
Performance of Short TCP Transfers

Chadi Barakat and Eitan Altman

INRIA, 2004 route des Lucioles, 06902 Sophia-Antipolis Cedex, France
{cbarakat,altman}@sophia.inria.fr

Abstract. Many works have studied the negative impact of slow start
on the performance of short transfers. Some works propose to accelerate
the window increase during this phase in order to improve the perfor-
mance especially on satellite links. Others propose to set the slow start
threshold at the beginning of the connection to a more accurate value in
order to avoid losses. But, these works didn’t account for the impact of
network buffers on the performance. It is known that small buffers along
with a fast window increase leads to an early buffer overflow and an un-
derestimation of the network capacity. This may change completely the
performance predicted by these modifications. In this paper, we present
a general analysis of this first phase as a function of all the possible
parameters. We show that, as claimed, the previous works improve the
performance on paths with large buffers. However, on paths with small
buffers, completely different results could be obtained.

1 Introduction

TCP is the main responsible for the stability of the Internet. By varying the
size of its window (W ), it controls the flow of application packets so as to avoid
network congestion [10]. The two main algorithms used by TCP for congestion
control are Slow Start (SS) and Congestion Avoidance (CA) [10, 13]. SS is used to
increase quickly W until a certain estimate of the network capacity. By network
capacity or pipe size, we mean in the sequel the maximum number of packets
that can be fit on the path. The network capacity estimate is called the SS
threshold (Wth). Once Wth is reached, the source switches to CA where W is
increased slowly to probe the network for any extra bandwidth. At any moment,
the window increase is halted once the network gets congested. Congestion is
detected via losses. Here, TCP sets Wth to half the current window, reduces its
window, recovers from losses and starts again its window increase.

With SS, TCP is supposed to fill quickly the network capacity. If Wth is
correctly set, the source switches to CA before the congestion of the network. If
Wth overestimates the network capacity, congestion occurs during SS and Wth is
set to a more accurate value. SS functions in this case as a quick means to gauge
the network capacity. Particularly, we see this behavior of SS at the beginning of
the connection where Wth is set to a default value usually equal to the receiver
capacity (i.e. the window advertised by the receiver). But, this measurement of
the network capacity is not without cost. Due to the fast window increase, SS



overloads the network and causes many losses. A long Timeout and a new SS
are required to recover from these losses [7]. For this reason, a proposition to set
Wth at the beginning of the connection to a more accurate has been made in [9].
The author proposes to set Wth to the Bandwidth-Delay Product (BDP) of the
connection path.

TCP uses the flow of Acknowledgments (ACK) as a clock to increase W and
to trigger the transmission of packets. W is increased by one packet for every
ACK during SS and by one packet for every window’s worth of ACKs during CA.
When an ACK is received, the source transmits in a burst as many packets as its
window allows. This results in a source transmission rate higher than the avail-
able bandwidth in the network when the window is increased quickly as during
SS. If network buffers are not well dimensioned, losses will appear early before
filling the pipe between the source and the destination or even before reaching
a correctly-set SS threshold [4, 6, 11]. This results in a wrong congestion signal
and an underestimation of the network capacity. This is an important problem
in networks with small buffers compared to their BDP. A typical example of such
networks are satellite networks where the BDP is important and where there are
many limitations on the buffer size on satellite board.

The impact of buffer size on SS has been studied in many works [4, 6, 11].
These works consider a long TCP-Tahoe connection [7, 10] where SS is called
after every loss detection and where Wth is a correct estimate of the network
capacity. The aim of SS in this case is to reach Wth quickly and without losses.
They don’t consider the case where it is to SS to gauge the network capacity.
They describe the problem and find an expression for the minimum buffer size
required to absorb SS burstiness. However, the recent versions of TCP (Reno,
SACK) [7] try to avoid SS during the steady state of the connection. The con-
nection is supposed to stay in CA where the problem of early buffer overflow
doesn’t exist. We believe that the problem still exists for short transfers since
TCP is obliged to start any transfer with a SS phase. Moreover, short transfers
dominate most of today Internet traffic mainly due to HTTP traffic. Such trans-
fers are in general of interactive type (e.g. Web transactions) and they are very
sensitive to the service provided by the network and the underlying protocols.

