
A Markovian Model for TCP Analysis in a Differentiated

Services Network

Chadi Barakat and Eitan Altman
INRIA

2004, route des Lucioles, 06902 Sophia Antipolis, France
Email:{cbarakat,altman}@sophia.inria.fr

Abstract

In a Differentiated Services network, the use of TCP by an application impacts the
service it gets from the network. TCP congestion control algorithms are designed to
provide a fair sharing of resources in a best effort network as the current Internet. TCP
is not conscious of the new services proposed by DiffServ, namely the different priori-
ties packets are injected with into the network. Many schemes have been proposed to
support TCP traffic in a DiffServ network. These schemes have been often validated
with simulations. In this paper we propose an analytical model to study the perfor-
mance of TCP in a DiffServ network under the different proposed schemes. The model
is based on a Markovian fluid approach. We present first a general version of the model,
then we specify it to the different proposed schemes. For each scheme, we compute the
throughput achieved by a TCP connection. We compare then the service differentiation
provided by the proposed schemes under different subscription levels, different reserva-
tions, and different round-trip times. Our model forms a good tool for the evaluation
of new solutions to support TCP traffic in a DiffServ network.

Keywords
Differentiated Services, TCP, buffer management, Markovian modeling, Performance evaluation

and comparison.

1 Introduction

There has been an increasing interest these last years in enhancing the traditional best
effort service of the Internet to provide new applications with some guarantees in terms
of bandwidth, losses, and end-to-end delay. Differentiated Services architecture (DiffServ)
is considered as the most promising approach in this field for reasons of scalability and
incremental deployment [5, 18]. Flows asking for a better service than the traditional best
effort one are monitored at the edge of the network. Their parameters (rate, burst size)
are compared to the contract signed between the user and the service provider. Packets
compliant with the contract are marked with a high priority. Those violating the contract
are shaped, rejected, or injected into the network with a low priority. The priority level of
packets is carried in the DS field of the IP header. In the core of the network, high-priority
packets are privileged over low-priority ones. This privilege can be in the form of a better
scheduling (e.g., priority scheduling) as with the Premium service architecture [14, 18], or
in the form of a lower drop probability as with the Assured service architecture [5, 11]. The

1



main advantage of the DiffServ framework is that packets in the network are treated as a
function of their priority level and not as a function of the flow they belong to. No per-flow
information needs to be stored in routers. This eases the task of routers which have to deal
with a small number of priority levels rather than a large number of flows. Complexity is
pushed to the edge of the network. This makes the framework scalable, flexible, and easy
to introduce into the Internet.

The utility of such framework to uncontrolled flows is clear. An uncontrolled flow is a one
whose rate is not reduced when packets are lost in the network. These flows are generated
using UDP, the best effort transport protocol. An example is a real time video or audio flow.
An application using UDP has an idea on the rate of its packets. It asks the network for a
certain bandwidth as a function of the quality of service it desires. The network can reject
or mark with low priority the packets of this application exceeding the reserved bandwidth.
What the network guarantees is a small drop probability for high-priority packets. The drop
probability for low-priority packets depends on the load of the network. The application
gets a minimum quality as a function of the bandwidth it reserves, and this quality improves
when low-priority packets succeed to cross the network.

The problem of DiffServ appears with transfers using TCP [13], the reliable connection-
oriented transport protocol of the Internet. The congestion control algorithms of TCP
are well suited to the current best effort service. The window increases until a packet is
lost. The TCP source assumes here that the network is congested and reduces its window
consequently. This guarantees a good utilization and a fair sharing of network resources.
But with the proposed DiffServ architecture, an application using TCP may ask the network
for a better service (e.g., more throughput) by reserving a certain bandwidth. If at the edge
of the network non-compliant packets are rejected, TCP will reduce its rate when it reaches
the reserved bandwidth. The application using TCP fails then to use the bandwidth it is
paying for as well as any unreserved bandwidth in the network. The solution to this problem
is to let non-compliant packets get into the network as low-priority packets. This improves
TCP performance since the rate can now reach larger values. But, the injection of packets
of different priority levels causes additional problems: TCP is not aware of the reservation.
The loss of a low-priority packet is not distinguished from the loss of a high-priority packet,
and the rate is reduced in the same manner regardless of the reserved bandwidth. In a
DiffServ network, the loss of a packet of a certain priority level means a congestion of the
resources associated to this priority level, and not of all the resources as in a best effort
network. TCP does not see this partitioning of resources and it divides its window by two
whenever a loss occurs.

Many works have studied this misbehavior of TCP in a DiffServ network and many im-
provements have been proposed [4, 5, 7, 8, 21, 22]. The main conclusion of these studies
is that TCP is unable to realize its target throughput in a DiffServ network. The target
throughput of a TCP connection is defined as the reserved bandwidth plus a fair share
of any unreserved bandwidth. Moreover, a connection with a small reservation has been
shown to achieve better performance than a connection with a large reservation. Indeed, a
connection with a large reservation has a large window and it is more affected by the loss
of a low-priority packet than a connection with a small reservation. These works have also
shown the well known problem of TCP unfairness in presence of different round-trip times
(RTT). A connection with small RTT achieves better performance than a connection with
long RTT. Some solutions have been proposed to alleviate these problems. These solutions
consist in either changing TCP sources, or marking TCP flows differently at the edge of the
network, or changing the behavior of network routers.

2



The performance of the different schemes proposed in the literature to support TCP traffic
in a DiffServ network has been often evaluated via simulations [5, 7, 8, 21]. In [22], a
mathematical model has been proposed to calculate the throughput of a connection as a
function of the drop probability of packets from different priority levels. Three schemes
have been compared. However, the extension of this work to other possible schemes is not
straightforward. Further, it does not allow to study the impact of the parameters of the
other connections (e.g., RTT, reserved bandwidth) on the performance of the connection
under study. All the exogenous traffic is modeled in [22] with the packet drop probability,
and the dynamics of the connection under study is assumed to have no impact on this
probability. This might be the case of a large number of connections sharing the network,
but it is not certainly the case when a small number of connections is multiplexed.

In this paper we present a general Markovian model able (i) to calculate the performance of
all the connections sharing a bottleneck router, and (ii) to account for the different solutions
already proposed, or to be proposed. Using this model, we compare the performance of some
schemes proposed to support TCP in a DiffServ network. In the next section we present a
brief overview of the different schemes we consider in this paper. In Section 3 we explain
our Markovian model. In Section 4 we compute the throughput of a TCP connection as a
function of two functions: the reaction of a TCP connection to congestion signals, and the
probability that a particular connection reduces its rate upon congestion. By appropriately
setting these two functions, we are able to specify our model to all proposed schemes.
Section 5 explains how these two functions must be set. In Section 6 we simplify the model
in the case of large number of connections, and we give closed-form expressions for TCP
throughput. In Section 7 we present some numerical results and compare the different
schemes. The paper is concluded in Section 8.

2 TCP in a DiffServ network

We summarize first the main objectives of an ideal DiffServ scheme supporting TCP traffic:

• The available bandwidth must be efficiently utilized.

• In the case when the sum of reservations is less than the total available bandwidth (the
under-subscription case), each connection must realize its reservation. The difference
between the total available bandwidth and the total reservation must be shared equally
by the different connections.

