobiles present at the cell upon arrival.

Finally, we provided an extension of the multiservice system model to

handle handover RT calls. It was shown that differentiating the admission

control policy for such calls can greatly reduce their blocking probability, and

therefore provide better QoS.
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Chapter 6

Outage Probability

In this chapter, using the analytical formula of the interference factor f given

by the fluid model, we derive the global outage probability, and the spatial

outage probability (see [KeCoGo1]) which depends on the location of a mobile

station (MS) initiating a new call.

6.1 Introduction

The estimation of cellular networks capacity is one of the key points before

deployment and mainly depends on the characterization of interference. As

downlink is often the limited link w.r.t. capacity, we focus on this direction,

although the proposed framework can easily be extended to the uplink. As

established in chapter 2, in Code Division Multiple Access (CDMA) systems,

an important parameter for this characterization is the other-cell interference

factor f . The precise knowledge of the interference factor allows the deriva-

tion of outage probabilities, capacity evaluation and then, the definition of

Call Admission Control mechanisms.

We show that it is possible to get a simple outage probability approxi-
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mation by integrating f over a circular cell. In addition, as f is obtained as

a function of the distance to the BS, it is possible to derive a spatial outage

probability, which depends on the location of a newly initiated call.

Remark: blocking vs. outage

Quality of service in cellular networks is characterized for circuit switched

services by two main parameters: the blocking probability and the outage

probability. The former is evaluated at the steady state of a dynamical system

considering call arrivals and departures. It is related to a call admission

control (CAC) that accepts or rejects new calls. The outage probability is

evaluated in a semi-static system [BaB01], where the number of MS is fixed

and their location is random. This approach is often (see e.g. [Bon05]) used

to model mobility in a simple way: MS jump from one location to another

independently. For a given number n of MS per cell, outage probability is

thus the proportion of configurations, where the needed BS output power

exceeds the maximum output power: Pb > Pmax.

6.2 Outage probabilities

In this section, we compute the global outage probability and the spatial

outage probability with the Gaussian approximation. Using the fluid model,

closed-form formulas for the mean and standard deviation of f over a cell

are provided.

6.2.1 Global outage probability

For a given number of MS per cell, n, outage probability, P
(n)
out , is the pro-

portion of configurations, for which the needed BS output power exceeds

the maximum output power: Pb > Pmax. We assume a single service in the

network. We deduce from (4.4)(βu = β for all u):
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P
(n)
out = Pr

[
n−1∑
u=0

(α+ fu) >
1− ϕ

β
− N0

Pmax

∑n−1
u=0 1

gb,u

]
, (6.1)

where ϕ = Pcch/Pmax and β = γ∗/(1 + αγ∗).

In most of cases the thermal noise may be neglected, we deduce:

P
(n)
out = Pr

[
n−1∑
u=0

(α+ fu) >
1− ϕ

β

]
, (6.2)

6.2.2 Spatial Outage Probability

For a given number n of MS per cell, a spatial outage probability can also

be defined. In this case, it is assumed that n MS have already been accepted

by the system, i.e., the output power needed to serve them does not exceed

the maximum allowed power. The spatial outage probability at location ru

is the probability that maximum power is exceeded if a new MS is accepted

in ru.

P
(n)
sout(u) = Pr

[
(α+ fu) +

n−1∑
v=0

(α+ fv) >
1− ϕ

β
|
n−1∑
v=0

(α+ fv) ≤
1− ϕ

β

]
(6.3)

and so we have

P
(n)
sout(u) =

Pr
[

1−ϕ
β
− (α+ fu) <

∑n−1
v=0(α+ fv) ≤ 1−ϕ

β

]
Pr

[∑n−1
v=0(α+ fv) ≤ 1−ϕ

β

] (6.4)

6.2.3 Fluid Analysis

To calculate the expressions (6.2) and (6.4) we use the fluid model approach.

We make the approximation that the spatial outage, P
(n)
sout(u), depends on

the distance to the BS. Denoting f(ru) the interference factor of a mobile u

at a distance r from its serving BS we can write (6.2) and (6.4) as:

P
(n)
out = Pr

[
n−1∑
u=0

(α+ f(ru)) >
1− ϕ

β

]
, (6.5)
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and

P
(n)
sout(ru) =

Pr
[

1−ϕ
β
− (α+ f(ru)) <

∑n−1
v=0(α+ f(rv)) ≤ 1−ϕ

β

]
Pr

[∑n−1
v=0(α+ f(rv)) ≤ 1−ϕ

β

] (6.6)

The expressions of the outage probability (6.5) and (6.6) are based on

the fact that the locations of mobiles in the cell are random. Thus the

interference factor value is random too. Since mobiles are assumed to be

uniformly distributed over the equivalent disk of the cell, we can express

their location as a probability density function (pdf) of r: pr(t) = 2t
R2

e
.

6.2.4 Gaussian Approximation

In order to compute these probabilities, we rely on the Central Limit theorem

and use a Gaussian approximation. As a consequence, we need to compute

the spatial mean and standard deviation of f(ru). The central limit theo-

rem expresses that considering the following sequence of random variables

X1, X2, X3, ... defined on the same probability space, share the same proba-

bility distribution D and are independent. Assume that both the expected

value µ and the standard deviation σ of D exist and are finite. Consider the

sum Zn = (X1+...+Xn−nµ)/σn1/2, where the expected value of Zn is nµ and

its standard error is σn1/2. Then the distribution of Zn converges towards

the standard normal distribution N(0, 1) as n approaches infinity. To apply

the gaussian approximation to the calculation of the outage probability, we

first have to calculate the expected value µf and the standard deviation σf

of the interference factor. So, we integrate f(r) on an equivalent disk of

radius Re (see figure 3.5). Since the area of a cell is 1/ρBS = πR2
e, we have

Re = Rc

√
2
√

3/π.

As mobiles are uniformly distributed over the equivalent disk, the proba-

bility density function (pdf) of r is: pr(t) = 2t
R2

e
. Let µf and σf be respectively

the mean and standard deviation of f(r), when r is uniformly distributed over
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the disk of radius Re.

µf =
2πρBS
η − 2

∫ Re

0
tη(2Rc − t)2−η 2t

R2
e

dt

=
24−ηπρBSR

2
c

η − 2

(
Re

Rc

)η ∫ 1

0
xη+1

(
1− Rex

2Rc

)2−η
dx

=
24−ηπρBSR

2
c

η2 − 4

(
Re

Rc

)η
×

2F1(η − 2, η + 2, η + 3, Re/2Rc), (6.7)

where 2F1(a, b, c, z) is the hypergeometric function, whose integral form is

given by:

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt,

and Γ is the gamma function defined as Γ(x) =
∫∞
0 tz−1e−tdt.

Since the mobile distribution is uniform, µf corresponds to an other way to

express Flim (see 4.23).

We can notice that for a pathloss parameter η = 3, we obtain the following

closed formula:

µf = −2πρBSR
2
c

(
ln(1− ν/2)

ν2
+

16

ν
+ 4 +

4ν

3
+
ν2

2

)
,

where ν = Re/Rc. In the same way, the variance of f(r) is given by:

σ2
f = E

[
f 2
]
− µ2

f (6.8)

E
[
f 2
]

=
24−2η(2πρBSR

2
c)

2

(η + 1)(η − 2)2

(
Re

Rc

)2η

×

2F1(2η − 4, 2η + 2, 2η + 3,
Re

2Rc

).

As a conclusion of this section, the outage probability can be approximated

by:

P
(n)
out = Q

 1−ϕ
β
− nµf − nα
√
nσf

 , (6.9)
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where Q is the error function defined as Q(x) = 1√
2π

∫∞
x e−t

2
dt. And the

spatial outage probability can be approximated by:

P
(n)
sout(ru) =

Q
( 1−ϕ

β
−nµf−(n+1)α−f(ru)

√
nσf

)
−Q

( 1−ϕ
β
−nµf−nα√
nσf

)
1−Q

( 1−ϕ
β
−nµf−nα√
nσf

) , (6.10)

where f(ru) is given by (3.3).

6.2.5 Validity of the Gaussian Approximation

The question arises of the validity of the Gaussian approximation. The num-

ber of users per WCDMA cell is indeed usually not greater than few tens.

Figure 6.1 compares the pdf of a gaussian variable with mean µf and stan-

dard deviation σf/
√
n with the pdf of 1

n

∑
u f(ru) for different values for n.

The latter pdf has been obtained by Monte Carlo simulations done on a single

cell, assuming fluid model formula for f . We observe that gaussian approx-

imation matches better and better when the number of mobiles increases.

That one matches well even for very few mobiles in the cell (n = 10). So we

can use it to calculate the outage probability.

6.2.6 Results

Figures 6.2 and 6.3 show the kind of results we are able to obtain instanta-

neously thanks to the simple formulas derived in this paper for voice service

(γ∗u = −16 dB). Figure 6.2 shows the global outage probabilities as a function

of the number of MS per cell for various values of the path-loss exponent η.

It allows us to easily find the capacity of the network at any given maximum

percentage of outage. For example, the outage probability when there are 22

users per cell is about 8% with η = 3.5. Since the amount of interferences

increases when the exponential factor η decreases, we observe that for a given

number of mobiles, the outage probability increases when η decreases.
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Figure 6.1: Probability density function of 1
n

∑
u f(ru) (solid line) and its

Gaussian approximation (dotted line).

Figure 6.3 shows the spatial outage probability as a function of the dis-

tance to the BS for η = 3 and for various number of MS per cell. Given

that there are already n, these curves give the probability that a new user,

initiating a new call at a given distance, implies an outage. As an example,

a new user in a cell with already 16 on-going calls, will cause outage with

probability 0.17 at 900 m from the BS and with probability 0.05 at 650 m

from the BS.

With this result, an operator would be able to admit or reject new con-

nexions according to the location of the entering MS. Thus, this allows a

finer admission control than with the global outage probability.
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Figure 6.2: Global outage probability as a function of the number of MS per

cell and for various values of the path-loss exponent (from η = 2.5 to 3.5 by

steps of 0.1).

Figure 6.3: Spatial outage probability as a function of the distance to the BS

for various number of users per cell and for η = 3.
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6.3 Monte Carlo Simulations Comparisons

6.3.1 Simulation Methodology

The traditional hexagonal model is widely used, especially for dimensioning

purposes. That is the reason why a comparison of our model to a hexagonal

one is useful.

We compare the outage probability obtained with our fluid model to the

ones obtained by simulations done with a hexagonal classical one.

We determine the outage probability with Monte Carlo simulations done

with a discrete set of base stations distributed according to a hexagonal

pattern. The simulator assumes an homogeneous hexagonal network made

of several rings around a cell we analyze. Figure 3.4 shows an example of

such a network with the main parameters involved in the study.

At each snapshot of the Monte Carlo simulation, random locations are

drawn for the mobile stations of the network. The number of mobile stations

per cell is fixed all along the simulation and their spatial distribution within

one cell is uniform. Path-loss model is implemented as described in section

3.2.