In this paper, we study the impact of network buffers on the first SS phase
of a TCP connection. We consider also the impact of the aggressiveness of TCP
during SS. By aggressiveness or burstiness of SS, we refer in the sequel to how
fast the window is increased during SS. We try to answer two main questions.
First, given a certain bandwidth, a round-trip time (RTT) and a buffer size,
how to set Wth in order to avoid losses. We show that the value to give to Wth

is a function of all network parameters not only the BDP as suggested in [9].
Second, we consider the case where it is to SS to gauge the network capacity. We
analyze in this case the effect of network parameters and the window increase rate
on the capacity estimate provided by SS. We show that, for small buffers, this
estimate decreases when we increase the aggressiveness of SS leading to an overall
performance deterioration. This tells us that solutions like Byte Counting [1] that
accelerate the window increase during SS in order to improve the performance



µB

T

Source Destination

Fig. 1. The network model

may deteriorate the performance instead of improving it if network buffers are
not enough large. We present guidelines for how to increase W during SS. Based
on this analysis, we propose a new window increase algorithm that reduces the
duration of SS while not overloading network buffers.

In the next section, we outline our analytical model for the evaluation of
TCP performance. In section 3, we study the impact of the value given to Wth.
Section 4 studies the case where Wth is set to a high value and where it is to SS
to estimate the network capacity. In section 5, we extend our analysis to the case
of multiple connections sharing the same path. Throughout the paper, analytical
results are validated with a set of simulations using ns, the Network Simulator
developed at LBNL [12]. The work is concluded in section 6.

2 A Model for TCP Performance

Consider a TCP connection that transfers files of size S. The widely used Reno
version of TCP [7, 13] is used throughout the paper. However, the analysis can
be applied to the other versions as well. We model the network with a single
node of rate µ packets/s and of Drop Tail buffer of size B packets (Figure 1). T
denotes the constant component of the RTT. This model has been often used in
the literature to study the performance of TCP [1, 4, 6, 8, 11].

The performance of a short TCP transfer is strongly dependent on TCP
behavior during SS. The key point in the characterization of such behavior is
the calculation of the window at which losses occur during SS assuming Wth is
set to an infinite value. We call this window the overflow window and we denote
it by WB . It gives us an upper bound on Wth since the source must get in CA
before reaching WB if it wants to avoid losses during SS. In case of losses during
SS, it determines the window evolution after the recovery from losses. The new
estimate of the network capacity which we denote by W ′

th and which is equal to
the SS threshold after the recovery from losses is a direct function of WB .

Normally, WB is equal to the pipe size (B + µT ) which has been assumed
implicitly in [1, 9]. However, in [4, 6, 11], the authors have shown that WB can
take a small value in case of small buffers. However, neither the BDP nor the
window increase rate has been considered. Here, we find the general expression
of WB . It is upper bounded by the pipe size and it is a decreasing function of
the window increase rate during SS.

2.1 A model for TCP aggressiveness during Slow Start

Let W (t) denote the window size in packets at time t. We suppose that after
one RTT, the window is increased during SS by W (t)/d packets. d can be the



t t + RTT t + 2RTT t + 3RTT

W(n) packets

mini-cycle n

W(n+1) packets W(n+2) packets

mini-cycle n+1 mini-cycle n+2

Time t : Start of service of the W(n) packets

Fig. 2. Bursts at the output of the bottleneck

result of the receiver delaying ACKs and sending an ACK for every d packets
and of the sender increasing its window by one packet for every non-duplicate
ACK (Standard TCP [13]). d = 1 means that the receiver is acknowledging all
the packets and d = 2 represents the delay ACK mechanism widely implemented
in TCP receivers [13]. d can also account for any window increase policy at the
source different than that of Standard TCP (STCP).