• In the case when the sum of reservations is larger than the total available bandwidth
(the over-subscription case), the available bandwidth must be distributed among the
different connections proportionally to their reservations.

Note that even if an efficient admission control algorithm is deployed, the over-subscription
case could happen on a certain link due to the dynamic routing inside a DiffServ domain.

The original proposition to support TCP transfers in a DiffServ network is due to Clark [5].
At the edge of the network, the transmission rate of the TCP connection is compared to
the reserved bandwidth. A time sliding window mechanism (TSW) has been proposed to
measure the rate of the connection. The time window determines how much the past is
important, or in other words it determines the time interval over which the rate of TCP

3



Figure 1: The saw tooth variation of TCP window

is averaged. The transmission rate of a window-based flow control protocol as TCP can
be defined as the window size divided by the RTT of the connection. Thus, the time
window must be in the same order of the RTT. Two priority levels have been proposed
in [5] for packet marking. A packet that arrives at the edge of the network and finds the
rate of the connection smaller than the reservation, is marked with a high priority and is
called an IN packet. A packet that arrives and finds the rate of IN packets equal to the
reservation, is marked with a low priority and is called an OUT packet. In network routers,
IN and OUT packets are buffered in the same queue and are scheduled in a FIFO manner.
This guarantees an in-order delivery of packets which is necessary for TCP operation. The
differentiation in the service comes from the different probabilities network routers drop
these two types of packets at the onset of congestion. A variant of RED (Random Early
Detection) [10] is proposed to implement this difference in the drop probability. This variant,
called RIO (RED IN/OUT) [5], has two minimum thresholds instead of one. As with RED,
the average length of the queue is calculated using an exponentially weighted moving average
algorithm. When this average length exceeds the lower minimum threshold, OUT packets
are probabilistically dropped in order to signal congestion to TCP sources. The buffer
starts to drop probabilistically IN packets when the average queue length (sometimes the
average number of IN packets in the buffer) exceeds the upper minimum threshold. Note
that instead of dropping packets, the router can signal congestion to TCP sources by setting
the ECN (Explicit Congestion Notification) bit in the IP header [9].

As we described in the introduction, this scheme has some problems to satisfy the objectives
we defined at the beginning of the section. Due to the saw tooth window variation of TCP
(Figure 1), a connection is obliged to transmit a certain amount of OUT packets in order to
realize its reservation. Since OUT packets are very likely to be dropped, the connection may
not realize its reservation. Moreover, a connection with a large reservation must transmit
more OUT packets than a connection with a small reservation. Also, a connection with a
large reservation has in general larger window than a connection with a small reservation
which makes it more affected by the loss of an OUT packet. This explains the bias of the
scheme proposed in [5] against connections with large reservations.

The first and the most intuitive solution to this problem is to change TCP in a way that
the source reduces differently its window when OUT or IN packets are lost [7, 21]. The
source needs to know the priority level of the lost packet. Also, it needs to know the
bandwidth reserved by the connection. The loss of an IN packet is an indication that the
network is congested and that the congestion window needs to be divided by two as in

4



standard TCP. The loss of an OUT packet is an indication that the unreserved bandwidth
in the network is congested. The source divides then its window into two parts. The first
part corresponds to the number of unacknowledged IN packets and the second part to the
number of unacknowledged OUT packets. The number of unacknowledged IN packets is
estimated as the product of the reserved bandwidth and the RTT. The window is reduced
by half the number of unacknowledged OUT packets. The main problem with this solution
is that it requires a change at the source and a knowledge of the priority level of the lost
packet, which is difficult to implement.

The other solutions try to give some advantage to connections with large reservations over
connection with small reservations. The objective is to help the former connections to send
more OUT packets than the latter ones, and this is without changing the TCP protocol.
The first solution proposed in the original paper describing RIO [5] is based on the saw
tooth variation of TCP window. On average, the transmission rate of a TCP connection
varies between 2/3 and 4/3 of its throughput. To be able to realize its reservation, a
TCP connection must be protected from the other connections until it reaches 4/3 of its
reservation. The idea of [5] is to change the marker so that it marks packets as OUT when
the rate of the connection exceeds 4/3 of the reserved bandwidth. We call this proposition
the Saw Tooth Marking scheme. It has the drawback of injecting into the network during
some periods more IN packets than what is promised.

The second solution [21] proposes to drop OUT packets in network routers according to
the reserved bandwidth. The authors in [21] show that dropping OUT packets with a
probability inversely proportional to the bandwidth reserved by the connection improves
the performance. We call this solution the Inverse Drop Probability scheme. Its main
drawback is that it requires that network routers know the bandwidth reserved by every
connection.

The last scheme we consider is the one that proposes to mark packets with three priority
levels instead of two [11, 12, 21]. A RED buffer with three thresholds is used in routers.
The idea is to protect the OUT packets of a connection transmitting at less than its fair
share from the OUT packets of a connection exceeding its fair share, by giving packets
of the former connection some medium priority while giving low priority to those of the
latter connection. However in this case, and in contrast to Saw Tooth Marking, we are not
injecting into the network more high-priority packets than what is promised. This solution
can be considered as a means to give priority to some OUT packets over other OUT packets
but not over IN packets.

3 The Markovian fluid model

We outline in this section our Markovian model for the evolution of the rate of a TCP
connection sharing a path with other TCP connections in a DiffServ network. Consider
N TCP connections sharing a bottleneck of bandwidth µ. Let Xi(t) be the transmission
rate of connection i at time t. It is equal to the window size divided by the RTT of the
connection. The N connections increase their rates (by increasing their windows) until the
network gets congested. The congested router starts then to drop packets in order to signal
the congestion to TCP sources. A source receiving a congestion signal reduces its rate, then
it resumes increasing it. The other sources continue increasing their rates. This continues
until the next congestion event.

5



Let tn denote the time at which the nth congestion event occurs, and let Dn = tn+1 − tn.
Denote by Xi,n the transmission rate of connection i at time tn and by X+

i,n its transmission
rate just after tn (after the disappearance of the congestion). X+

i,n is equal to Xi,n if
connection i did not reduce its rate at tn, and to Ri(Xi,n) otherwise. Ri(Xi,n) is a function
of Xi,n usually equal to Xi,n/2 [13].

We introduce now some assumptions in order to analyze the process {X1,n, X2,n, . . . , XN,n}.
In the following, we use this process to calculate the throughput achieved by each connection.