For a given number of MS per cell, n, outage probability is thus the

proportion of configurations, where the needed BS output power exceeds the

maximum output power: Pb > Pmax.

6.3.2 Results

Figures (6.4) and (6.5) give comparison of the curves obtained with (6.9)

with those obtained by simulations.

There are some differences. These differences are due to the high sensiti-

tivy of the error function Q to the mean and standard deviation of f : analysis

and Monte Carlo simulations can lead to quite different outage probabilities

even if analytical average and variance of the underlying Gaussian distribu-

tion are very close to simulated figures. The mean and the standard deviation
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Figure 6.4: Global outage probability as a function of the number of MS per

cell and for path-loss exponents η = 2.7 and 3.5, fluid analysis compared to

simulations.

Figure 6.5: Spatial outage probability as a function of the distance to the BS

for various number of users per cell and for η = 2.7 and η = 3.5.
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obtained with the fluid expression of f are slightly different than the ones

obtained by simulations. We can say that the results obtained depend on

the model used. If we use a hexagonal model, we obtain a result and if we

use the fluid model we observe an other result. As no approach is better to

modelize the reality of a network, we can say that the observed differences

are inherent to the modelization process.

We can also say that we want to have a fluid model as close as possible

to a hexagonal one. In that case, we can fit the fluid model to the hexagonal

one. And we obtain very close results. We however observe the differences

between them depend on the value of the pathloss parameter. We thus do a

fitting taking into account the value η.

6.3.3 Interference factor formula for hexagonal net-

works

Two frameworks for the study of cellular networks are considered: the tra-

ditional hexagonal model and the fluid model. Both models leads to compa-

rable results for the interference factor as a function of the distance to the

BS. If we want to go further in the comparison of both models, in particular

with the computation of outage probabilities, we need however to be more

accurate.

The aim of this section is to provide an alternative formula for f that

better matches the simulated figures in an hexagonal network. Note that this

result is not needed if network designers use the new framework proposed in

this thesis. An accurate fitting of analytical and simulated curves shows that

f should simply be multiplied by an affine function of η to match with Monte

Carlo simulations in an hexagonal network. The expression (3.3) can then

be re-written as follows:

fhexa(r) = (1 + Ahexa(η))
2πρBSr

η

η − 2
(2Rc − r)2−η, (6.11)

where Ahexa(η) = 0.15η + 0.68 is a corrective term obtained by least-square
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fitting. Note that for an accurate fitting of the analytical formulas presented

in this section to the Monte Carlo simulations performed in an hexagonal

network, µf should be multiplied by (1 + Ahexa(η)), σf by (1 + Ahexa(η))
2

and the expressions (3.3) replaced by (6.11).

6.3.4 Results

Figures 6.2 and 6.3 show the kind of results we are able to obtain instanta-

neously thanks to the simple formulas derived in this paper for voice service

(γ∗u = −16 dB). Analytical formulas are compared to Monte Carlo simula-

tions in an hexagonal cellular network. As a matter of fact, Eq.6.11 is used.

Figure 6.6 shows the global outage probabilities as a function of the number

of MS per cell for various values of the path-loss exponent η. It allows us to

easily find the capacity of the network at any given maximum percentage of

outage. For example, the outage probability when there are 12 users per cell

is about 10% with η = 3.5. Figure 6.7 shows, as an example, the capacity

with 2% outage as a function of η.

Figure 6.8 shows the spatial outage probability as a function of the dis-

tance to the BS for η = 3 and for various number of MS per cell. Given

that there are already n, these curves give the probability that a new user,

initiating a new call at a given distance, implies an outage. As an example,

a new user in a cell with already 16 on-going calls, will cause outage with

probability 0.17 at 900 m from the BS and with probability 0.05 at 650 m

from the BS.

With this result, an operator would be able to admit or reject new con-

nexions according to the location of the entering MS. Thus, this allows a

finer admission control than with the global outage probability.

6.4 Concluding remarks

In this chapter, we showed the simplicity of the fluid model allows a spatial

integration of f leading to closed-form formula for the global outage proba-
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Figure 6.6: Global outage probability as a function of the number of MS per

cell and for path-loss exponents η = 2.7, 3.5 and 4, simulation (solid lines)

and analysis (dotted lines).

bility and for the spatial outage probability. Monte Carlo simulations done

with a hexagonal network show some differences with the fluid model results,

due to the high sensititivy of the error function Q to the mean and standard

deviation of f. As no approach is better to modelize the reality of a network,

we can say that the observed differences are inherent to the modelization

process. However, to have a fluid model as close as possible to a hexagonal

one, we fitted the fluid model to the hexagonal one as a function of it. The

proposed framework is a powerful tool to study admission control in CDMA

networks and design fine algorithms taking into account the distance to the

BS.
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Figure 6.7: Capacity with 2% outage as a function of the path-loss exponent

η, simulations (solid lines) and analysis (dotted lines) are compared.

Figure 6.8: Spatial outage probability as a function of the distance to the BS

for various number of users per cell and for η = 3.
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We developed a fluid model considering a radio network as a continnum

of base stations. One of the hypothesis on which the calculation of the inter-

ference factor lays is a radial and deterministic pathloss which only depends

on the distance between the transmitter and the receiver.

In the chapter 7, we propose a first refinement by considering a pathgain

also depending on the antenna gain. This last approach enables to ana-

lyze networks with sectored cells. As an application, a comparison between

sectorisation and densification is proposed.

In chapter 8, we propose a second refinement by considering the shadowing,

in our analysis.

And in chapter 9, we analyze the uplink in term of fluid model.
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Chapter 7

Fluid Model for Sectored

Networks

This chapter proposes a refinement of the fluid model by considering sectored

networks. As an application, we analyze the densification and the sectoriza-

tion of CDMA networks, in mono and multi services case.

7.1 Introduction

Among the solutions to answer an increasing traffic in a CDMA network, a

provider has the possibilities to install base stations in new sites (see section

4.5) or to sectorize it i.e to replace the existing BS with directional antenna

BS in the same place as the existing ones. To analyse the advantages and

drawbacks of each kind of solution, a provider generates simulations with

simulators tools. These last ones need to create an environment and to set

the network’s parameters. They do not give instantaneous results, may last

an important time, and moreover, a great number of simulations are generally

required.

We generalize the fluid approach developed for omni-directional base sta-
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tions networks to sectored ones. We first establish the expression of the inter-

ference factor for a three-sectored network. We validate this approach com-

paring it to a numerical computed network. It becomes possible to analyse

and compare instantaneously different solutions with the aim to adapt the

network, or a given zone of the network, to an increasing traffic demand. As

an application of this model, we analyze the densification and the sectorisa-

tion and propose a comparison of these means as solutions to an increasing

traffic. We show, this model enables to analyse the mobile admission in

CDMA networks. We end by generalizing our model for a q-sectored net-

work, with q ≥ 1.

Our fluid model gives results close to the ones obtained by planning tools

(see remark Section 7.7.1) which take into account a real environment.

7.2 Notations

7.2.1 Definitions

We define a site as a geographical place where the base stations are located.

A cell is the area covered by a BS. An omnidirectional site has one BS and

one cell. A q-sectored site has q BS with directional antenna and q cells. In a

sectored site, a cell can be denoted a sector. We focus on q=3. Each number

of the figure 7.2 represents a site, and each arrow represents a directional

antenna.

7.2.2 Propagation

For an omni-directional BS network (see section 2.2.2), we considered a path-

gain gb,u only depending on the distance r between the BS b and the MS u.

The power, pb,u, received by a mobile at distance ru could thus be written

pb,u = PbKr
−η
u , where K is a constant and η > 2 is the pathgain expo-

nent. In order to adapt the model in the case of sectored sites, i.e. each

geographical site manages several base stations with directional antennas, an
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other term has to be considered to take into account the directional antenna

gain: a mobile positioned at the coordinate (r, θ) of a sector receives a power

pb,u = PbKr
−η
u G(θ). We choose the axis origin such as θ is the angle between

the azimuth of the sector and the direction BS-MS (see figure 7.2 central

zone: sector S1), 0 ≤ G(θ) ≤ 1 is the normalized antenna gain, representing

the effect of directional antennas in sectored BS. It is equal to 1 if θ = 0, to

a value between 0 and 1 otherwise.

7.3 Sectored Network Fluid Model

7.3.1 Assumptions

The fluid model we developed for a network constituted by omnidirectional

base stations can be enhanced in a case of a sectored network. When a

uniform traffic and a uniform BS density are assumed, and using now a

model where the pathgain gb,u is a function of the position (r, θ) (between

the serving base station b and the mobile u), the parameter fu depends on

that position. So the interference factor which was written as a function of r

(3.3) has now to be written as a function of (r, θ). Moreover in this context,

since a site manages three base stations, the network is characterised by a

specific base station density ρbs,3 [Kel02]. We assume that mobiles and base

stations are uniformely distributed in the network, so that ρbs,3 is constant.

As the network is homogeneous, all base stations have the same output power

Pb.

We focus on a given cell and consider a round shaped network around

this centre cell with radius Rnw. The half distance between two sites is 2Rc

(see Figure 7.1).

7.3.2 Interference Factor

The figure 7.2 represents a three-sectored network. Each arrow represents an

antenna direction. The great circles represent the zone covered by a site, and



130 Fluid Model for Sectored Networks

2Rc

Continuum

Rc

Rnw of base stations

Figure 7.1: Network and cell of interest in the fluid model; the distance between two BS
is 2Rc and the network is made of a continuum of base stations.

the little ones (central site) represent the zones covered by an antenna. We

consider a homogeneous sectored network with a BS (transmitter) density:

ρbs,3 =
Somni
Stri

ρbs. (7.1)

where ρbs is the omni-directional network BS density , Somni and Stri are the

omni-directional and sector cells surfaces. At any point of the network, the

power received by a mobile is calculated as follows.

Let’s consider a mobile u at the position (r, θ) from its serving BS b =

ψ(u). The interference factor is defined as the ratio of the total power received

by a mobile coming from all the other base stations of the network on the

total power received by its own base station (see 3.4). In the case of a sectored

network, the other base stations belonging to the same site contribute to the

interferences, too. So to calculate the interference factor in a given sector

(sector 1, figure 7.2) we have to consider the total radio power coming from

the other sites of the network (denoted 1 to 18 in this case) and the power

coming from the other base stations belonging to the same site (sectors S2

and S3).

Considering the other sites, each elementary surface zdzdθ at a distance

z from u contains ρbs,3zdzdθ base stations which contribute to Pext,u. Their

contribution to the external interference is ρbs,3zdzdθPbKz
−ηG(θ). Like in

the omni-directional case, we approximate the integration surface by a ring
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with centre u, inner radius 2Rc−ru, and outer radius Rnw−ru (see figure 3.2).

We denote Gs(θ) the antenna gain for the sector s. For the three-sectored

sites, G(θ) has an angular 2π
3

symmetry. We can write Gs(θ) = G(θ+ (s−1)2π
3

)

We consider a mobile u belonging to the sector S1. We finally can write

the contribution of the other base stations as:

Pext,u =
∫ 2π

0

∫ Rnw−ru

2Rc−ru
ρbs3PbKz

−ηG(θ)zdzdθ +
3∑
j=2

PbKr
−η
u Gj(θ). (7.2)

Figure 7.2: Integration limits for external interference computation.