2.2 The Overflow Window WB

As in [4, 11], we divide SS into mini-cycles (MC). The duration of a MC is equal
to the current RTT. Let W (n) be the number of packets transmitted during MC
n. The next MC starts when the ACK for the first packet of these W (n) packets
reaches the source. The window size during the next MC is equal to,

W (n + 1) = W (n) + W (n)/d = αW (n), (1)

with α = (d + 1)/d.
We consider that STCP with non-delayed ACKs is the most aggressive case

(d ≥ 1). Suppose that the recurrent relation (1) is valid for every n ≥ 0. Suppose
also that SS starts with a window equal to one packet. Thus,

W (n) = αnW (0) = αn.

Packets are transmitted in long bursts at a rate higher than µ. They wait in
B until they are served. A burst of length W (n) is served during MC n and it
is followed by an idle period until the arrival of the burst of the following MC
(Figure 2). This idle time between bursts disappears when W exceeds the BDP
(µT ). Given that the number of packets transmitted during a MC increases by
a factor α, we can suppose that the long bursts transmitted by the source have
an average rate αµ.

When a long source burst reaches the bottleneck, a queue starts to build up
in B at a rate αµ−µ = µ/d. Two cases here must be considered. The first case is
when B doesn’t contain any packet from the previous MC when the first packet
of the burst of the current MC reaches the bottleneck. The second case is when
some packets from the previous MC are still waiting in B. In [4, 6, 11], the first
case has been only considered.

In the first case, a burst of size B(d + 1) is required to fill the buffer. Let
n1

B be the number of the MC during which B overflows. The number of packets
transmitted during this MC must be larger than B(d + 1). But, the number of



packets transmitted during the previous MC must be less than B(d+1) otherwise
the overflow would have occured during the previous MC. Thus, n1

B satisfies,

αn1
B−1 < B(d + 1) ≤ αn1

B .

From the first case, we have also, αn1
B−1 < µT. According to our definition of d,

the transmission of a burst of B(d + 1) packets requires an increase in W by B
packets since the beginning of MC n1

B . It follows that,

WB = W (n1
B − 1) + B = αn1

B−1 + B. (2)

Now, we consider the second case. The window size is larger than µT . The
burst size required to fill the buffer is less than B(d + 1) since there are some
packets waiting from the previous MC. It is simply equal to the number of empty
places at the beginning of the MC times (d + 1). The increase in the window
between the beginning of the MC and the overflow is equal to the number of
empty places. Suppose that the overflow happens during MC n2

B . Then, WB

changes and becomes equal to,

WB = W (n2
B − 1) + B − (W (n2

B − 1)− µT ) = B + µT. (3)

Two expressions for WB are then available. If the window size during MC
n1

B − 1 is less than µT , then WB will be given by equation (2), otherwise it will
be given by equation (3). We can combine these two expressions into a single
one as mentioned in the following theorem.

Theorem 1. If Slow Start is not terminated before the occurrence of losses, the
buffer at the entry of the bottleneck link will overflow at a window,

WB = B + min
(
µT, αnB−1

)
,

with nB given by αnB−1 < B(d + 1) ≤ αnB .

The following corollary can be directly derived.

Corollary 1. The bottleneck buffer will not overflow during Slow Start if Wth

is set to less than the WB given by Theorem 1.

To simplify the analysis, we approximate αnB by B(d + 1). The same ap-
proximation has been made in [4, 11]. The expression of WB becomes,

WB = B + min (µT, Bd) . (4)

It is clear that this window is equal to the pipe size B + µT whereas B is
larger than µT/d. Once B becomes less than µT/d, SS becomes unable to fill the
network capacity. This is where the problem of early buffer overflow appears.



D
1.5 Mbps100 Mbps

1 ms 100 ms
S B

Fig. 3. The simulation scenario

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14

T
C

P
 C

on
ge

st
io

n 
W

in
do

w
 (

pa
ck

et
s)

Time (s)

B=70 and d=1
B=20 and d=1
B=20 and d=2

Fig. 4. TCP congestion window vs. time

3 Impact of Wth on the performance

The correct value for Wth (i.e. just less than WB) is a function of all the pa-
rameters not only µ and T . It decreases with the decrease in the buffer size or
the increase in TCP burstiness. If the buffer size is less than µT/d, it becomes
independent of the available bandwidth! If we take as an example the value pro-
posed for Wth in [9] (i.e. the BDP), we find that a B larger than µT/(d + 1) is
required for this proposition to work otherwise losses will not be avoided.