Assumption 1: We assume first that queueing times in network nodes are small com-
pared to the propagation delay. This holds with active buffer management techniques as
RED [10]. Among many others RED aims to reduce the length of queues in network routers
in order to reduce the end-to-end delay. A RED router starts to drop packets before the
overflow of the buffer. The remaining space in the buffer is used to absorb bursts of packets.
The RTT of a connection, say i, is then approximately constant denoted by Ti, and the
transmission rate of the connection varies linearly with the window size. The congestion
appears when the sum of the rates of all connections reach the total available bandwidth
µ. Thus, instants tn are given by1

N∑

i=1

Xi(tn) = µ. (1)

Assumption 2: We consider long TCP transfers and we suppose that the sources are
always working in the congestion avoidance mode [13, 20]. Slow start phases are ignored.
This is possible since the new versions of TCP avoid this phase in most of the cases [6].
Using Assumption 1 and the results from [17], the rate of a connection can be considered
to increase linearly as a function of time. This increase continues until the source receives
a congestion signal, where it reduces its rate and starts again its linear increase. Thus,
Xi,n+1 = X+

i,n + αiDn. αi is a constant function of Ti and of the frequency of ACKs sent
by the TCP receiver. During congestion avoidance, the congestion window increases by one
packet when a window’s worth of ACKs are received [20]. Thus, αi is equal to 1/T 2

i when
the receiver acknowledges every data packet and to 1/(2T 2

i ) when it acknowledges every
other data packet (Delay ACK mechanism enabled [20]).

Assumption 3: The third assumption we make is that only one connection reduces its rate
upon a congestion, and that the probability that a connection reduces its rate is a function
of its rate and the rates of the other connections at the moment of congestion. This is
again the aim of the new buffer management techniques (e.g., RED [10]) that implement
random drop in order to send congestion signals to connections consuming more than their
fair shares of the bottleneck bandwidth while protecting connections consuming less than
their fair shares [10]. We further assume that the reaction of the connection receiving the
first congestion signal is quick so that the congestion in the network disappears before other
packets from other connections are dropped.

Let Ui,n be a random variable equal to 1 if source i reduces its rate at time tn and to 0
otherwise. We always have

∑N
i=1 Ui,n = 1, since only one connection is supposed to reduce

its rate upon congestion (Assumption 3). The probability that Ui,n is equal to one is a
function of the all rates at time tn. Let pi(X1,n, X2,n, . . . , XN,n) denote this probability. It
represents the probability that the dropped packet upon congestion belongs to connection

1Equation (1) assumes that rates of connections are fluid. If rates of connections are discrete, tn will be
the first instant at which the sum of rates is larger than µ.

6



i. This probability together with Ri(Xi,n) form the two functions of our model that need
to be specified in order to cover all the proposed schemes. Later, we explain how to specify
these two functions.

Theorem 1 The process {X1,n, X2,n, . . . , XN,n} can be described as a homogeneous Markov
process of dimension N − 1.

Proof: For any congestion event n, the transmission rates of the N connections are related
by (1). Thus, the problem can be analyzed by considering only the rates of N−1 connections.
In the particular case of N = 2, we get a one-dimensional model.

Concerning the Markovian property of the model, it is easy to show that the state of the
process of rates at time tn+1 depends only on its state at time tn. Indeed, for any i and any
n we have,

Xi,n+1 = Xi,n + Ui,n(Ri(Xi,n)−Xi,n) + αiDn. (2)

Summing over all the i and using (1), we get

Dn =
∑N

i=1 Ui,n(Xi,n −Ri(Xi,n))∑N
i=1 αi

. (3)

Given that Ri(Xi,n) and the value taken by Ui,n are only a function of the process state at
time tn, Xi,n+1 is therefore only a function of the process state at time tn and the Markovian
property holds. The process is homogeneous since the process state at time tn+1 depends
only on its state at time tn and not on n. ¦

Using the recurrence (2) and the probability function pi, we can define all the transitions of
our Markov chain. Denote by X the state space of this chain upon congestion. For each state
X = (x1, . . . , xN ) ∈ X (xi is the transmission rate of source i upon congestion), the chain
can jump to N different states at the next congestion event. This depends on which source
reduces its rate at the current congestion event. Denote by Fi(X) = (fi,1, . . . , fi,N ) the next
state of the Markov chain, given that the Markov chain is in state X and that the source
which reduces its rate is i. Using (2), for j = 1 . . . N , and for any X = (x1, . . . , xn) ∈ X ,
we can write

fi,j =

{
xj + (xi −Ri(xi))αj/

∑N
m=1 αm if j 6= i

Ri(xi) + (xi −Ri(xi))αi/
∑N

m=1 αm if j = i

Denote by Π = (πX)X∈X the stationary distribution of our Markov chain. To compute this
distribution, we discretisize the Markov chain by supposing that the rate of a TCP connec-
tion takes a finite set of values between 0 and the total bandwidth µ. The transmission rate
of a TCP connection at the next congestion event predicted by (2) is then rounded to the
closest value in this set of values. We get then a discrete-time disrecte-space Markov chain
for which we can compute numerically the stationary distribution by writing the system of
balance equations. We did different runs for many scenarios and we always found that this
stationary distribution exists and is unique. From now on, we put ourselves in the station-
ary regime, and we remove the time index n from all random variables and processes, e.g.
Xi,n becomes Xi.

7



4 Calculation of the throughput

The throughput of a connection say i, or equivalently the time average of its transmission
rate, is equal to

X̄i = lim
t→∞

1
t

∫ t

0
Xi(u)du = lim

n→∞

∑n−1
m=0

∫ tm+1

tm
Xi(u)du

∑n−1
m=0 Dm

= lim
n→∞

1
n

∑n−1
m=0(Xi,m + Ui,m(Ri(Xi,m)−Xi,m))Dm + αi(Dm)2/2

1
n

∑n−1
m=0 Dm

Given that the system has a unique stationary regime, the limit exists and is equal to

X̄i =
E

[
(Xi + Ui(Ri(Xi)−Xi))D + αi(D)2/2

]

E [D]
. (4)

Let Dj(X) denote the time until the next congestion event when the system is in state
X ∈ X and source j reduces its rate. Using (3), we have

Dj(X) =
xj −Rj(xj)∑N

m=1 αm

.

Thus,

X̄i =

∫
dπX

(∑N
j=1 pj(X)

(
xiDj(X) + αi(Dj(X))2/2

)
+ pi(X)(Ri(xi)− xi)Di(X)

)

∫
dπX

∑N
j=1 pj(X)Dj(X)

(5)

This equation shows that the throughput of a connection is a function of many parameters.
First, it is a function of some constant parameters as µ, N , and αi. Second, it is a function
of two other parameters that can be changed to improve the service provided to applications
using TCP. These latter two parameters are the probability function pi(X) and the amount
by which the rate of a connection is reduced when a congestion signal is received Ri(xi).
The different schemes we compare in this paper set differently these two parameters.

5 Application of the model to real schemes

Suppose that the system is in state X = (x1, . . . , xN ) ∈ X in the stationary regime. We
find in this section the expressions of the two functions pi(X) and Ri(xi) for the different
DiffServ schemes we are considering in this paper.

5.1 Standard TCP with RIO

A source i asks the network for bandwidth µi. Packets below the reserved bandwidth are
marked as IN and those exceeding the reserved bandwidth are marked as OUT. When a
congestion appears at the bottleneck, the router starts to drop OUT packets with a certain
probability. Connections transmitting at less than their reserved bandwidths are protected.
The probability that a connection transmitting OUT packets reduces its rate is a function
of (i) the probability at which the network drops OUT packets, (ii) the rate of its OUT

8



packets, and (iii) the total rate of OUT packets crossing the bottleneck at the moment of
congestion. If there is no OUT packets in the network (all the connections are transmitting
at less than their reservations), congestion remains and the router starts to drop IN packets.
When an OUT or IN packet is dropped, the corresponding connection divides its rate by
two. Thus, Ri(xi) = xi/2 in this case and in all the subsequent cases where standard TCP
is used.