Moreover, a mobile station (MS) u belonging to the sector S1 at the

position (r, θ) receives internal power from b: Pint,u = PbKr
−η
u G1(θ). In this

case, the factor fu depends on the position of the mobile. We denote it

f(r, θ). So considering the whole network, the interference factor defined as

fu = Pext,u

Pint,u
can be expressed by:

fsect(r, θ) =
1

PbKz−ηG1(θ)

∫ 2π

0

∫ Rnw−ru

2Rc−ru
ρbs3PbKz

−ηG(θ)zdzdθ



132 Fluid Model for Sectored Networks

+
1

PbKz−ηG1(θ)

3∑
j=2

PbKr
−η
u Gj(θ). (7.3)

We notice that

∫ 2π

0

∫ Rnw−ru

2Rc−ru
ρbsPbKz

−ηzdzdθ

PbKz−η = f(r) (expression 3.3). Since

that expression assumes omni directional sites, it can be written fomni(r).

Denoting moreover

a(θ) =
1

2π

Somni
Ssect

∫ 2π
0 G(θ)dθ

G1(θ)
(7.4)

and

b(θ) =

∑3
j=2Gj(θ)

G1(θ)
(7.5)

So the expression (7.3) can be written as:

fsect(r, θ) = a(θ)fomni(r) + b(θ). (7.6)

7.3.3 Comments

Linear dependency

We established a very interesting result: The interference factor in a given

sector of a three-sectored network can be expressed as a linear function of

the omni-directional one. The parameters a(θ) and b(θ) only depend on the

angle, the number of sectors and the normalized antenna gain G(θ). That

linear dependency comes from the analytical expression of the pathloss: the

dependency with the distance is decoupled to the one with the angle.

Position dependency

Since we assumed an homogeneous network, and thus all base stations trans-

mit the same power, the interference factor fu does not depend on the BS

output power. The position dependency of f is due to the pathloss analytical
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expression. In sectored network, since the pathloss depends on the position of

the mobile, f also depends on that one, so that we can write f as a function

of (r, θ), f(r, θ).

We also notice that when G(θ) = 1 whatever the angle θ, i.e. for an omni-

directional network, a(θ) = 1 and b(θ) = 0 , the expression (7.6) becomes

fsect(r, θ) = fomni(r).

Fluid model general expression

Replacing a discrete set of sites consituted by three base stations by a contin-

uous one, we established the expressions fomni(r) (3.3 ) and fsect(r, θ) (7.6):

they represent our fluid sector model. The model we propose depends on the

exponential pathloss factor, the density of base stations and the cell’s radius.

It allows calculating the influence of a mobile on a given cell, whatever its

position. It moreover takes into account the size zone R to be considered.

This last one can be chosen characterizing a typical environment (urban or

rural, macro or micro cells). Like in the omni-directional case, it appears

important to validate that approach.

7.4 Validation of the Sectored Fluid Model

7.4.1 Simulation Methodology

To validate our network’s approach, using a simulator developed for sec-

tored network, we follow an analogue method as the one used for an omni-

directional network (chapter 1 section 1.4). We choose to compare our model

to a sectored hexagonal classical one. We calculate the interference factor

values given by the continuum set of base stations of our fluid model network,

and the ones obtained with a discrete set of base stations distributed accord-

ing to a hexagonal pattern. Since the mobiles are uniformly distributed, all

the BS stations have the same transmitting power.

We will compare the figures obtained with Eq. (7.6) to the ones obtained
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by simulations. The simulator assumes an homogeneous hexagonal three-

sectored network made of ten rings of sites around the cell we analyze (figure

7.2).

Figure 7.3: Normalized antenna gain.

The validation is done by computing f in each point of the cell S1 (Figure

7.2). This computation can be done independently of the number of MS in

the cell and of the BS output power. Factor f indeed depends only on the

path-losses to the BS of the network.

Typical patterns G( θ
θ0

) for antennas of beam width 60o and 65o are used.

Figure (7.3) shows the empirical patterns (black curve) and the polynomial

regression fitted approximation function (white curve inside the black one)

in a linear scale. The following analytical approximation function is used.

Denoting x = θ
θ0

and y = G( θ
θ0

) with θ0 = 65, we have

y = −0.1284x6+1.2138x5−4.4096x4+7.5012x3−5.4348x2−0.3349x+0.9907

(7.7)
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To validate the model, we need to verify the dependency of the interfer-

ence factor with the distance r and the angle θ, i.e. to compare the values

obtained with the two methods: analytical fluid one simulation based one.

7.4.2 Simulation Results

Simulation parameters are the following:

• η = 3,

• R = 1 Km,

• Rnw = 5R.

The expression (7.6) is also plotted for comparison.

We observe the fluid model matches very well the simulations on an hexag-

onal sectored network (figures 7.4 and 7.5)

The figure (7.4) compares the interferences factor values obtained with

the two methods. The X coordinate represents the interference factor values

given by the simulation method and the Y coordinate represents the ones

obtained with the fluid model. The simulations and fluid values obtained

(orange squares) are fitted according to a linear regression (black dotted

line). Its analytical expression, Y=1.05X, shows that the two methods give

very close values, with a great precision (correlation coefficient 0.99).

The figure (7.5) shows moreover that the simulated values of the interfer-

ence factor (X) are close to the fluid analytical ones (points), for each angle

between −60o to 60o (beam width) and whatever the distances r (from 0 to

1000 m).

We conclude that the fluid model approach is accurate: it allows to calculate

the interference factor experienced by a mobile, whatever its position in a

cell.
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Figure 7.4: Interference factor fluid vs computed.

Figure 7.5: Interference factor vs r and θ: comparaison of the fluid method to the
computed one.
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7.4.3 Conclusion of the validation

Replacing a discrete set of base stations by a continuous one, we estab-

lished the interference factor expressions (7.6) and (3.2). They depend on

the pathloss exponent, the pattern antenna, the density of base stations and

the cell’s radius. We validated the fluid model, comparing it to a simu-

lated hexagonal one: we showed the interference factor values given by the

fluid model are very close to the ones obtained by simulations. As already

observed, these expressions take into account the size zones Rnw to be con-

sidered, which can be chosen characterizing a typical environment (pathloss

parameter, urban, rural, macro or micro cells). And they allow calculating

the precise influence of a mobile on a given cell, whatever its position.

We can conclude that our model allows us to develop analyses, adapted

to each network’s zone, taking into account each specific considered zone’s

parameters.

7.5 Sectored Network: General Case

The analytical model we developed allows the telecom provider to know very

easily the advantages and drawbacks to densify or to three-sectorize a CDMA

network. However, the provider can also need to know how many sectors to

install in a site. In this aim, the model has to be generalized. We consider a

homogeneous q-sectored network, q > 0, with a BS density

ρbs,q =
Somni
Sq

ρbs. (7.8)

where ρbs represents the omni-directional network’s BS density and Somni

and Sq are the omni-directional and q-sector cells surfaces. We aim to adapt

the model in the case of q-sectored sites, i.e. each geographical site manages

q base stations with directional antennas. Using the pathloss model pb,u =

PbKr
−η
u G(θ), the interference factor in a given sector denoted S1 calculated

in section (see 3.4) can thus be generalized as follows.
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We consider a mobile u belonging to the sector S1. We can write the

contribution of the other base stations as:

Pext,u =
∫ 2π

0

∫ Rnw−ru

2Rc−ru
ρbs3PbKz

−ηG(θ)zdzdθ +
q∑
j=2

PbKr
−η
u Gj(θ). (7.9)

where Gq(θ) stands for the sectors s=1, 2 q. For the q-sectored sites, G(θ)

has an angular 2π/q symmetry: Gq(θ) = Gq(θ + (s− 1)2π/q).

Moreover, a mobile station (MS) u belonging to the sector S1 at the

position (r, θ) receives internal power from b: Pint,u = PbKr
−η
u G1(θ). Since

the factor fu depends on the position of the mobile, we denote it f(r, θ).

So considering the whole network, the interference factor fu = Pext,u

Pint,u
can be

expressed by:

fsect(r, θ) =
1

PbKz−ηG1(θ)

∫ 2π

0

∫ Rnw−ru

2Rc−ru
ρbs3PbKz

−ηG(θ)zdzdθ

+
1

PbKz−ηG1(θ)

q∑
j=2

PbKr
−η
u Gj(θ). (7.10)

Since fomni(r) =

∫ 2π

0

∫ Rnw−ru

2Rc−ru
ρbsPbKz

−ηzdzdθ

PbKz−η = f(r) (see chapter 1, 3.3). and

denoting moreover

aq(θ) =
1

2π

Somni
Sq

∫ 2π
0 G(θ)dθ

G1(θ)
(7.11)

and

bq(θ) =

∑q
j=2Gj(θ)

G1(θ)
(7.12)

the expression (7.3) can be written as:

fq(r, θ) = aq(θ)fomni(r) + bq(θ). (7.13)

For a q-sectored network, the interference factor is expressed as a lin-

ear function of the omni-directional one. It is due to the ”non correlation”
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between the distance r and the angle θ in the analytical pathloss model ex-

pression. The parameters aq(θ) and bq(θ) only depend on the angle and the

number of sectors.

7.6 Sectorisation and densification

In a CDMA system, the number of mobiles is limited by the interferences or

by the transmitting power of the base stations. The telecom providers need

to apply an admission control, to be able to offer the subscribers a quality

of service as close as possible to the one they ask for. For the downlink,

any admission control has to take into account the base station transmitting

power’s limitation. To illustrate our analytical model, we propose hereafter

an analysis of the capacity of the system in term of number of mobiles.

Afterwards, we show how any kind of admission control policy can be derived

using our analytical model.

7.6.1 Mono-service case

For the downlink, we express that the power of the base station Pb is limited

to a maximum value: the call admission control is based on the probability

PDL
cell to satisfy the following relation:

PDL
cell = Pr[Pb > Pmax] (7.14)

where cell = omni or sect.

The total power of the serving base station b can be calculated from the

equation (2.10) and (4.2):

Pb =
Pcch +

∑
u βu

N0

gb,u

1−∑
u βu(α+ fu)

. (7.15)

The power PCCH dedicated to the common channels is assumed as pro-
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portional to the power of the base station

Pcch = ϕPb. (7.16)

Considering a density mobile distribution ρms in the cell, we can rewrite

(7.15) as:

Pb =

∫ R
0

∫ 2π
q

0 ρmsKr
1−ηG(θ)drdθ

1− ϕ−
∫ R
0

∫ 2π
q

0 ρmsβu(α+ fcell)(r, θ)rdrdθ)
. (7.17)

We assume a uniform mobile distribution in the cell. We moreover denote

Fcell the downlink interference factor average value in the cell:

Fcell =
1

Scell

∫ R

0

∫ 2π
q

0
fcell(r, θ)rdrdθ (7.18)

and we introduce the parameter Acell

Acell =
1

Scell

∫ R

0

∫ 2π
q

0
r1−ηG(θ)drdθ (7.19)

We recall that G(θ) = 1 and q = 1 for omni-directional antennas, q = 3

for three-sector ones.