Consider the simulation scenario in Figure 3. The source transmits a file
of size 100 KB. TCP packets are of size 512 Bytes. We give two values to B,
70 packets which is approximately equal to the BDP and 20 packets. For a Wth

equal to 50 packets, we plot in Figure 4 the congestion window as function of
time. Three cases are considered, B = 70 packets and d = 1, B = 20 packets and
d = 1, B = 20 packets and d = 2. d is implemented by simply delaying ACKs
at the receiver. Normally, for such a threshold smaller than the BDP, one must
predict that losses will not appear during SS. This is true for B = 70 but it is
not the case for a buffer of 20 packets and a d = 1. A decrease in TCP burstiness
is required (from d = 1 to d = 2) to help the buffer to absorb the bursts of SS.

4 Case of a High Slow Start Threshold

In this section, we study the case where TCP uses SS to gauge the network
capacity. The performance is a function of W ′

th, the capacity estimate after the
recovery from losses which is a direct function of the overflow window.

4.1 Calculation of W ′
th

The buffer overflow during SS is detected one RTT after its occurrence. During
this RTT, W increases from WB to αWB unless the source gets in CA. This
later case corresponds to WB < Wth < αWB . Congestion detection happens at
a window WD equal to,

WD = min (Wth, αWB) . (5)

Here, TCP sets W and Wth to half WD and starts to recover from losses.
Most often, it succeeds to detect the first two losses via duplicate ACKs [7].



Tµ
d

T).µ
(B +

α

8
α2T .µ .

8

0 B

W’th

Fig. 5. New estimate vs. buffer

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
K

bp
s)

File Size (KB)

Byte Counting
Standard TCP

Fig. 6. BC vs. STCP for B = 20

However, the third and subsequent losses require a Timeout to be detected [7].
Since Reno divides its window by two upon every loss detection [7, 13], the SS
threshold after the Timeout is set to one eighth WD. It is set to one fourth WD

when the second loss cannot be detected via duplicate ACKs. In the sequel, we
assume that W ′

th is equal to WD/8. Also, we suppose that Wth is set higher than
αWB so that the congestion is always detected at a window WD = αWB .

4.2 Interaction between buffer size and SS aggressiveness

We study here the impact on the performance of the window increase rate during
SS. We try to find where a given rate leads to an improvement in the performance
and to define the optimum window increase strategy that works under different
buffer sizes. The objective is always to reduce the duration of SS. With the
increase in BDP and RTT (i.e. satellite networks), the acceleration of SS is
becoming one of the main requirements for a good performance [2, 3, 5]. We
assume that the window increase rate is adjusted during SS without affecting
the CA phase. The easiest way to implement such kind of strategies is to work at
the source since it is the only entity in the network able to distinguish between
SS and CA. An example is Byte Counting (BC) [1] proposed to overcome the
negative impact of the delay ACK mechanism (d = 2) on the performance of
short transfers. Upon the receipt of an ACK, the window is increased during the
first SS phase by the number of packets covered by the ACK rather than by one
packet with a maximum window increase of two packets. This is equivalent to
reducing d from 2 (case of STCP) to 1.

If the buffer size is large enough to absorb SS bursts, any change in d will not
change the overflow window which remains equal to the pipe size. An increase
in the aggressivness in this case improves the performance since it reduces the
time taken by SS without changing the estimate. This happens whenever B is
larger than µT/d.

The problem exists when the buffer is smaller than µT/d. As we see in Fig-
ure 5, the network capacity estimate deteriorates in this case with any increase
in aggressiveness due to a deterioration of the overflow window which becomes
less than the pipe size. The source gets then in CA at a small window and
requires a long time to compensate the resulting capacity underestimation. It



0

100

200

300

400

500

600

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
K

bp
s)

File Size (KB)

Byte Counting
Standard TCP

Fig. 7. BC vs. STCP for B = 70

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
K

bp
s)

File Size (KB)

Decreasing Byte Counting
Standard TCP
Byte Counting

Fig. 8. Performance of DBC

is better to stop increasing the aggressiveness of SS once B becomes less than
µT/d. In Figures 6 and 7, we compare BC to STCP under two buffer sizes (20
and 70 packets). The throughput is plotted as a function of the file size. For a
large buffer, BC works perfectly and gives better performance. However, for a
small buffer, BC is so aggressive that it fills the buffer before filling the pipe.
This gives lower estimate and thus lower performance than STCP for most of
the file sizes although STCP adopts a slower window increase.