The probability that a connection reduces its rate upon a congestion is equal to 0 when it is
transmitting only IN packets and there is at least one connection transmitting OUT packets.
It is equal to 1 if it is the sole connection transmitting OUT packets. Next we study the case
when the connection is transmitting OUT packets together with other connections. The
last case, that of all the connections transmitting only IN packets, will be directly deduced.

Upon a congestion, a RIO buffer treats OUT packets from all connections in the same way.
Let q be the probability that an OUT packet is dropped at the bottleneck and let V be the
result of the probabilistic drop applied to a packet. It is equal to 1 if the packet is really
dropped and to zero otherwise. Denote by Y = 1, . . . , N the number of the connection
to which the dropped OUT packet belongs. In the following we denote by PX(A) the
probability that event A happens given that the system is in state X ∈ X upon congestion.
We have

pi(X) = PX(Y = i|V = 1) =
PX(Y = i and V = 1)

PX(V = 1)
=

PX(Y = i).PX(V = 1|Y = i)∑N
m=1 PX(Y = m).PX(V = 1|Y = m)

For m = 1, . . . , N , PX(V = 1|Y = m) is no other than q. Thus, pi(X) is equal to PX(Y = i)
which is the probability that an OUT packet belongs to connection i given that the system
is in state X. This probability is equal to the ratio of the rate at which connection i is
sending OUT packets and the total rate of OUT packets. Thus,

pi(X) = PX(Y = i) =
xi − µi∑N

m=1(xm − µm)1{xm > µm}
,

where 1{} is the indicator function.

Similarly, we can calculate the probability that connection i reduces its rate when all con-
nections are transmitting only IN packets. Again, all packets are treated in the same way
by the RIO buffer. pi(X) is equal in this case to the probability that an IN packet belongs
to connection i, which is equal to the ratio of the rate at which connection i is sending IN
packets (xi) and the total rate at which IN packets are sent (µ). We can then write the
general expression of pi(X). For any X ∈ X we have,

pi(X) =

{
xi/µ if

∑N
m=1 1{xm > µm} = 0

((xi − µi)1{xi > µi}) /
(∑N

m=1(xm − µm)1{xm > µm}
)

otherwise

5.2 Modified TCP with RIO

Packets are marked with two priority levels and RIO buffers are used in network routers.
Thus, pi(X) is the same as in the previous section. The difference is in the function Ri(xi).
If an IN packet is lost, the source divides its rate by two as with standard TCP. If the
dropped packet is an OUT packet, the proposed scheme [7, 21] consists in only dividing
the rate of OUT packets by two. We consider in our model that the dropped packet from

9



connection i is an IN packet if at the moment of congestion source i is transmitting at
less than its reservation, otherwise it is an OUT packet. Thus, the transmission rate of
connection i just after it reduces its rate is equal to

Ri(xi) =
{

xi/2 if xi < µi

µi + (xi − µi)/2 otherwise

5.3 Inverse Drop Probability Scheme

Standard TCP with two priority levels is used, therefore Ri(xi) is equal to one half xi. The
difference in this case is that packets of different connections (IN and OUT) are not treated
in the same way in the core of the network. The idea proposed in [21] is to drop OUT packets
from a connection with a probability that varies as the inverse of its reservation. However,
the drop probability of IN packets is not specified. IN packets are actually dropped when
all connections are transmitting at less than their reservations. In this case and according
to our objectives (Section 2), the throughput of a connection must be proportional to its
reservation. It is known that the throughput of a TCP connection varies as the square root
of the packet drop probability [2, 3, 17, 19]. Thus, in order to achieve the above objective,
we propose to drop IN packets with a probability that varies as the inverse of the square of
the reservation. We add this new feature to the proposed scheme.

As in the case of RIO with standard TCP, the router tries first to drop OUT packets. If
these packets do not exist, IN packets will be dropped. Again, a connection reduces its rate
with probability 1 if its the sole connection exceeding its reservation, and with probability 0
if it is transmitting only IN packets and there is at least one other connection transmitting
OUT packets. For the remaining two cases, we consider first the case when the connection is
transmitting OUT packets together with other connections. The other case will be directly
deduced.

Suppose that the bottleneck router drops OUT packets of source m = 1, . . . , N with a
probability q/µm, q is a constant. Suppose also that the system is in state X ∈ X when
the congestion occurs. Then,

pi(X) =
PX(Y = i).PX(V = 1|Y = i)∑N

m=1 PX(Y = m).PX(V = 1|Y = m)
=

PX(Y = i)/µi∑N
m=1 PX(Y = m)/µm

.

As in the case of RIO, PX(Y = m) is equal to

P (Y = m) =
xm − µm∑N

j=1(xj − µj)1{xj > µj}
.

Thus,

pi(X) =
xi/µi − 1∑N

m=1(xm/µm − 1)1{xm > µm}
.

When all connections are only transmitting IN packets, the problem is similar. The differ-
ence is in the drop probability that we propose to take inversely proportional to the square
of the reservation. The general expression of pi(X) for this scheme is then,

pi(X) =





(
xi/µ2

i

)
/

(∑N
m=1 xm/µ2

m

)
if

∑N
m=1 1{xm > µm} = 0

((xi/µi − 1)1{µi > xi}) /
(∑N

m=1(xm/µm − 1)1{xm > µm}
)

otherwise

10



5.4 Saw Tooth Marking Scheme

Standard TCP, two priority levels and RIO buffers are used, thus Ri(xi) = xi/2. The
difference here is in the marker operation. The flow of connection i contains OUT packets
when its rate exceeds 4µi/3. The rate of its OUT packets at the moment of congestion is
equal to xi − 4µi/3 rather than xi − µi. The new expression of the probability function
pi(X) is then

pi(X) =

{
xi/µ if

∑N
m=1 1{xm > 4µm/3} = 0

((xi − 4µi/3)1{xi > 4µi/3}) /
(∑N

m=1(xm − 4µm/3)1{xm > 4µm/3}
)

otherwise

5.5 Standard TCP with Three Drop Priorities

In this scheme, the source makes two reservations instead of one. Denote these reservations
by µi,1 and µi,2 with µi,1 < µi,2. Standard TCP is used at the source, therefore Ri(xi) =
xi/2. Packets are marked with three priority levels or three colors. Packets exceeding µi,2

are marked with low priority (red color). Those exceeding µi,1 but not µi,2 are marked with
medium priority (yellow color). Packets sent at a rate slower than µi,1 are marked with a
high priority (green color).

As in the RIO case, the network starts first to drop low-priority packets. This happens
when one of the sources, say i, is exceeding its upper reservation µi,2. If those packets
do not exist, medium-priority packets are dropped. Medium-priority packets exist in the
network when one of the sources, say i, is exceeding its lower reservation µi,1. If it is not
the case, the network drops high-priority packets.