Denoting nms = ρmsScell the number of mobiles in the cell, using the

expressions 7.14 and 7.17, we can write:

PDL
cell = Pr[nMS >

1− ϕ

β(α+ Fcell + Acell
N0

Pmax
)
] (7.20)

The blocking probabilities have similar analytical expressions for sectored

and omni-directional networks. We denote

nthomni =
1− ϕ

β(α+ Fomni)
(7.21)

and

nthsect =
1− ϕ

β(α+ Fsect)
. (7.22)

We can write, as long as long as the Noise is negligible, which is a reasonnable

assumption for a radius cell sizes less than 1 km.
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PDL
omni = Pr[nms,omni > nthomni] (7.23)

and

PDL
sect = Pr[nms,sect > nthsect] (7.24)

The parameters nthomni and nthsect represent the average capacity of an om-

nidirectional and sectored cell.

Using the expression of f given by the fluid model, we can write:

Fsect =
1

Ssect

∫ R

0

∫ 2π
3

0
(a(θ)fomni(r) + b(θ)) rdrdθ (7.25)

Denoting

C1 =
1

2π

Somni
Ssect

∫ 2π
3

0
a(θ)dθ (7.26)

and

C2 =
1

2π

Somni
Ssect

∫ 2π
3

0
b(θ)dθ (7.27)

we can express

Fsect = C1Fomni + C2 (7.28)

Using a gain antenna expressed by 7.7, and the definitions 7.26 and 7.26,

we obtain the expression:

Fsect ≈ 1.12Fomni + 0.14 (7.29)

A numerical analysis, with η = 3, shows the values of Fomni and Fsect

for an infinite network’s size (Table 7.1). The average interference factors

are limited; they tend to an asymptotic value, when the network’s dimen-

sion increases. For high size networks, Fcell does no more depend on the

network’s size. As a consequence, for a homogeneous network the number

of mobiles per cell does not depend on the size of the cell. It depends on

the environment characterized by the pathloss factor, the target SINR, the

orthogonality factor and the power ratio dedicated to the common channels.

For a sectored cell, it moreover depends on the antenna pattern.
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7.6.2 Multiservice case

The expression 7.15 can be written for each service s and each mobile u, as

follows:

Assuming that each mobile uses only one service, the total power of the

serving base station b can be calculated from the equation (7.15):

Pb =
Pcch +

∑
s

∑
u βs

N0

gb,u

1−∑
s

∑
u βs(α+ fu)

. (7.30)

Considering a density mobile distribution ρms,s in the cell using the service

s, we can rewrite (7.17) as:

Pb =

∫ R
0

∑
s

∫ 2π
q

0 βsρms,sKr
1−ηG(θ)drdθ

1− ϕ−∑
s

∫ R
0

∫ 2π
q

0 ρms,sβs(α+ fcell)(r, θ)rdrdθ)
. (7.31)

Considering uniform mobiles distributions and using (7.18) and (7.19),

we finally obtain:

Pb =

∑
s βsnms,sAcellN0

1− ϕ−∑
s nms,sβs(α+ Fcell)

. (7.32)

The expression (7.20) becomes, in a multiservice case:

PDL
cell = Pr[

∑
s

βsnms,s >
1− ϕ

α+ Fcell + Acell
N0

Pmax

] (7.33)

7.7 Numerical application

The following numerical application compares the sectorisation and the den-

sification for mono-service and multiservice cases, for α = 0.7 and ϕ = 0.2.

7.7.1 Monoservice case

Table 7.1 shows, for a voice service (γ = −16dBm), that the average capacity

of a sectored cell nthsect is smaller than for an omni-directional one nthomni.

However, since the capacity of a three-sector site is given by ntotsect = 3nthsect,
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replacing an omni-directional site by a three sectors one increases its capacity

by a factor D =
ntot

sect

nth
omni

. The analytical approach we developed showed that

the use of three-sector sites instead of omni directional ones increases their

capacity by a factor D ≈ 2.6. The term C2 gives the influence of the other

sectors of the same site. Without it, D would be about 2.9.

Fomni Fsect nthomni nthsect ntotsect ntotomni D

0.65 0.87 24 21 63 72 2.6

Table 7.1: Relative quantities, for η = 3.

Replacing an omni-directional site by 3 ones in the same zone would

increase the capacity of that one by a factor 3 (in a first approximation:

the Noise is considered as negligible). So, to answer an increasing traffic,

it theoretically appears better to do a densification than a sectorisation.

Considering economical constraints, it could however be difficult to find new

sites.

Remark: comparison with planning tools

Radio planning tools developed by France Telecom give an average capacity

per cell of about 28 mobiles, for an omni-directional CDMA network in a

suburban environment. For 3-sector sites, the average capacity is about 67

mobiles (i.e the D factor obtained is about 2.4). These tools use accurate

propagations models based on theoretical analysis and on calibrations with

field measurements. We observe that the analytical results obtained with our

model presented in Table 7.1, columns 3 and 5, are close to these values.

7.7.2 Multi-service case

We consider a site managing two services, voice with a target SINR γ1 =

−16dB and data (384 kb/s) with a target SINR γ2 = −4.6dB . We observe
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(figure 7.6) a high decrease of the limit capacity of a site when the data

traffic increases from 0 (no data traffic in the site) to 100% (no voice traffic

in the site). For each kind of site, omni-directional and sectored one, the

total number of mobiles decrease reaches about 50% though the data traffic

is relatively low (10%). These curves moreover show that the sectorisation of

a site, i.e. replacing one omni-directional BS by 3 sectored ones, increases its

limit capacity by a factor D ≈ 2.6. We moreover observe the factor D does

not depend on the service and on the proportion of traffic of each service.

Figure 7.6: Mobile number limit capacity of a site vs 384 kb/s data traffic.

To allow more mobiles to be admitted by a site, the provider can adopt a

strategy consisting to decrease the data service throughput offered to mobiles

entering the site. For an offered throughput of 144 kb/s, instead of 384

kb/s, the data target SINR becomes −10dB . The figure 7.7 shows the

new limits of the capacity in this last case. We can analyze, compare and

quantify the advantages of a sectorisation and/or a throughput decrease. We

observe a first improve of the capacity of an omni-directional site obtained by

decreasing the mobiles’ throughput. For example, considering a data traffic

of 20%, the total number of mobiles increases from 8 (”omni 384” curve) to

14 (”omni 144” curve). A better improve is reached with the sectorisation



7.7. NUMERICAL APPLICATION 145

of the site. For 20% data traffic, the number of mobiles reaches 20 (”sector

384” curve). And the best improve is observed when these two means are

used together. In this last case, for a data traffic of 20%, the total number

of mobiles admitted in the site reaches 36 (”sector 144” curve). Moreover

the decrease of the limit capacity due to the data traffic is lower for 144

kb/s data service than for 384 kb/s data service: considering a data traffic of

10%, it particularly only reaches 30% (dotted curves: 144 kb/s data) instead

of 50% (continuous curves: 384 kb/s data). The figure 7.8 focuses on the

increase of data number of mobiles: for example when a three sectored site

only manages data traffic (100%), the limit number of data mobiles increases

from 5 (data ”384”) to 13 (data ”144”).

We analysed with our model the strategy consisting to decrease the de-

manded throughput in the aim to increase the admission of mobiles in a site,

for omni-directional and sectored sites. We obtained results close to the ones

obtained with simulation tools. We showed our model instantly provides,

without simulation, an admission control strategy analysis. It can moreover

quantify the consequence of a given strategy. Other admission strategies

could be analyzed with our model.

Figure 7.7: Mobile number limit capacity of a site vs data traffic.
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Figure 7.8: Sectored site: data mobile number limit capacity vs data traffic.

7.8 Concluding remarks

We extended and validated the fluid model approach developed for omni-

directional networks to sectored ones. Replacing a discrete network of sec-

torised base stations by a continuum, we established the expressions of the

interference factor, fsect(r, θ). We moreover showed it linearly depends on

the interference factor of the omni-directional base stations, now denoted

fomni(r). We analyzed the solutions based on a densification or a sectorisation

to answer an increasing traffic. We instantly obtained explicit expressions

of the capacity, and showed that it theoretically appears better to densify a

network than to sectorize it. However, considering economical or sociological

constraints, it can be difficult to find new sites in a real network. As a conse-

quence, to sectorize a network could be easier than to densify it. A telecom

provider has to take into account all these aspects to decide what solution

to adopt. A decrease of the demanded throughput in the aim to increase

the admission of mobiles in a site, for omni-directional and sectored sites,

showed the importance of the choice of an admission control strategy. The

admission control analyses generally require the use of simulation tools, and

do not give instantaneous results. Our analytical model allows to analyze

admission strategies without simulation.



Chapter 8

Shadowing and Environmental

Analysis

Since in a real network, the pathloss also depends on the local environment

(terrain, urban, rural, streets, trees), we propose in this chapter, a second

refinement of the fluid model by taking into account the shadowing effect and

more generally the effects of each specific environment.

8.1 Introduction

The radio link model we used only expresses that the power received at

any point of the system depends on its distance from the transmitter (the

line-of-sight path). In a real network, it however also depends on the local

environment (terrain, buildings, trees). Thus, the radio link can be modelled

by a term which expresses that the power received at any point of the system

depends on the distance r from the transmitter (the line-of-sight path), and

the environment (terrain, buildings, trees). The first term depends on the

type of the global environment, urban or rural, and may moreover depend on

the type of cells: macro or micro. The last term, the shadowing, is generally

147
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modelled as a lognormal distributed [Stu01] function. In this chapter, the

fluid model takes into account the shadowing and more generally the effects

of each specific environment (urban, rural, streets buildings).

Taking into account the shadowing, we first establish the interference fac-

tor’s analytical expressions, mean value and standard deviation, as a lognor-

mal random variable (RV) according to the Fenton-Wilkinson approximation

(denoted FW) for a sum of lognormal RV [Fen01]. To characterize the system

topology, we establish the analytical expression of a function depending on

the shadowing, the base stations numbers and positions, and the exponential

pathloss parameter.

Using the fluid approach, we express the interference factor’s mean value

and standard deviation, and analyze the influence of different network’s pa-

rameters: cell radius, exponential pathloss parameter, distance of the mobile

to its serving base station.

Since the shadowing depends on the environment around the mobile, in

real networks it appears natural to consider some correlations between the

signals received by a mobile. We thus establish the mean value and standard

deviation expressions for correlated signals. We show that the shadowing

has a limited influence, for independent and correlated received powers, and

we express the interference factor bounds, minimum and maximum.

We finally show that the shadowing has a limited influence, for indepen-

dent and correlated received signals, and we express the interference factor

bounds, minimum and maximum.