The problem with BC (or other similar strategies) is that it uses the same
d for the entire SS phase. However, the best performance is obtained when the
source starts with a small d then switches to a larger one just before the overflow
of B and it continues like this until the pipe is filled or Wth is reached. This
consists in reducing SS burstiness with the increase in W . Such mechanism is
difficult to implement given that TCP is not aware of the buffer size in network
nodes. In the next section, we propose a possible solution to this problem that
we call Decreasing Byte Counting (DBC). It has the advantage of not requiring
the buffer size but rather an idea on the ratio of the buffer size on the path to
the BDP.

4.3 Decreasing Byte Counting

Fixing the same d during SS is not the optimal solution since at the beginning,
the problem of aggressiveness is not as pronounced as at the end. d must be in-
cremented gradually during SS in order to push the congestion until the overflow
of the pipe. Starting at d = 1, d must be set to 2 when W reaches 2B (equa-
tion (4)), then to 3 when W reaches 3B, then to 4 when W reaches 4B, etc. If
we consider a continuous variation of d, our analysis shows that this factor must
be increased linearly with W and inversely proportional to B. There is a certain
minimum limit on this factor which we fix in this work to 1. But the buffer size
is not known at the source. All that the source knows is its SS threshold. Thus,
instead of using B, we propose to use another factor which accounts for the the
maximum value of d that it seems to be enough to reach the chosen Wth on a
given path. Call this value dmax. It is a function of the ratio of the buffer size
to the BDP and of the ratio of the value given to Wth to the BDP. If Wth is set
at the beginning of the connection to the BDP as proposed in [9], dmax will be



only a function of the ratio of B to BDP. Given this dmax, we vary d linearly
between 1 and dmax as long as W grows from 1 (or other initial value) to Wth.
This gives us,

d(W ) = 1 + (dmax − 1)(W − 1)/(Wth − 1).

A possible value for dmax can be that of STCP (dmax = 2). In this case,
BC overloads the network buffers whereas STCP does not. This is equivalent to
applying BC at the beginning of SS then in starting to get out of BC towards
STCP as long as W grows. Our solution should give better performance than
STCP and BC in this region. In the region where STCP overloads the network
buffers (very small buffers), a dmax larger than 2 is required. Taking dmax = 2
should give poorer performance than STCP in this case but better performance
than BC. Finally, one should expect that in the region where BC doesn’t overload
the network buffers (large buffers), BC should give the best performance.

We show in Figure 8 a comparison between BC, STCP and our proposition.
Wth is set to the BDP. The simulation scenario is the same as that of Figure 3.
A buffer size of 30 packets is taken. With such buffer, BC is unable to reach
the BDP whereas STCP is. We see well how BC causes losses and reduces the
performance w.r.t. STCP. Our proposition however is able to increase faster the
window while avoiding losses. It provides the best performance with respect to
the two others.

5 Case of Multiple TCP Connections

We describe here briefly the behavior of a new TCP connection that arrives to a
network crossed by another TCP traffic. Also, we verify the benefit of our DBC
algorithm in the context of many concurrent TCP connections.

5.1 A model for the case of multiple connections

It is known that in case of Drop Tail buffers and in case of close RTT, the TCP
connections sharing the same bottleneck change their windows in a synchronized
manner [11]. A congestion event causes losses from all connections forcing them
to reduce their windows simultaneously. Suppose that all the running connections
have the same RTT. Thus, the total number of packets in the network varies
periodically between half the pipe size and the pipe size [11]. This behavior is
independent of the number of active connections.