All packets belonging to a certain priority level are treated in the network in the same man-
ner. A connection reduces its rate upon congestion with probability 1 if it is transmitting
alone above a certain level. It reduces its rate with probability 0 if it is transmitting below
a level and there is another connection transmitting above the same level. In the other
cases, the probability that a connection reduces its rate is equal to the probability that the
dropped packet belongs to this connection. Similarly to the RIO case we can write,

pi(X) =





xi/µ if
∑N

m=1 1{xm > µm,1} = 0
((xi − µi,1)1{xi > µi,1}) /

(∑N
m=1(xm − µm,1)1{xm > µm,1}

)
if

∑N
m=1 1{xm > µm,1} > 0

and
∑N

m=1 1{xm > µm,2} = 0
((xi − µi,2)1{xi > µi,2}) /

(∑N
m=1(xm − µm,2)1{xm > µm,2}

)
otherwise

To compare this scheme to previous ones, the two reservations µi,1 and µi,2 must be set as
a function of the desired throughput µi. If we look at the saw tooth variation of TCP rate
in Figure 1, we see that on average and in order to realize a throughput µi, the connection
rate should vary between 2µi/3 and 4µi/3. Based on that, we give packets below 2µi/3 the
highest priority, packets between 2µi/3 and 4µi/3 the medium priority, and packets above
4µi/3 the lowest priority. This corresponds to µi,1 = 2µi/3 and µi,2 = 4µi/3. The Three
Drop Priorities scheme is compared later to the other schemes with these particular values
of the two reservations. Other values can be always used.

11



6 Case of a large number of connections

We present in this section closed-form expressions for the throughput when a large num-
ber of TCP connections share the bottleneck. We look for closed-form expressions of the
throughput that are independent of the parameters of the other connections, but rather
dependent on some parameters describing the state of the network (e.g., loss process, band-
width, subscription level). This is similar to the approach used in [22] where the state of
network is represented by the packet drop probability and the subscription level. Later, we
will describe how both approaches can be related together to obtain the same results.

We focus on a particular connection i. We assume that the process of times between
congestion events {Dn} is independent of the rate of connection i. We further assume
that these times are identically and exponentially distributed with intensity λ and with
average d = 1/λ. This very probably holds given the large number of connections that are
multiplexed at the bottleneck. We suppose that the process of congestion events is known.
Consider for the moment that we are able to get the intensity of {Dn} by probing directly
the bottleneck router. Later we explain how it can be calculated on end-to-end basis by
using the probability that a packet is dropped or the percentage of dropped packets. Given
the assumption that the process of congestion events is Poisson, we can write (4) as follows:

X̄i = E [Xi] + E [Ui(Ri(Xi)−Xi)] + αid.

Using the PASTA (Poisson Arrivals See Time Averages) theory [16, Ch. 5], the expectation
of the rate of connection i at moments of congestion (E [Xi]) is equal to the time-average
of the rate of the connection or its throughput (X̄i). Thus, using the above equation, the
throughput of connection i can be written as the solution of:

E [Ui(Xi −Ri(Xi))] = p̄i(X̄i)E [(Xi −Ri(Xi))|Ui = 1] = αid. (6)

p̄i(X̄i) is the probability that connection i reduces its rate at a congestion event. It is equal
to the expectation of the conditional probability pi(X) = PX(Ui = 1). Recall that PX(A)
denotes the probability that event A holds given that the N TCP connections are in state
X = (x1, . . . , xN ). Next, we will express p̄i(X̄i) as only a function of the throughput of
connection i (X̄i). The impact of the rates of the other connections will be eliminated by
using the bottleneck bandwidth µ and the subscription level. Consider for example the RIO
case and denote by ρ the subscription level or the ratio of the total bandwidth reserved and
the total available bandwidth. ρ < 1 means under-subscription and ρ > 1 means over-
subscription. Given the large number of connections, the total rate of OUT packets at the
moments of congestion can be approximated by (1 − ρ)µ when ρ < 1 and by 0 otherwise.
The total rate of IN packets can be approximated by ρµ when ρ < 1 and by µ otherwise.
Thus, there is no need for the rates of the other connections in the calculation of pi(X).
We can express this probability as a function of Xi, µ and ρ. We will explain later how this
calculation can be done for each scheme. Clearly, this will not work with the Inverse Drop
Probability scheme where we need the bandwidth reserved by each connection rather than
the total reservation.

Further simplification is required to solve the non-linear system (6) for X̄i. The non-linearity
comes from the dependency between Ui and Xi. We propose two possible approximations
to solve this dependency. The first approximation is to suppose that these random variables
are independent. From (6) we get,

p̄i(X̄i)(X̄i − R̄i(X̄i)) = αid.

12



R̄i(X̄i) is the expectation of Ri(Xi), hence it is equal to X̄i/2 in case of standard TCP.
This approximation is equivalent to assuming that connection i reduces its rate at conges-
tion moments with a constant probability p̄i(X̄i). We already studied such approximation
in [1] where we assumed that the rate of the TCP connection decreases at some potential
loss moments with a probability independent of its transmission rate. The result of this
approximation is an exponentially distributed time between moments at which connection
i reduces its rate (at which Ui is equal to 1) with a mean equal to d/p̄i(X̄i).

The second approximation consists in considering a fixed-point approach as the one used
in the literature [17, 19, 22]. This approach consists in taking Xi constant when Ui = 1,
i.e. when the rate of connection i is reduced. Denote this constant by X0. The rate of
connection i changes then in the stationary regime between Ri(X0) and X0 (Figure 1) with
a time average X̄i. In our case where the probability pi(X) increases with the transmission
rate of the connection, this should give better result than the previous approximation. In
the case of standard TCP, Ri(X0) is equal to X0/2 and thus,

X0 = 4X̄i/3. (7)

This is also the value of X0 in the case of modified TCP when X̄i < µi. Now, in the
particular case of modified TCP and X̄i > µi, Ri(X0) is equal to µi +(X0−µi)/2 and thus,

X0 = µi + 4(X̄i − µi)/3. (8)

Using (6) we can write for the case of the second approximation,

E [Ui(Xi −Ri(Xi))] = p̄i(X̄i)(X0 −Ri(X0)) = αid. (9)

We chose to work with this second approximation. Using (9) where X0 and Ri(X0) can be
expressed as a function of X̄i, we can compute explicitly the throughput of connection i.
Again, by appropriately specifying the two functions p̄i(X̄i) and Ri(X0), we can cover all
the proposed schemes. Ri(X0) is given in Section 5 for the different schemes as a function
of X0. We still have to calculate p̄i(X̄i). We exclude from our calculation the Inverse
Drop Probability scheme since it requires the knowledge of the bandwidth reserved by the
different connections not only the total reservation. If we assume that all the connections
have approximately the same reservation, this scheme will be identical to Standard TCP
with RIO.