8.2 Interferences with shadowing

8.2.1 Propagation

Considering the power Pj transmitted by the BS j, and r−ηj,uA the pathloss in-

cluding the shadowing effect, the power pj,u received by a mobile u belonging

to j can be written:



8.2. INTERFERENCES WITH SHADOWING 149

pj,u = PjKr
−η
j,uA (8.1)

The parameter A = 10
ξ
10 represents the shadowing effect. It characterizes

the random variations of the received power around a mean value. The

parameter ξ is a Normal distributed random variable RV, with mean 0 and

standard deviation σj comprised between 0 and 10 dB. The term PjKr
−η
j,u

represents the mean value of the signal received by the mobile u at the

distance rj,u from the transmitter (BSj). The probability density function

(PDF) of this slowly varying received signal power is given by (since we focus

on a given mobile u, we can drop that index):

Ψj(s) =
1

aσjs
√
π
exp−

(
ln(s)−mj√

2aσj

)2

(8.2)

where

• a = ln 10
10

,

• mj = 1
a
ln(KPjr

−η
j ) is the (logarithmic) received mean power expressed

in decibels (dB), which is related to the path loss and

• σj is the (logarithmic) standard deviation of the received signal due to

the shadowing in decibels.

8.2.2 Interference power

Since the interference factor is defined as (2.1)fu = Pext,u/Pint,u we first need

to calculate the other cell interference power. The total interference power

due to all the BS of the network (except the serving one) Pext,u =
∑B
i6=b Pjgj,u

is the sum of B lognormal RV. No exact expression for the PDF of the sum

of lognormal distributed RV’s is known. It is however accepted that such a

sum can be approximated by another lognormal distribution [Stu01]. Among

the methods developed to find the mean and variance of that last one, the

Schwartz-Yeh approximation [SchwY01] is based on a recursive approach.
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Some descriptions and comparisons of these methods are available in [Stu01].

We choose the Fenton-Wilkinson one [Fen01] (denoted FW) for its relative

simplicity: the logarithmic mean and the logarithmic variance of a sum of

lognormal RV can be found by matching the first and second-order moments.

This method is especially accurate for standard deviations lower than 4 dB,

when the signals components are uncorrelated. For correlated signals, this

method is accurate for standard deviations up to 12 dB [AbuBe01]. We aim

to calculate the interference factor as a lognormal RV (mean and standard

deviation). Assuming the base stations’ power are not correlated, we first

calculate the mean and the variance of a sum of lognormal RV, according to

the FW method. We afterwards apply the result to the sum of B lognormal

identically distributed RV.

8.2.3 Sum of lognormal RV

Let X be a lognormal RV. We can write lnX ∝ N(am, a2s2). Let aY =

lnX we write aY ∝ N(am, a2s2). The mean M and the variance S2 of a

lognormal RV are expressed as M = exp(am+ a2s2/2) and S2 = exp(2am+

a2s2)exp(a2s2−1). So we can write am = lnM −a2s2/2 and a2s2 = ln( S
2

M2 +

1). Using a FW approximation [Fen01] [Ala01], the sum of lognormal RV

Xj(Mj, S
2
j ) is written as a lognormal RV X(M,S2) where M =

∑
Mj and

S2 =
∑
S2
j . We can write

am = ln

∑
j

exp

(
amj +

a2σ2
j

2

)− a2s2

2
(8.3)

and

a2s2 = ln

∑j exp
(
2amj + a2σ2

j

) (
exp(a2σ2

j )− 1
)

∑
j exp

(
2amj + a2σ2

j

) + 1

 (8.4)
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8.2.4 Interference factor

Our aim is to calculate the interference factor for any mobile at the distance

rb from its serving the BSb. We focus on a mobile belonging to b, so we

notice rb = r. Let us consider a network constituted by cells uniformly

distributed and a uniform traffic: Each BSj transmits a power Pj. The

power received by a mobile is characterized by a lognormal distribution Xj

as lnXj ∝ N(amj, a
2σ2

j ) and we can write amj = ln(Pjrj), where rj stands

for the distance between the mobile and the BSj of the network. We consider

that all the standard deviations σj are identical. We denote ∀jσj = σ. The

total power received by a mobile is a lognormal RV X characterized by its

mean and variance. Expressing the mean interference power received by a

mobile, due to all the other base stations of the network (see appendix A) and

since the ratio of two lognormal RV ’s is also expressed as a lognormal RV,

the interference factor is also lognormally distributed with the following mean

mf and logarithmic variance σf . Assuming that all the base stations have

the same transmitting power Pb = Pj = P (uniform traffic), we introduce

G(η) =

∑
j r

−2η
j(∑

j r
−η
j

)2 (8.5)

f(η) =

∑
j r

−η
j

r−η
(8.6)

H(σ) = exp
(
a2σ2/2

) (
G(η)(exp(a2σ2)− 1) + 1

)−1
2 (8.7)

We can express (see appendix B):

mf = f(η)H(σ) (8.8)

The standard deviation is given by

a2σ2
f = 2(a2σ2 − lnH(σ)) (8.9)

We can deduce the interference factor’s limits:
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f(η) ≤ mf ≤
f(η)

G(η)
1
2

(8.10)

and

σ2
f = 2σ2. (8.11)

Remark

We notice that f(η) corresponds to the donwlink interference factor f without

shadowing. From (8.5), we can write G(η) < 1 whatever η

8.3 Topological analysis

8.3.1 Topological characterization

The expression 8.8 means that the effect of the environment of any mobile of

a cell, on the interference factor, is characterized by a function H(σ). This

last one depends on the shadowing of the received signals coming from the

base stations, and a G factor which depends on the position of the mobile

and the characteristics of the network as

• the exponential pathloss parameter η, which can vary with the topog-

raphy and more generally with the geographical environment as urban

or rural, micro or macro cells.

• the base stations positions and number.

It can be interpreted as an environmental form factor G of the network.

Its analytical calculation may be complex. Indeed, its expression depends on

the positions of the considered mobile and the base stations. We notice that

the form factor can be rewritten, using (8.6), as:

G(η) =
f(2η)

f(η)2 (8.12)
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The shadowing effect consists in increasing the mean value and the standard

deviation of the interference factor (8.10 and 8.11). This increase is however

limited (figure 8.2 and Table 8.2). In a realistic network, σj is generally

comprised between 6 and 12 dB.

8.3.2 Fluid model approach

In our fluid model approach of the network, the interference factor expression

of f(r) (3.3) also depends on the exponential pathloss factor η. Focusing on

this dependency with η (forgotting r for a moment), we can denote it f(η).

Thus, to go further on our analysis, it appears interesting to express f(η)

and G(η) using the fluid approach. Assuming the serving base station is the

closest one, we can use the expression (3.3). Since that expression of f also

depends on the distance between two neighbors BS 2Rc and the dimension of

the network Rnw, it allows us to explore these network parameters influences.

Using the fluid model, we can express the form factor G limits, using (8.12).

From f(r) (3.3) we can write, dropping the dependency with the distance r

f(η) =
2πρbsr

η

η − 2

[
(2Rc − r)2−η − (Rnw − r)2−η

]
. (8.13)

When the considered zone’s radius is great compared to the cell’s one,

i.e. Rnw >> Rc, since we have 0 < r < Rc we can write:

− (−η + 2)2

16(−η + 1)
≤ G(η) ≤ − (−η + 2)2

4(−η + 1)
(8.14)

Table 8.1 indicates the limits of the form factor G as a function of η.

They allow to determine the limits of the interference factors parameters mf

and σf .

8.3.3 Interference factor distance dependency

The figure (8.1) shows the influence of the distance between the mobile and

its serving BS, for different standard deviations and η = 3. The mean value
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η 3 3.5 4 4.5 5

Gmin 0.03 0.06 0.08 0.11 0.14

Gmax 0.12 0.22 0.33 0.45 0.56

Table 8.1: Form factor G limits

of the interference factor increases when the standard deviation increases.

Compared to a case without shadowing, and for a mobile located at the

edge of the cell (1000m), that increase is about 30% when σ = 4dB and

reaches about 100% when σ = 12dB. We observe that the shadowing seems

to ”increase” the distances from the BS: with a shadowing σ = 12dB, a

mobile at 800m from its serving BS has the same mean interference factor as

a mobile at 1000 m without shadowing. This effect explains the importance

of considering shadowing margins during the planning process.

Figure 8.1: Influence of the standard deviation on the mean interference factor mf for
each distance.

8.3.4 Influence of the standard deviation

For low variances, i.e. a2σ2 ≈ 1, we can express from (8.7) and (8.8)
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mf ≈ f(η)exp(a2σ
2

2
) (8.15)

and

a2σ2
f → a2σ2. (8.16)

And for high variances, i.e. exp(a2σ2) >> 1 orσ2 >> 1
a2 , we can write

mf ≈
f(η)

G
1

2

(8.17)

and

a2σ2
f ≈ 2a2σ2 + lnG. (8.18)

For low standard deviations (less then 4 or 5 dB), these expressions show

a low dependency of the mean value of f with σ, and the total standard

deviation σf is very close to σ (Table 8.2).

These expressions show another interesting result: for high variances

(higher than 5 dB), the interference factor’s mean tends towards a value

which does not depend on the variance. Considering the extreme G values

(Table 8.1), with η = 3, the figure (8.2) confirms that the mean value of the

interference factor increases until a standard deviation of about 10 dB. For

higher values, the interference factor stays constant. We observe the mean

interference factor does no more depend on them.

Moreover, the form factor compensates the standard deviation influence.

It increases with the distance r, and also with the exponential pathloss para-

meter η. It means that a high value of that parameter, characterizing a given

type of cells or environment, may compensate the shadowing effects(see also

figure 8.3). In a realistic network σ is generally comprised between 6 and 12

dB, Table 8.2 shows that the standard deviation of the interference factor is

close to the BS ones σ (with η = 3).

8.3.5 Interference factor environmental dependency

The exponential pathloss parameter η can characterize the environment type,

urban or rural, and the cell dimensions (pico, micro, macro). The figure (8.3)
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σ 0 1 2 3 4 5 6 7 8 9 10 11 12

σf 0 1.1 2.2 3.3 4.5 5.8 7.2 8.6 10.1 11.6 13.1 14.6 16.1

Table 8.2: Standard deviation of the interference factor vs σ

Figure 8.2: Mean interference factor mf vs deviation σj (distance = 1000 m).

confirms that the influence of the shadowing on the mean interference factor

decreases when η increases. For η ≥ 5 we observe that the shadowing has

almost no influence.

8.3.6 Interference factor cell radius dependency

Figure (8.4) shows the mean interference factor for a mobile at a given relative

position r/Rc in the cell from its serving base station. When Rc increases

(i.e. the distance between two BS increases) the influence of the shadowing

decreases, and becomes very low for a cell’s radius higher than 1700 m.

Remark

The analytical results we obtained are based on a Fenton-Wilkinson ap-

proach. This one is especially accurate when the variance of lognormal RV

is less than 4dB. However, it has been shown in [AbuBe01] the accuracy of
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Figure 8.3: Mean interference factor vs η.