Suppose that a new connection arrives at a random time. Thus, it will see
in the network a number of packets between half the pipe size and the pipe
size. Call N the number of packets it finds. Using N , we will try to find the
parameters of the equivalent single-node network seen by the new connection.
Once these parameters are calculated, we can apply our previous analysis to
characterize the behavior of the first SS of the new connection.

If N is smaller than µT , the new connection will see an empty buffer together
with N packets propagating on the link (i.e. not waiting for service in a queue).
This is because the other connections are operating in CA where no queue builds
up in B until N exceeds the BDP [11]. The equivalent network seen by the new



D
7.5 Mbps

100 ms
B

S2

S1

S3

S4

S5

100 Mbps

1 ms

Fig. 9. The simulation scenario

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

A
ve

ra
ge

 T
hr

ou
gh

pu
t o

f a
 T

ra
ns

fe
r 

(K
bp

s)

Slow Start Threshold (KB)

B=70 and d=1
B=20 and d=1

Fig. 10. Throughput vs. Wth

connection is formed of a buffer B and a BDP equal to µT − N . Now, if N is
larger than µT , the new connection will see a full link together with N − µT
packets waiting their service in B. In this case, the equivalent network is formed
only of a buffer of size B + µT − N packets. Thus, the overflow window given
in equation (4) for the single connection case can be rewritten in the case of
multiple connections as,

WB = B + min (µT −N, Bd) . (6)

This overflow window takes its value between zero and a maximum value we
call Wmax

B which corresponds to a number of packets in the network equal to
N = (B + µT )/2. Wmax

B is equal to,

Wmax
B = B + min((µT −B)/2, Bd). (7)

We see well that Wmax
B moves to zero when B moves to zero. The performance

is again an increasing function of B. But, we notice that the impact of d is less
important in this case than in the case of a single connection. Indeed, in the
case of multiple connections, the equivalent network seen by the new connection
has the same buffer size (B) as the real network but a smaller BDP (µT −N).
The real BDP is shared by the different connections whereas the buffer can be
considered as dedicated to the new connection.

In the case of multiple connections, an early buffer overflow occurs when
Bd < µT −N . It never occurs if the buffer size satisfies Bd > µT −N when N is
equal to (B + µT )/2. This corresponds to a buffer size larger than µT/(2d + 1)
which is less important than the buffer size required in the case of a single
connection. Now, even if the buffer size is smaller than µT/(2d+1), the problem
does not always occur. It is not seen when N is close to µT .

To show this behavior in presence of multiple connections, we simulate the
scenario in Figure 9. Five sources share a 7.5Mbps bottleneck link. Every source
has many files to transmit. The file size is chosen randomly between 100KB and
1MB. Files of a source are transmitted on successive TCP connections. These
connections are separated by a random time between 0 and 5 seconds. We run
50 simulations of 50 seconds each then we calculate the average TCP throughput
during a transfer.



200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
K

bp
s)

Buffer Size (packets)

Decreasing Byte Counting
Byte Counting
Standard TCP

Fig. 11. Throughput vs. buffer

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 20 40 60 80 100 120 140 160 180 200

U
ni

qu
e 

T
ra

ns
m

itt
ed

 P
ac

ke
ts

/T
ot

al
 T

ra
ns

m
itt

ed
 P

ac
ke

ts

Buffer Size (packets)

Decreasing Byte Counting
Byte Counting
Standard TCP

Fig. 12. The retransmission ratio

We plot in Figure 10 the throughput of a transfer as a function of Wth. Two
cases are considered: B = 70 packets and d = 1, B = 20 packets and d = 1. The
receiver sends an ACK for every other packet and the sender changes its window
increase only during SS. The results in this figure match well equations (6)
and (7). Theoretically, for these cases, Wmax

B is equal respectively to 106KB and
21KB. We see well that the throughput starts to deteriorate approximately in
the middle between 0 and these values of Wmax

B . The biggest decrease in the
performance appears exactly at Wmax

B .
Thus, in case of multiple connections, Wth must be set according to equa-

tion (6). However, overestimating the overflow window doesn’t lead to an impor-
tant degradation in performance as long as Wth is set less than the maximum
overflow window given in equation (7).