6.1 Standard TCP with RIO

Using (7) and (9) we write,

p̄i(X̄i)X̄i = 3αid/2 = 3αi/2λ. (10)

Consider first the case ρ < 1. The total rate of OUT packets crossing the bottleneck at the
moments of congestion is equal to (1− ρ)µ. Thus, we write p̄i(X̄i) as follows:

p̄i(X̄i) = E [pi(X)] =
1

(1− ρ)µ
E [(Xi − µi)1{Xi > µi}] . (11)

The term E [(Xi − µi)1{Xi > µi}] is equal to the average area between the rate of connection
i, its reservation µi and two reductions of its rate (i.e., the dark areas in Figure 1) divided by
the average duration of a TCP cycle (i.e., average time between two consecutive reductions

13



of the rate of the connection). We use here the PASTA theory to equate moments upon
congestion events to moments at arbitrary time moments. Note that a TCP cycle can
include many congestion events. To compute the above expectation, we reconsider the fixed-
point approach where the rate of connection i oscillates in the stationary regime between
X0/2 and X0, with X0 = 4X̄i/3. It is clear that X0 is greater than the reserved bandwidth
µi since the network is not over-subscribed and some bandwidth exists for low-priority
packets. Hence,

p̄i(X̄i) =

{
(X0−µi)

2

X0(1−ρ)µ = (4X̄i−3µi)
2

12X̄i(1−ρ)µ
if X0/2 = 2X̄i/3 < µi

X̄i−µi

(1−ρ)µ otherwise

Solving equation (10) for X̄i, we get

X̄i =





µi
2 +

√
µ2

i
4 + 3αi(1−ρ)µ

2λ if µi <

√
2αi(1−ρ)µ

λ

3µi

4 +
√

9αi(1−ρ)µ
8λ otherwise

(12)

We still have to consider the case ρ > 1. Xi is always smaller than the reserved bandwidth
since there is no place left for OUT packets. The probability that connection i reduces its
rate upon congestion is simply

p̄i(X̄i) = E [Xi/µ] = X̄i/µ.

This gives the following expression for the throughput:

X̄i = min(

√
3αiµ

2λ
, 3µi/4). (13)

The minimum operator is used to make sure that the throughput in case ρ > 1 cannot
exceed 3µi/4 (no OUT packets are transmitted).

6.2 Modified TCP with RIO

The analysis for the over-subscription case (ρ > 1) is similar to that in the previous section.
We get the same expression for the throughput as (13). In the under-subscription case and
using (8) and (9), we write

p̄i(X̄i)(X̄i − µi) = 3αi/2λ.

p̄i(X̄i) is given by (11). The transmission rate of connection i is always above the reservation
which gives

p̄i(X̄i) =
X̄i − µi

(1− ρ)µ
.

Solving for the throughput X̄i, we get

X̄i = µi +

√
3αi(1− ρ)µ

2λ
.

14



6.3 Saw Tooth Marking

The calculation here is similar to that in the case of RIO with Standard TCP with a small
difference in the definition of ρ. Given that the marker at the edge of the network starts
to mark packets as OUT when the rate of connection i exceeds 4µi/3 rather than µi, we
define ρ as (

∑N
i=1 4µi/3)/µ. The network contains 4/3 more IN packets than in the RIO

case. The under-subscription case corresponds always to ρ < 1 and the over-subscription
case to ρ > 1.

Consider the case ρ < 1. Using (7) and (9), we have

p̄i(X̄i)X̄i = 3αi/2λ,

p̄i(X̄i) =
1

(1− ρ)µ
E [(Xi − 4µi/3)1{Xi > 4µi/3}] .

The throughput can be simply obtained by substituting µi by 4µi/3 in (12). It follows for
ρ < 1,

X̄i =





2µi
3 +

√
4µ2

i
9 + 3αi(1−ρ)µ

2λ if µi <

√
9αi(1−ρ)µ

8λ

µi +
√

9αi(1−ρ)µ
8λ otherwise

When ρ > 1, the throughput can be calculated similarly to the case of RIO with Standard
TCP. The difference is that in this case the throughput of connection i can go until µi,

X̄i = min(

√
3αiµ

2λ
, µi).

6.4 Standard TCP with Three Drop Priorities

The analysis is similar to that in the RIO case. Define ρ1 and ρ2 as the two ratios indicating
how the bandwidth µ is allocated to different priority levels (ρk =

∑N
i=1 µi,k/µ). We have

ρ1 < ρ2. We distinguish three regions instead of two. The first region corresponds to
ρ1 < ρ2 < 1. The expression of the throughput in this case is obtained by substituting
µi by µi,2 and ρ by ρ2 in (12). The second region corresponds to ρ1 < 1 < ρ2 and the
throughput is obtained by substituting µi by µi,1 and ρ by ρ1 in (12). The third region
corresponds to 1 < ρ1 < ρ2 and the throughput is given by (13) after the substitution of µi

by µi,1.

In order to compare this scheme to previous ones, we need to set µi,1 and µi,2 as a function
of the throughput desired by the connection (µi). As in Section 5, we set µi,1 to 2µi/3 and
µi,2 to 4µi/3. Similarly, ρ1 is equal to 2ρ/3 and ρ2 to 4ρ/3. We have then the following
expression for the throughput,

For ρ < 3/4, X̄i =





2µi

3 +
√

4µ2
i

9 + 3αi(1−4ρ/3)µ
2λ if µi <

√
9αi(1−4ρ/3)µ

8λ

µi +
√

9αi(1−4ρ/3)µ
8λ otherwise

For 3/4 < ρ < 3/2, X̄i =





µi

3 +
√

µ2
i
9 + 3αi(1−2ρ/3)µ

2λ if µi <

√
9αi(1−2ρ/3)µ

2λ

µi

2 +
√

9αi(1−2ρ/3)µ
8λ otherwise

For 3/2 < ρ, X̄i = min(
√

3αiµ
2λ , µi/2)

15



6.5 Relation with the probability approach

In the literature [17, 19, 22], the probability with which packets of different priority levels
are dropped in the network is used instead of the intensity of congestion events (λ). The
advantage of the former approach is that the drop probability is a measure that can be
computed end-to-end. This can be done by simply counting the number of drops to the
total number of packets transmitted. The relation between the two approaches is however
quite simple, and by some transformation we can prove that our results are similar to those
found in [22]. Of course, our study remains more general than [22] and and it accounts for
more DiffServ schemes. Consider for example the scheme of Standard TCP with RIO buffers
which is also considered in [22]. Let pIN and pOUT be respectively the probabilities that IN
and OUT packets are dropped in the network, respectively. Assume that the bottleneck
link is fully utilized. The intensity of losses is no other than the drop probability times the
rate of packets. Thus, in the under-subscription case we have

pIN = 0, λ = pOUT (1− ρ)µ.

And in the over-subscription case,

λ = pIN µ, pOUT = 1.

Substituting in (12) and (13), λ and ρ by their values as a function of pIN and pOUT , one
can find the same expressions for the throughput as those found in [22] for the Standard
TCP with RIO scheme.

7 Some numerical results

We solve numerically our model for the case of two concurrent TCP connections. This
gives a Markov chain of dimension 1. The performance of the different schemes is compared
according to the objectives we presented at the beginning of Section 2. The two connections
share a bottleneck of bandwidth µ =1.5 Mbps. TCP packets are of total size 552 packets
(MSS+TCP/IP header). Reservations are expressed in kbps. The receivers are supposed
to acknowledge every data packet which gives αi = 1/T 2

i packets/s2. Recall that αi is the
rate at which the transmission rate of connection i increases versus time. By using this
value for αi, we obtain the throughput in packets/s. First, we give the two connections the
same RTT (100ms) and we study the performance of the different schemes under different
reservations and different subscription levels. Second, we study the impact of the difference
in RTT on the service differentiation provided by the different schemes.