Figure 8.4: Mean Interference factor for Identical relative positions (edge of the cell)
and η= 3.
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the FW method applied to standard deviations up to 12 dB can be better,

as long as there is a correlation between the identical distributed RV. In the

next section, we analyze the case of correlated signals.

8.4 Correlation case

8.4.1 Interference factor

Until now we considered non correlated received powers coming from all the

base stations of the network. The shadowing depends on the environment

and in a real network several BS have analogue environments. Moreover, the

powers coming from base stations located at the same relative direction meet

the same obstacles. It thus appears natural to consider some correlations

between the signals received by a mobile. In [AbuBe01] the coefficient tkj

characterizes the correlation between the lognormal RV :

tkj =
E [(Xk −mk)(Xj −mj)]

σkσj
, (8.19)

where Xi is a RV with mean mi and variance σ2
i .

The mean value Mcorr of the sum of lognormal RV is thus calculated in

[AbuBe01] as follows. Denoting

u1 =
N∑
k=1

exp(mk +
σ2
k

2
) (8.20)

and

u2 =
N∑
k=1

exp(2mk + 2σ2
k) + 2

N−1∑
k=1

N∑
j=1

exp(mk +mj)exp
1

2
(σ2

k + σ2
j + 2tkjσkσj)

(8.21)

Mcorr is thus written as:

Mcorr = 2 lnu1 −
1

2
lnu2 (8.22)
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That expression can be written as:

Mcorr = lnu1 −
1

2

lnu2

u2
1

(8.23)

We consider all the BS of the network except the serving one: N =

B − 1. Let’s consider that all the RV have the same variance: ∀jσj = σ.

We moreover introduce a mean value of the correlation coefficient t = ¯tkj .

Taking into account a correlation between the RV, the expression (8.7) of the

mean interference factor becomes (see appendix C):

Hcorr(σ) = exp
(
a2(1− t)σ2/2

) (
G(η)(exp(a2(1− t)σ2)− 1) + 1

)−1
2 .

(8.24)

The mean interference factor is given by (see appendix C):

mf,corr = f(η)Hcorr(σ) (8.25)

and the variance is given by

a2σ2
f,corr = a2σ2(1 + t) + ln

(
G(η)(exp(a2(1− t)σ2)− 1) + 1

)
(8.26)

These expressions show that when the powers received by a mobile are

completely correlated, t = 1, the mean value of the interference factor does

not depend on the shadowing. Introducing a generalized variance σ2
g = σ2(1−

t) we write (8.24) as:

Hcorr(σg) = exp
(
a2σ2

g/2
) (
G(η)(exp(a2σ2

g)− 1) + 1
)−1

2 (8.27)

The expression (8.25) is analogue to the one (8.8) without correlation,

replacing σ by σg. The correlation effect is to decrease the standard devia-

tion σj. This can explain that the accuracy of the Fenton-Wilkinson (FW)

approximation, which is better for low standard deviations, can be extended

for standard deviations until 12 dB, as long as they are correlated. As a con-

sequence, the results established in the precedent section stay accurate for
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high standard deviations as long as the signals are correlated. Figure (8.5)

shows that the mean value of the interference factor is comprised between

two limits: a high one and a low one corresponding to the two limit cases,

i.e. no correlation (t = 0) and total correlation (t= 1) between the powers

received from the base stations. That last figure (8.5) shows moreover that

for correlations lower than 0.5, the standard deviation has a very low influ-

ence on the mean value fo f . Figure (8.6) shows explicitly the correlation

coefficient t has almost no influence until 0.6, on the mean value of the in-

terference factor, for a mobile at the edge of the cell (1000m) and σ = 12dB.

For higher values of t the mean interference factor decrease reaches 50%:

from 3 to 1.5.

Figure 8.5: Mean interference factor vs σj with correlation.

8.4.2 Interference factor extrema

The expressions (8.25) and (8.24) enable to determine analytical extreme

values (min and max) for the mean interference factor. Considering two

correlations factors tmin and tmax which characterize the minimum and the

maximum correlation between the powers, we can write, introducing σ2
g,min =

σ2
g(1− tmax) and σ2

g,max = σ2
g(1− tmin)
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Denoting moreover

Hmin
corr(σg) = exp

(
a2σ2

g,min

2

)(
G(η)(exp(a2σ2

g,min)− 1) + 1
)−1

2 (8.28)

and

Hmax
corr (σg) = exp

(
a2σ2

g,max

2

)(
G(η)(exp(a2σ2

g,max)− 1) + 1
)−1

2 , (8.29)

we can write

f(η)Hmin
corr(σg) ≤ mf,corr ≤ f(η)Hmax

corr (σg). (8.30)

When tmin = 0 (no correlation) and tmax = 1 , we have σ2
g,min = 0 and

σ2
g,max = σ2

And since 0 < σ <∞ we can write

f(η) ≤ mf,corr ≤
f(η)

G(η)
1
2

(8.31)

Figure 8.6: Mean Interference factor vs correlation coefficient σj = 12dB.

Remark

We showed (see 4.6) the fluid model approach allows to analyze the admis-

sion control of mobiles in a CDMA network using the interference factor

expression. It becomes possible to analyze the admission control taking into
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account the mobile location and each specific environment. Moreover, in our

model, the expression of f(r) is characterized by the network size Rnw. It

thus can be adapted and applied to each part of a network with its own

characteristics. Indeed, the parameter η represents the mean exponential

pathloss parameter in a given zone and can be specific for each zone of the

network. As a consequence, the use of our analytical model enables to estab-

lish analytical admissions control expressions related to each specific network

zone.

8.5 Concluding remarks

The fluid model of cellular radio networks is now useful to each specific en-

vironment characterized by the radio propagation, the shadowing and the

network’s configuration. We first established the interference factor’s analyt-

ical expression, mean mf and standard deviation σf , as a lognormal random

variable RV, for independent and correlated signals. We expressed them con-

sidering the fluid model approach, and showed they depend on a function of

the shadowing H(σBS) and a form factor G. This last one depends on the

mobile’s location, the exponential pathloss parameter, the number and the

positions of the base stations. We showed a consequence of the shadowing

is to increase mf and f , and these last ones are limited for each specific

network. We analyzed different environmental parameters influences, and

show some of them may limit the shadowing effects: the form factor, the ex-

ponential pathloss parameter, the cell radius. We moreover established the

analytical expressions of the mean interference factor bounds, minimum and

maximum. We noticed that a mobile admission analysis based on the fluid

model depends on the mobile’s location and can be adapted to each specific

network’s zone or environment.



Chapter 9

Fluid Model for Uplink

We proceed in a same way as the one flollowed in the chapters 2 and 3. We

show that an uplink analysis can follow an analogue way as the one done

for the downlink. We define an uplink interference factor and, considering a

fluid model of the network, establish and validate an explicit formula of this

parameter. As an application, we propose an analytical admission control

study for the two links, which takes into account the whole network around a

given cell, and show that it is sufficient to do the analysis only for one link.

9.1 Introduction

The signals and interferences received by the mobiles (MS) and the base

stations (BS) of a cellular radio network depend on their transmission powers,

positions and numbers. For the downlink, the radio power received by a

mobile comes from all the base stations of the network, and for the uplink,

the radio power received by a BS comes from all the mobiles of the network.

We extend the fluid network model by considering the discrete entities of the

network, BS and MS, as continuum. Though focused on CDMA systems,

the analysis is still valid for radio networks as OFDMA or TDMA ones.

The chapter is organized as follows. Expressing the target SINR con-

straints of a CDMA network, we first introduce a specific uplink interfer-

163
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ence factor. Assuming the mobiles stations MS as a continuum set, we

develop the fluid model, and establish the analytical expression of the uplink

interference factor. We validate this approach comparing it to a computed

hexagonal network. As an application of this model, we analyze the call ad-

mission control, and assuming some hypothesis, we show that it is sufficient

to do only one link analysis.

9.2 Interference Model and Notations

In this section, we introduce the interference model and give the notations

used throughout the chapter.

9.2.1 Network

We consider a CDMA system with B base stations (BS), each one defining a

cell j, and U mobile stations (MS) and we focus on the uplink. If a mobile u is

attached to a base station b (or serving BS), we write b = ψ(u). The location

of a base station is, as usual, called a site, and we assume omni-directionnal

antennas, so that a base station covers a single cell.

9.2.2 Power

The following power quantities are considered:

• Pu,b is the useful transmitted power from mobile station u towards base

station b;

• pu,b is the power received at base station b from mobile u ; we can write

pu,b = Pu,bgu,b;

• Pint,b is the total power received by the base station b due to all the

mobiles belonging to the considered cell b;
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• Pint,b − pu,b represents the intracellular interferences due to the other

mobiles of the cell b;

• Pext,b is the total power received by the base station b due to all the

mobiles belonging to the other cells of the network;

• Pi,j is the power transmitted by the mobile i belonging to the cell j

defined by the base station j

• Mj is the number of mobiles in the cell j.

• gu,b is the pathloss between the receptor b and the transmitter u.

• N b
0 stands for the level of noise floor at the base station.

9.2.3 Noise and Interferences

The total amount of power experienced by a base station b in a cellular

system can be split up into several terms: useful signal (pu,b), interference

and noise (N b
0). It is common to split the system power into two terms: Pint,b

and Pext,b, where Pint,b is the internal (or own-cell) received power and Pext,b

is the external power (or other-cell interference). Notice that we made the

choice of including the useful signal pu,b in Pint,b, and, as a consequence, it

has to be distinguished from the commonly considered own-cell interference.

With the above notations, we define the uplink interference factor in

b, as the ratio of total power received by b, coming from the mobiles belonging

to the other BS of the network, to the total power coming from the mobiles

belonging to the cell b.

fULb = Pext,b/Pint,b (9.1)

The parameter fULb can be written as follows:

fULb =

∑B
j=1,j 6=b

∑Mj

i=1 Pi,jgi,b∑Mb
k=1 Pk,bgk,b

(9.2)
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This parameter represents the relative ’weight’, on the base station b, of

the mobiles belonging to the other base stations of the network, to the ones

belonging to the base station b.

9.2.4 Basic Derivations

Let us consider a mobile connected to the base station b of the network.

The Signal to Interference plus Noise ratio (SINR) received by a receiver,

MS in downlink and BS in uplink, has to be at least equal to a minimum

threshold target value, for the two links. Proceeding in an analogue way as

the downlink one, we denote γ∗u,UL the Uplink target SINR for the service

requested by MS u. We express the SINR experimented by b as:

γ∗u,UL =
pu,b

Pint,b − pu,b + Pext,b +N b
0

. (9.3)

We denote:

δu =
γ∗u,UL

1 + γ∗u,UL
. (9.4)

From the relation (9.3), and using the relation pu,b = Pu,bgu,b we can

express pu,b as:

pu,b = δu(Pint,b + fULb Pint,b +N b
0). (9.5)

For the Downlink, we established from (2.8) the useful power received by

a mobile u as:

Pb,ugb,u = βu(αPbgb,u + fuPbgb,u +N0). (9.6)

The analogy of the expressions (9.5) established for the uplink and (9.6)

established for the downlink are due to the analogy of the conditions (9.3) and

(2.5) concerning the targets SINR in the two directions. As a consequence,

it appears natural to develop a unique analysis for modelling the two

links. We thus extend the fluid model to the uplink. We moreover notice

that for an isolated cell the uplink interference factor is equal to zero, and
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when the Noise N b
0 is low compared to the signal received by the base station,

the expression (9.5) becomes pu,b = δuPint,b.