5.2 Validation of Decreasing Byte Counting

We compare here our algorithm to STCP and BC. A dmax equal to 2 is consid-
ered. The simulation scenario of the previous section is used. However, in this
case we set Wth to the BDP (' 350 packets). We change B and we plot for each
strategy, two performance measures. In Figure 11, we plot the average through-
put achieved by a connection. In Figure 12, we plot the average of the ratio of
the number of uniquely transmitted packets to the total number of transmitted
packets. We call this average the Retransmission Ratio. It indicates how much
aggressive is a strategy. This ratio must be as much as possible close to one.

In Figure 11, we see clearly the three regions we have talked about in sec-
tion 4.3. For small buffers, STCP gives the best performance but our proposition
still gives better performance than BC. For a medium B, our proposition gives
the best performance. At large buffers, BC is no longer aggressive and it outper-
forms the two other strategies but our proposition still gives better performance
than STCP. Given that it merges the two strategies, the performance of DBC is
either in between or better than the two others. Note here that the buffer size
at which the throughputs jump up can be easily validated using equation (6).

Concerning the number of retransmitted packets, it is clear how BC gives the
largest number and how STCP gives the smallest one. This number increases
with the increase in the aggressiveness with an important difference between the



three strategies at small buffers. Again here, we see the three regions we talked
about. The retransmission ratio of a strategy moves to one when the buffer size
becomes large enough to absorb its burstiness.

6 Conclusions

In this paper, we study the behavior of SS at the beginning of a connection
and its impact on the performance. We calculate first the value to which the SS
threshold must be set. This value can be independent of the network capacity
and function only of the buffer size. We study then the impact of the window in-
crease rate during SS. We show that accelerating the window increase improves
the performance until network buffers become unable to absorb the bursts of
SS. Beyond this point, any increase in SS aggressiveness deteriorates the perfor-
mance. We define the optimum window increase strategy during SS and based
on this, we present a new algorithm for the window increase that reduces the
duration of SS while not overloading the network buffers. With this strategy, the
ACK clock is preserved and the SS threshold can be always set to the estimate
of the network capacity.

References

1. M. Allman, “On the Generation and Use of TCP Acknowledgments”, Computer
Communication Review, Oct. 1998.

2. M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s Initial Window”, RFC
2414, Sep. 1998.

3. M. Allman, D. Glover, and L. Sanchez, “Enhancing TCP Over Satellite Channels
using Standard Mechanisms”, RFC 2488, Jan. 1999.

4. E. Altman, J. Bolot, P. Nain, D. Elouadghiri, M. Erramdani, P. Brown, and D.
Collange, “Performance Modeling of TCP/IP in a Wide-Area Network”, 34th IEEE
Conference on Decision and Control, Dec. 1995.

5. C. Barakat, E. Altman, and W. Dabbous, “On TCP Performance in a Heteroge-
neous Network : A Survey”, IEEE Communication Magazine, Jan. 2000.

6. C. Barakat, N. Chaher, W. Dabbous, and E. Altman, “Improving TCP/IP over
Geostationary Satellite Links”, IEEE Globecom, Dec. 1999.

7. K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and SACK
TCP”, Computer Communication Review, Jul. 1996.

8. A. Kumar, “Comparative Performance Analysis of Versions of TCP in a Local
Network with a Lossy Link”, IEEE/ACM Transactions on Networking, Aug. 1998.

9. J. Hoe, “Improving the Start-up Behavior of a Congestion Control Scheme for
TCP”, ACM Sigcomm, Aug. 1996.

10. V. Jacobson, “Congestion avoidance and control”, ACM Sigcomm, Aug. 1988.
11. T.V. Lakshman and U. Madhow, “The performance of TCP/IP for networks with

high bandwidth-delay products and random loss”, IEEE/ACM Transactions on
Networking, Jun. 1997.

12. The LBNL Network Simulator, ns, http://www-nrg.ee.lbl.gov/ns.
13. W. Stevens, “TCP Slow-Start, Congestion Avoidance, Fast Retransmit, and Fast

Recovery Algorithms”, RFC 2001, Jan. 1997.