7.1 Impact of the reservation

We change the reservations of the two sources in a way that their sum is constant and equal
to ρµ; ρ indicates how much bandwidth is reserved by the two connections. We consider
three values of ρ: 0.5, 1 and 1.5. For each ρ and according to the objectives in Section 2,
we define a factor F that characterizes how much connection 1 is favored with respect to
connection 2. For ρ < 1, the network is under-subscribed and the two sources must share
fairly the excess bandwidth. We define F in this case as the ratio of X̄1 − µ1 and X̄2 − µ2.
The optimum scheme is the one that gives the closest F to 1 [21]. An F > 1 means that
the scheme is in favor of connection 1.

16



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250 300 350 400

P
er

fo
rm

an
ce

 R
at

io
 (

S
ou

rc
e 

1/
S

ou
rc

e 
2)

Source 1 Reservation (Kbps)

Two Drop Priorities
Saw Tooth Marking
Three Drop Priorities
Window Division
Inverse Drop Probability

Figure 2: Performance comparison for a 50% total reservation

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700

P
er

fo
rm

an
ce

 R
at

io
 (

S
ou

rc
e 

1/
S

ou
rc

e 
2)

Source 1 Reservation (Kbps)

Two Drop Priorities
Saw Tooth Marking
Three Drop Priorities
Window Division
Inverse Drop Probability

Figure 3: Performance comparison for a 100% total reservation

For ρ ≥ 1, the network is over-subscribed. The bandwidth must be shared proportionally
to the reservation. We define F in this case as the ratio of X̄1/µ1 and X̄2/µ2. Again, the
optimum scheme is the one that gives the closest F to 1, and an F > 1 means that the
scheme is in favor of connection 1.

In Figures 2, 3, and 4, we plot the factor F respectively for the three cases ρ = 0.5, 1
and 1.5. The X-axis shows the reservation of source 1 in Kbps. We vary this reservation
between 0 and ρµ/2. For all the schemes and as one must predict, F converges to 1 when
the reservation of source 1 moves to that of source 2.

In the under-subscription case, the original RIO scheme gives the worst service. The source
with the small reservation achieves better performance than that with the large reservation.
The other schemes improve the service. They give connection 2 more chance to increase its
rate above its reservation which improves its throughput.

In the over-subscription case the situation changes. This is more depicted in Figure 4. In
this case, the original RIO scheme gives better performance than the proposed solutions

17



0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

P
er

fo
rm

an
ce

 R
at

io
 (

S
ou

rc
e 

1/
S

ou
rc

e 
2)

Source 1 Reservation (Kbps)

Two Drop Priorities
Saw Tooth Marking
Three Drop Priorities
Window Division
Inverse Drop Probability

Figure 4: Performance comparison for a 150% total reservation

Total Reservation
50% 100% 150%

Window Division 92.87% 88.57% 85.96%
Two Drop Priorities 85.72% 85.09 % 85.68%
Three Drop Priorities 85.72% 85.68% 85.09%
Saw Tooth Marking 85.72% 85.70% 85.72%
Inverse Drop Probability 85.26% 85.09% 83.64%

Table 1: The utilization of the bottleneck bandwidth

(except the Three Colors scheme). The problem here is that the source with the large
reservation is transmitting almost always IN packets and rarely OUT packets. Thus, it
cannot profit from the high priority we give to OUT packets. The increase in the priority of
OUT packets helps the source with the small reservation which achieves better throughput.

The comparison between the different schemes requires also a calculation of the bottleneck
bandwidth utilization ((X̄1 + X̄2)/µ). Two schemes with the same F will have different
performances if they do not utilize equally the available bandwidth. In Table 1 we give the
average utilization for all schemes under different subscription levels. For a given level, we
average the utilization over all the possible values of µ1 and µ2. The table shows that the
different schemes give approximately the same utilization. The scheme proposing a change
in TCP sources gives a better utilization in the cases of ρ = 0.5 and ρ = 1, but it gives also
the best factor F in these two cases. The three figures showing F as a function of µ1 and
µ2 for different ρ (Figures 2, 3, and 4) are then enough to compare the performances of the
different schemes.

7.2 Impact of the Round-Trip Time

The bias of TCP against connections with long RTT is known [10, 17, 19]. Long RTT
connections take long time to recover from window reduction in contrast to small RTT
connections which increase quickly their windows and grab most of the bandwidth. This
is known to cause a problem of unfairness. In a best effort network, connections with

18



different RTT crossing the same bottleneck fail to share equally the available bandwidth.
In a DiffServ network, the increase in the RTT of a connection reduces also its throughput.
This deteriorates the service if the throughput of the connection is already less than its fair
share of the bandwidth given by the objectives in Section 2. But, this improves the service
if this connection whose RTT increases is using more than its fair share of the bandwidth.

We study in this section how much the difference in RTT impacts the service provided by
the different DiffServ schemes. In other words, we study how much a scheme resists to a
difference in RTT. We suppose that the two connections are asking for the same bandwidth
(µ1 = µ2). We set T2 to 50ms and we vary T1 between 50ms and 500ms. Ideally, the two
connections must achieve the same throughput independently of their RTT. To quantify
the impact of the change in T1 on the service, we use the Fairness Index defined in [15],

I =
(X̄1 + X̄2)2

2((X̄1)2 + (X̄2)2)
.

This index is an increasing function of fairness. It varies between 1/2 when one of the two
connections is shut down and 1 when the two connections realize the same throughput. We
plot in Figures 5, 6, 7, and 8, the index I as a function of the ratio T1/T2 for four values of
ρ: 0, 0.5, 1 and 1.5.

The zero reservation case corresponds to a best effort network. All the schemes achieve
the same performance (Figure 5). The fairness deteriorates as T1 increases. The small
RTT connection (i.e., 2) gets better and better performance. A small reservation as for
ρ = 0.5 protects the long RTT connection and improves the service (Figure 6). Indeed, as
T1 starts to increase, the throughput of connection 1 drops, but at a certain point it fells
below its reservation and the connection starts here to send only high-priority packets. It
becomes then protected from the other connection. This improves the fairness compared to
the best effort network. All schemes other than RIO with standard TCP improve further
the service. With these schemes, the long RTT connection has more chances to stay above
its reservation.

In the case of ρ = 1, the situation changes (Figure 7). Connections are transmitting at
approximately their reservation when T1 = T2. In this case, it is better not to help a con-
nection to exceed its reservation because this will profit for the connection with small RTT
instead of the connection with long RTT. Thus, RIO in this case gives better performance
than the other schemes. We see approximately the same results in Figure 8 where the total
reservation is equal to 150% the available bandwidth. The connections in this case are
transmitting at less then their reservations. The throughput of connection 1 deteriorates
and that of connection 2 increases until the point where the throughput of connection 2
reaches its reservation. Connection 2 starts here to transmit low-priority packets. It is
better here not to help this connection to increase its rate above its reservation. For this
reason, the RIO scheme gives better performance than the others.