The uplink and downlink interference factors show the influence of the

network, especially the locations and the power transmissions of the base

stations and the mobiles, on a receiver, mobile or base station, on a given

cell of the network.

9.3 Uplink Fluid Model Network

9.3.1 Assumptions

Following an analogue approach as the downlink one, the key modelling step

of the model we propose consists in replacing a given fixed finite number

of transmitters (base stations or mobiles) by an equivalent continuum of

transmitters which are distributed according to some distribution function.

We consider a traffic characterised by a mobile density ρms and a network by

a base station density ρbs.

We consider a network constituted of omni-directional cells uniformly distrib-

uted and a uniform traffic: ρbs and ρms are constant. We aim at calculating

the uplink interference factor fULb at a given BS b of this network. We use

the same pathloss model used in Section 3.3: gu,b is only a function of the

distance r between the base station b and a mobile u. We consider that the

power received by a base station follows the expression pu,b = Pu,bar
−η where

a is a constant.

9.3.2 Uplink fluid interference factor

Considering a given number of mobiles located in the network according to

some distribution, the power Pint,b and Pext,b received by the base station b

are constant. We deduce from (9.5) that the power pu,b received by the base

station b coming from the mobile u is a constant whatever u. In uplink,

according to the pathloss model only depending on the distance r between
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a mobile and a base station, we deduce from (9.5) that each mobile u of a

cell has a transmission power satisfying: P (r, θ) = Prη, independent of the

angle θ, where P is a constant. We also can write it P (r, θ) = P (r). In the

fluid model we develop, we can write the power received by the BS b due to

all the mobiles of the network, except the ones located in the cell b, as:

Pext,b =
∫ Rnw

Rc

∫ 2π

0
ρmsP (r)r−ηrdrdθ, (9.7)

where Rnw represents the network size, P (r) the transmitting power of any

mobile located at the distance r from its serving BS.

The total power Pint,b received by the base station b, emitted by all the

mobiles of the cell, can be calculated as:

Pint,b =
∫ Rc

0

∫ 2π

0
ρmsPr

ηr−ηrdrdθ (9.8)

We can write

Pint,b = ρmsπR
2
cP. (9.9)

Since the number of mobiles nULMS of the cell can be written

nULMS = ρmsπR
2
c , (9.10)

so we have

Pint,b = nULMSP. (9.11)

To calculate the expression (9.7) of the power due to all the mobiles of

the other cells of the network, we consider that the network is constituted

by rings of interfering cells around the one we consider. The first ring of

cells is located between the distances Rc and 3Rc. The second ring of cells

is located between the distances 3Rc and 5Rc, and so one. Expressing the

power received by the BS b coming from the mobiles of the cells located at

distances r between (n − 1)Rc and (n + 1)Rc, we write the contribution of

the nth ring of base stations around the cell b as



9.4. VALIDATION 169

Pn,ext =
∫ 2nRc

(2n−1)Rc

∫ 2π

0
ρmsP (2nRc − r)ηr−ηrdrdθ

+
∫ (2n+1)Rc

2nRc

∫ 2π

0
ρmsP (−2nRc + r)ηr−ηrdrdθ. (9.12)

For the first integral, we denote x = 1− r
2nRc

and for the second one we

denote x = −1 + r
2nRc

so we obtain

Pn,ext = (2nRc)
2ρmsP

∫ 1
2n

0

∫ 2π

0
xη(1− x)−η+1dxdθ

+ (2nRc)
2ρmsP

∫ 1
2n

0

∫ 2π

0
xη(1 + x)−η+1dxdθ. (9.13)

The network size is expressed as Rnw = (2Nc+1)Rc, where Nc represents

the number of rings of cells. The total power of the network (except the

cell b) is thus given by Pext,b =
∑Nc
n=1 Pn,ext, so using (9.10) and (9.1) we can

deduce:

fUL = 2
Nc∑
n=1

(2n)2
∫ 1

2n

0
xη
(
(1 + x)−η+1 + (1− x)−η+1

)
dx. (9.14)

Using a fluid model approach we established an analytical expression of the

uplink interference factor. In a homogeneous case, that expression does not

depend on the density of mobiles. Moreover the expression of fULb does not

explicitly take into account the size of the cell: It only depends on the size

of the network characterized by the parameter Nc.

9.4 Validation

We build a numerical hexagonal network (figure 9.1: Each point represents a

BS). We calculate numerically for a given BS, the uplink interference factor.

The base stations are omni-directional.
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Figure 9.1: Numerical hexagonal network.

The validation of the model will consist in comparing the analytical values

of the uplink interference factor fULb at a given station b, to the ones obtained

numerically with the hexagonal network. We choose the pathloss parameter

η = 3, and a cell radius of 1 km. We allocate to each mobile, a transmitting

power depending on its distance from its own serving BS.

We calculate numerically the interference factor at a base station b, using

the expression (9.2), considering three network sizes. We compare it to the

one obtained analytically with the fluid model using the equation (9.14).

Table 9.1 shows that the values obtained with the two methods are very

close, whatever the dimensions of the network.

9.5 Application: Admission Control

We consider only one service so that the parameters βu and δu do not depend

on the mobile: we can drop the index u. The demand of entry of a mobile

in the network is rejected when the uplink target SINR constraint is not

satisfied. Considering the uplink power constraint (9.5), and using (9.10)
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Rc

Rnw
Numerical F luid

0.1 0.64 0.61

0.2 0.60 0.55

0.3 0.49 0.48

Table 9.1: Uplink interference factor comparison

and (9.11), the admission is based on the probability PUL to satisfy:

PUL = Pr
(
P − δnMS(1 + fULb ) < δN0

)
. (9.15)

and can be written

PUL = Pr

(
nMS >

1

δ(1 + fULb )
− N b

0

P (1 + fULb )

)
. (9.16)

For the downlink, we express that the power Pb of the base station is

limited to a maximum value Pmax. The admission is based on the probability

to satisfy the following expression (see 7.15):

PDL = Pr (Pb > Pmax) . (9.17)

where

Pb =

∑
u βu

N0

gb,u

1− ϕ−∑
u β(α+ fu)

. (9.18)

Considering the expression 4.20 we write FDL = F , so we denote:

nUL,thMS =
1

δ(1 + fULb )
(9.19)

and

nDL,thMS =
1

β(α+ FDL)
. (9.20)

The admission control for the two links have similar analytical expres-

sions, as long as the Noise (N0 and N b
0) can be considered as low:
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PUL = Pr
(
nMS > nUL,thMS

)
, (9.21)

and

PDL = Pr
(
nMS > nDL,thMS

)
. (9.22)

A numerical analysis with η = 3 presented hereafter in the Table 9.2

shows that, although their analytical forms are not exactly identical, fULb
and FDL have very close values whatever the network size.

Nc fUL FDL

1 0.47 0.32

2 0.55 0.50

3 0.58 0.56

4 0.60 0.59

5 0.61 0.62

7 0.62 0.64

10 0.63 0.65

20 0.65 0.67

Table 9.2: Uplink and Downlink interference factor comparison for η = 3.

There is indeed a priori no reason to do different analysis for the two

links, since the constraints have similar analytical expressions for the two

directions. In term of interferences, the mobiles play in uplink, a similar role

as the base stations in downlink. The fluid model we developed takes into

account that analogy. We can also notice that fULb can be interpreted as an

average uplink interference factor of the cell. It is compared to the average

downlink interference factor of the cell. If moreover ϕ = 0, α = 1 and the

target SINR is the same in uplink and downlink, we can write β = δ.

For η = 3 and if the noise is negligible, we can deduce from Table 9.2

that the admission control conditions are very close for the two links. These
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results mean that our fluid model represents a good approach to calculate the

interference factors of a CDMA network. The explicit analytical expressions

given by this model allow easy analysis. At last, it seems sufficient in this

case, to analyze only a unique link, the downlink, since the expression of

nDL,thMS takes into account the parameters ϕ and α.

9.6 Concluding remarks

The analogy of the target SINR constraints, in a CDMA network, for the

uplink and the downlink, enabled us to develop a single analysis for model-

ing the two links. We showed that the uplink and the downlink interference

factors, which represent the ”weight” of the network on a given cell, are a

characterization of CDMA networks. We developed and validated an analyt-

ical fluid model, replacing the discrete BS by a base station density and the

mobiles by a mobile density. We established the interference factor’s analyt-

ical expressions for each link. For a homogeneous network, these expressions

do not depend on the density of mobiles. As an application, we showed, with

some assumptions, that the admission conditions have very close values for

the two links. For η = 3 and a negligible noise, it appeared sufficient to

analyze only the downlink.
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Chapter 10

Conclusion

10.1 Fluid model

The goal of our approach was to propose an analytical model characterizing a

cellular radio network. This model had to be accurate in taking into account

the distance of a mobile to its serving base station, and still simple enough

to lead to closed form formulas. We moreover needed a not over-simplifying

model, otherwise it could have resulted large inaccuracies.

Considering the base stations as a continuum, we proposed a spatial fluid

model of cellular networks that allows to simplify considerably their analy-

sis and the computation complexity needed to obtain accurate results. We

first defined a parameter, the interference factor f , which well characterizes

cellular networks.

Though the interference factor is generally defined as the ratio of other-

cell interference to inner-cell interference. we the define interference factor

as the ratio of total other-cell received power to the total inner-cell received

power. This definition is interesting firstly since total received power is the

metric that mobile stations (MS) are really able to measure on the field.

Moreover, f represents now a characteristic of the network and does not

depend on the considered MS or service. Finally, the definition of f is valid

for cellular radio systems without inner-cell interference.
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We established an analytical expression of f , simple and easy to calcu-

late. The interference factor depends on the network size Rnw, the distance

between neighbor base stations, and exponential pathloss parameters.

We validated the fluid model approach comparing it to a hexagonal sim-

ulated network. Though the simplicity of formula we established, we showed

its high accuracy whatever the network parameters we considered: We espe-

cially established the accuracy of the fluid model for wide ranges of distance

between neighbor base stations, i.e. even for very low base stations densi-

ties, wide ranges of exponential pathloss parameters and wide ranges of size

networks. Though mainly focused on CDMA networks, our approach is still

valid for other systems, like OFDMA (WiMAX), TDMA (GSM) or even ad

hoc networks.

As a first refinement, we extended our analysis to a sectored network.

Denoting fomni(r) the interference factor f for an omni-directional BS net-

work, and fsect(r, θ) its expression for a sectored BS network, we established

their analytical expressions considering a sector fluid model network. We

particularly showed that the interference factor of sectored network with q

sectors per site can be expressed as a linear function of fomni(r).