7.3 Discussion of the results

Our results show the problem of TCP in a DiffServ network which is reported in the lit-
erature [4, 5, 7, 8, 21, 22]. A connection asking for a large bandwidth is unable to realize
its fair share of the bandwidth. The different proposed solutions try to solve the problem
by helping this connection to exceed its reservation more than a connection with a small
reservation. In an under-subscribed network, this improves the performance. However, in

19



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

F
ai

rn
es

s 
In

de
x

Round Trip Time Ratio (Source 1/Source2)

Two Drop Priorities
Saw Tooth Marking
Three Drop Priorities
Window Division
Inverse Drop Probability

Figure 5: Fairness index for a 0% total reservation

an over-subscription network, the source with the small reservation profits from this help
since it is the most likely to transmit above its reservation.

Our results also show that the difference in RTT deteriorates the service provided by the
network. Some schemes resist better than others to this difference. Again here, the optimal
scheme depends on the subscription level. In an under-subscription case, schemes helping
the source to exceed its reservation give better performance. In an over-subscription case,
the sources are transmitting at less than their reservations and it is better in this case not
to help a connection to exceed its reservation.

When choosing a scheme, the difficulty of its implementation must also be considered. The
scheme proposing a change in TCP sources is very difficult to be implemented. Moreover, it
does not give the best performance in case of over-subscription. The scheme dropping pack-
ets inversely proportional to the reservation gives good performance but its implementation
is also very difficult. If the network is well dimensioned so that it cannot be over-subscribed,
a simple scheme such as Saw Tooth Marking gives good performance. If over-subscription
is unavoidable, the implementation of the Three Colors scheme allows a good performance
under all subscription levels. The power of the Three Colors scheme comes from the fact
that it gives some priority to some OUT packets over other OUT packets (necessary for
the under-subscription case) but it guarantees that this does not exceed the priority of IN
packets (necessary for the over-subscription case).

8 Conclusions

We present in this paper a Markovian model for the study of TCP performance in a Differ-
entiated Services network. Our model accounts for the different mechanisms in a DiffServ
architecture (marking, dropping), the parameters of the TCP connection (reserved band-
width, round-trip time, packet size, frequency of ACKs), the parameters of the other TCP
connections sharing the same bottleneck with the studied connection, and the available
bandwidth in the network. We outline first a general version of the model that depends
on two functions: the reaction of a connection to congestion signals, and the probability
that a particular connection reduces its rate upon congestion. We calculate the general

20



0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9 10

F
ai

rn
es

s 
In

de
x

Round Trip Time Ratio (Source 1/Source2)

Two Drop Priorities
Saw Tooth Marking
Three Drop Priorities
Window Division
Inverse Drop Probability

Figure 6: Fairness index for a 50% total reservation

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9 10

F
ai

rn
es

s 
In

de
x

Round Trip Time Ratio (Source 1/Source2)

Two Drop Priorities
Saw Tooth Marking
Three Drop Priorities
Window Division
Inverse Drop Probability

Figure 7: Fairness index for a 100% total reservation

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

F
ai

rn
es

s 
In

de
x

Round Trip Time Ratio (Source 1/Source2)

Two Drop Priorities
Saw Tooth Marking
Three Drop Priorities
Window Division
Inverse Drop Probability

Figure 8: Fairness index for a 150% total reservation

21



expression of the throughput of a connection. We specify then the general model to the
different proposed DiffServ schemes by simply finding the expressions of the two functions.
We also present a simplification of the model in case of large number of connections. Ex-
plicit expressions for the throughput are provided and the relation with the models studied
in the literature is established. Finally, we solve the model for the different schemes and
we show numerically how much the new propositions improve the performance with respect
to the original DiffServ scheme. Mainly, we study the service differentiation provided by a
scheme and how much it resists to a difference in the subscription level, in the reservation,
and in the round-trip time. We believe that our model is a good tool for the validation of
new solutions aiming at improving the performance of TCP in a DiffServ network.

References

[1] E. Altman, K. Avratchenkov, and C. Barakat, ”TCP in Presence of Bursty Losses”,
ACM SIGMETRICS, Jun 2000.

[2] E. Altman, K. Avratchenkov, and C. Barakat, ”A stochastic model for TCP/IP with
stationary random losses”, ACM SIGCOMM, Sep 2000.

[3] C. Barakat, ”TCP modeling and validation”, IEEE Network, vol. 15, no. 3, pp. 38-47,
May 2001.

[4] A. Basu and Z. Wang,” A Comparative Study of Schemes for Differentiated Services”,
Bell labs Technical Report, Aug 1998.

[5] D. Clark and W. Fang, “Explicit Allocation of Best Effort Packet Delivery Service”,
IEEE/ACM Transactions on Networking, Aug 1998.

[6] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and SACK
TCP”, Computer Communication Review, Jul 1996.

[7] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Understanding TCP Dynamics in a
Differentiated Services Internet”, IEEE/ACM Transactions on Networking, Apr 1998.

[8] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Adaptive Packet Marking for Providing
Differentiated Services in the Internet”, International Conference on Network Protocols,
Oct 1998.

[9] S. Floyd, “TCP and Explicit Congestion Notification”, Computer Communication Re-
view, Oct 1994.

[10] S. Floyd and V. Jacobson, “Random Early Detection gateways for Congestion Avoid-
ance”, IEEE/ACM Transactions on Networking, Aug 1993.

[11] J. Heinanen, T. Finland, F. Baker, W. Weiss, and J. Wroclawski, ”Assured Forwarding
PHB Group”, RFC 2597, Jun 1999.

[12] J. Heinanen, T. Finland, and R. Guerin, “A Two Rate Three Color Marker”, Internet
Draft, May 1999.

[13] V. Jacobson, “Congestion avoidance and control”, ACM SIGCOMM, Aug 1988.

[14] V. Jacobson, K. Nichols, and K. Poduri, ”An Expedited Forwarding PHB”, RFC 2598,
Jun 1999.

22



[15] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure Of Fairness And Discrimi-
nation For Resource Allocation In Shared Computer Systems”, DEC Research Report
TR-301, Sep 1984.

[16] L. Kleinrock, ”Queueing Systems”, Wiley, 1975.

[17] T.V. Lakshman and U. Madhow, “The performance of TCP/IP for networks with high
bandwidth-delay products and random loss”, IEEE/ACM Transactions on Networking,
Jun 1997.

[18] K. Nichols, V. Jacobson, and L. Zhang, ”A Two-bit Differentiated Services Architecture
for the Internet”, Internet Draft,¡draft-nichols-diff-svc-arch-00.txt¿, Nov 1997.

[19] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Throughput: a Simple
Model and its Empirical Validation”, UMASS CMPSCI Tech Report TR98-008, Feb
1998.

[20] W. Stevens, “TCP Slow-Start, Congestion Avoidance, Fast Retransmit, and Fast Re-
covery Algorithms”, RFC 2001, Jan 1997.

[21] I. Yeom and A. Reddy, “Realizing throughput guarantees in Differentiated Services
Networks”, TAMU-ECE-9806, 1998.

[22] I. Yeom and A. Reddy, “Modeling TCP behavior in a Differentiated-Services Network”,
TAMU ECE Technical Report, May 1999.

23