As a second refinement, we analyzed the impact of the shadowing. We

established the analytical expression of f as a lognormal random variable

RV, for independent and correlated reeived signals. We expressed the mean

mf and the standard deviation σf of f considering the fluid network’s ap-

proach, and showed they depend on a function of the shadowing H(σ) and a

form factor G(η). This last one depends on the topology of the system: mo-

bile’s location, exponential pathloss parameter, the number and the positions

of the base stations. We moreover showed a consequence of the shadowing

is to increase mf and σf , and these last ones are limited for each specific

network. We analyzed different environmental parameters influences, and

showed some of them may limit the shadowing effects: the form factor, the

exponential pathloss parameter, the cell radius. We moreover established the

analytical expressions of the mean interference factor bounds, minimum and
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maximum. The cellular network fluid model we developed is adapted to each

specific local or global environment characterized by the radio propagation,

the shadowing and the network’s configuration: The network size Rnw to be

considered can be chosen characterizing a typical environment (pathloss ex-

ponent, urban, rural, macro or micro cells). It allows calculating the influence

of a mobile on a given cell, whatever its position.

As a third refinement, the analogy of the SINR constraints for the

uplink and the downlink drived us to develop a single analysis for modeling

the two links. We developed and validated an uplink fluid model, replacing

the discrete BS by a base station density and the mobiles MS by a mobile

density. We established the interference factor’s analytical expressions for

each link. For an homogeneous network, these expressions do not depend on

the density of mobiles.

10.2 Applications

The fluid model opens great number analyses possibilities. We showed the

fluid model can be used for different analysis of cellular networks such as

quality of service, dimensioning, mobile management, admission control...

We particularly focused on three among them: the capacity of a cell and a

network, the multiservice admission and the blocking probability

Capacity.

The fluid model allowed us to analyze the capacity of a cell and a network. It

thus can be used in the planning and dimensioning process. We instantly ob-

tained explicit expressions of the capacity. We moreover studied the solution

based on a network’s densification to answer an increasing traffic.

Transmitting power limitation.

Focusing on the influence of the thermal Noise and the BS transmitting

power, we particularly established that for high density networks, the increase

of base station transmitting powers does not necessarily increase the capacity

of a network. as a consesuence, in great number of cases, a provider may
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limit the maximum transmitting power of the base stations, .

Admission control policy.

Since our fluid model enables to know the influence of a mobile on a given

zone of a network whatever its position, we showed (Section 4.6) it can also

be used to analyze admission control policies.

We instantly obtained explicit expressions of the admission conditions in

a CDMA network. We analyzed the solutions based on a densification or a

sectorisation to answer an increasing traffic. We obtained analytical expres-

sions of the capacity: it theoretically appears better to densify a network

than to sectorize it. We moreover showed the importance of the choice of an

admission control strategy.

We analyzed the shadowing influence, and more generally, and showed

the fluid model can be used to analyze to each specific network’s zone or

environment.

We concluded that the fluid model is a powerful tool to study admission

control in CDMA networks and design fine algorithms taking into account

the distance to the BS.

Admission multiservice.

We analyzed the performance of call admission control combined with GoS

control in a WCDMA environment with integrated RT and NRT traffic. As

performance measures, we studied the blocking rate of RT traffic and the

sojourn times of NRT traffic. We illustrated through numerical examples the

importance of adding reserved capacity LNRT for NRT traffic and demon-

strated that this reservation can be done in a way not to significantly affect

RT traffic. More specifically, we saw that the blocking rate of RT traffic

was small and quite robust to the choice of LNRT , over a large interval of

values. For NRT traffic, we investigated the average sojourn time and the

conditional expected sojourn time given the file size and the number of RT

and NRT mobiles present at the cell upon arrival.

Outage probability.

We showed the simplicity of the fluid model allows a spatial integration of
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f leading to closed-form formula for the global outage probability and for

the spatial outage probability. This last one expresses the probability for a

mobile to enter the cell, at a given distance from its serving BS.

10.3 Future work

Since the fluid model model allows to know the influence of any mobile en-

tering a radio system, we aim to explore different kind of problems, such

as:

• the influence of mobiles mobility on the performances of a radio system

• different kind of scheduling analysis (see for example [KeA02])

• analyses of OFDMA based systems: dimensioning, performances, op-

timisation...
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Appendix A

Interference Power

Each BS transmits a power Pj = P so the power received by a mobile is

characterized by a lognormal distribution Xj as ln(Xj) ∝ N(amj, a
2σ2

j ) and

we can write mj = 1
a
ln(Pjr

−η
j ) (we aim to finally calulate a ratio of powers so

(in appendix B) to simplify we assume K = 1). So the total power received

by a mobile is a lognormal RV X characterized by its mean and variance

ln(X) ∝ N(am, a2s2) and we can write:

am = ln

 B∑
j=1,j 6=b

exp(lnPj − ηlnrj) +
a2σ2

j

2

− a2σ2

2
(A.1)

so we have since Pj = P whatever the base station j:

am = (lnP +
a2σ2

j

2
) + ln(

B∑
j=1,j 6=b

exp(−η ln(rj))+)− a2s2

2
(A.2)

So we can express the mean interference power Pext received by a mobile

coming from all the other base stations of the network as:

ln(Pext) = (lnP +
a2σ2

j

2
) + ln(

B∑
j=1,j 6=b

r−ηj )− a2s2

2
(A.3)

and the variance a2s2 of the sum of interferences is written as
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a2s2 = ln

∑B
j=1,j 6=b exp(2amj + a2σ2

j )(exp(a
2σ2

j )− 1)∑B
j=1,j 6=b exp(amj +

a2σ2
j

2
)2

+ 1

 (A.4)

Introducing

G(η) =

∑B
j=1,j 6=b r

−2η
j(∑B

j=1,j 6=b r
−η
j

)2 (A.5)

the mean value of the total interference received by a mobile is given by

(considering identical σj denoted σ):

Pext = P
B∑

j=1,j 6=b
r−ηj exp

(
a2σ2

2

)(
(exp(a2σ2)− 1)G(η) + 1

)−1/2
(A.6)

and

a2S2 = ln
(
(exp(a2σ2)− 1)G(η) + 1

)
+ ln

(
exp(a2σ2)

)
(A.7)
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Interference factor

Since the ratio of two lognormal RV’s is also a lognormal RV, the interference

factor is also lognormally distributed with the following mean and logarithmic

variance:

mf =
Pext
Pint

(B.1)

and thus, if we consider that all the base stations have the same trans-

mitting power: Pb = P , we can write, dropping the index b:

mf =

∑
j r

−η
j

r−η
exp

(
a2σ2

j

2

)(
(exp(a2σ2

j )− 1)G(η) + 1
)−1/2

(B.2)

and finally, considering identical σj and denoting:

H(σ) = exp

(
a2σ2

2

)(
(exp(a2σ2)− 1)G(η) + 1

)−1/2
(B.3)

we have

mf = f(η)exp

(
a2σ2

2

)(
(exp(a2σ2)− 1)G(η) + 1

)−1/2
(B.4)

In a analogue analysis, the standard deviation is given by a2σ2
f = a2S2 +

a2σ2 so we have
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a2σ2
f = 2(a2σ2 − ln(H(σ))) (B.5)



Appendix C

Interference factor for

correlated powers

In [AbuBe01], the coefficient tkj is introduced to take into account the cor-

relation between the lognormal RV:

tkj =
E [(Xk −mk)(Xj −mj)]

σkσj
. (C.1)

where Xi is a RV with mean mi and variance σ2
i .

The mean value Mcorr of the sum of lognormal RV is thus calculated in

[AbuBe01] as follows.

Denoting

u1 =
N∑
k=1

exp(mk +
σ2
k

2
) (C.2)

and

u2 =
N∑
k=1

exp(2mk + 2σ2
k)

+ 2
N−1∑
k=1

N∑
j=k+1

exp(mk +mj)exp
1

2
(σ2

k + σ2
j + 2tkjσkσj) (C.3)
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the mean value Mcorr of the sum of N lognormal RV is thus calculated in

[AbuBe01] as:

Mcorr = 2 lnu1 −
1

2
lnu2 (C.4)

That expression can be written as:

Mcorr = lnu1 −
1

2

lnu2

u2
1

(C.5)

Let’s consider that all the RV have the same variance σ. We moreover

introduce a mean value of the correlation coefficient t = tkj. We can write

2
N−1∑
k=1

N∑
j=k+1

exp(mk +mj)exp
1

2
(σ2

k + σ2
j + 2tkjσkσj)

= 2
N−1∑
k=1

N∑
j=k+1

exp(mk +mj)exp(σ
2 + tσ2)

=

1

2

N∑
j=1

exp(mj + σ2/2) +
1

2

N∑
k=1

exp(mk + σ2/2)

2

exp(tσ2)

−1

2

 N∑
j=1

exp(2mj + σ2) +
N∑
k=1

exp(2mk + σ2)

 exp(tσ2) (C.6)

We notice that∑N
j=1 exp(mj + σ2/2) =

∑N
k=1 exp(mk + σ2/2) and∑N

k=1 exp(2mk + σ2) = 1
2

(∑N
j=1 exp(2mj + σ2) +

∑N
k=1 exp(2mk + σ2)

)
so we have

2
N−1∑
k=1

N∑
j=k+1

exp(mk +mj)exp(σ
2 + tσ2)

=

 N∑
j=1

exp(mj + σ2/2)

2

exp(tσ2)

−
(

N∑
k=1

exp(2mk + σ2)

)
exp(tσ2) (C.7)
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so we have (from C.3)

u2 =

(
N∑
k=1

exp(2mk + σ2)

)
exp(σ2) +

(
N∑
k=1

exp(mk + σ2/2)

)2

exp(tσ2)

−
(

N∑
k=1

exp(2mk + σ2)

)
exp(tσ2)

=

(
N∑
k=1

exp(mk + σ2/2)

)2

exp(tσ2)

+

(
N∑
k=1

exp(2mk + σ2)

)(
expσ2 − exp(tσ2)

)
(C.8)

so we express

ln
u2

u2
1

= ln

((
exp(σ2)− exp(tσ2)

) ∑N
k=1 exp(2mk + σ2)

(
∑N
k=1 exp(mk + σ2/2))2

+ exp(tσ2)

)
(C.9)

This expression is analogue to the one we established for the variance

(A.7) of the sum of interferences. So, taking into account a correlation be-

tween the RV, the parameter a, and using the expression of Mcorr (C.5), the

expression of the mean value of the interference factor becomes

mf,corr =

∑
j r

−η
j

r−η
exp

(
a2σ2

2

)(
(exp(a2σ2)− exp(ta2σ2))G(η) + exp(ta2σ2

)−1/2

(C.10)

and finally denoting

Hcorr(σ) = exp

(
a2σ2

2
(1− t)

)(
(exp(a2σ2)(1− t)− 1)G(η) + 1

)−1/2

(C.11)

we can write

mf,corr = f(η)Hcorr(σ) (C.12)

And we have for the variance:
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a2σ2
f,corr = a2σ2(1 + t) + ln

(
(exp(a2σ2)(1− t)− 1)G(η) + 1

)
(C.13)
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