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Abstract— We consider an uplink power control problem
where each mobile wishes to maximize its throughput (which
depends on the transmission powers of all mobiles) but has a
constraint on the average power consumption. A finite number
of power levels are available to each mobile. The decision of
a mobile to select a particular power level may depend on its
channel state. We consider two frameworks concerning the state
information of the channels of other mobiles: (i) the case of full
state information and (ii) the case of local state information. In
each of the two frameworks, we consider both cooperative as well
as non-cooperative power control. We manage to characterize
the structure of equilibria policies and, more generally, of best-
response policies in the non-cooperative case. We present an
algorithm to compute equilibria policies in the case of two non-
cooperative players. Finally, we study the case where a malicious
mobile, which also has average power constraints, tries to jam
the communication of another mobile. Our results are illustrated
and validated through various numerical examples.

I. INTRODUCTION

The multiple access nature of wireless networks represents
a fundamentally different resource allocation problem as com-
pared to wired networks which provide a dedicated channel for
each user. The shared nature of the wireless channel implies
that the rate obtained by a user depends not only on its own
transmit power level but also on the transmit power levels
of the other users. A user who transmits at a relatively high
power level, though may increase its own rate, will interfere
with the transmissions of the other users and prompt them
to increase their own transmission power. Such a situation is
undesirable in wireless networks where mobile devices are
usually equipped with limited-lifetime batteries which require
judicious utilization. It is, therefore, in the interests of the
users to control their transmit powers levels so as to increase
the information transfer rate and the lifetime of the devices.
Power control also has the added benefit of allowing the spatial
reuse of channels, i.e., the same channel can be concurrently
used by mobiles at locations where interference is sufficiently
low.

In this paper, we consider dynamic uplink power control
in cellular networks: mobiles choose their transmission power
level from a discrete set in a dynamic way, i.e., the trans-
mission power level is chosen based on the available channel
state information. By controlling the power one can improve

connectivity and coverage, spend less battery energy of termi-
nals, increase device lifetime, and maximize the throughput.
In terms of decision making, we consider two cases:

• Decentralized case: Each mobile chooses its own power
level based on the condition of its own radio channel to
the base station.

• Centralized case: The transmission power levels for all
the mobiles are chosen by the base station that has full
information on all channel states.

We assume that there are upper bound constraints on the
average power that a mobile can use. Thus in very bad channel
conditions, one can expect a mobile to avoid transmission and
save its power for more favorable channel conditions.

Applications that can mostly benefit from our proposed
decentralized power control are ad-hoc and sensor networks
with no predefined base stations. In such networks, mobiles
may have to act temporarily as base stations [1]–[3], which
can involve a heavy burden in terms of energy. The limited
processing capacity and battery lifetime of devices precludes
the use of centralised schemes, thereby making decentralized
approaches for power control more appropriate in such net-
works. We note that the design of decentralized power control
has for long interested the networking community even before
ad-hoc and sensors networks have been introduced (see [4],
[5] and references therein).

We obtain results for both the cooperative setting in which
the mobiles’ objective is to maximize the global throughput,
as well as the non-cooperative case in which the objective of
each mobile is to maximize its own transmission rate.

We identify the structure of equilibria policies for the de-
centralized non-cooperative case. We show that the following
structure holds for any mobile i, given any set of policies u−i

chosen by mobiles other than i. Any best response policy (i.e.
an optimal policy for player i for a given policy u−i other
mobiles) has the following properties:

(i) It needs randomization between at most two adjacent
power levels,

(ii) the optimal power levels are non-decreasing functions
of the channel state, and

(iii) if two power levels are both optimal at a given channel



state then they cannot be jointly optimal for another
channel state.

We present an algorithm to compute equilibria policies in the
case of two non-cooperative players.

For the cooperative centralized problem with two mobiles,
we obtain insight on the structure of optimal policies through
a numerical study. An interesting property that we obtain
is the fact that the optimal policy has a TDMA structure:
in each combined state (x1, x2) there is only one mobile
that will transmit information. This will of course eliminate
the interference. We also show that unlike the decentralized
case, the average power level constraints may hold with strict
inequality when using the optimal policy.

We finally study the case where a malicious mobile, which
also has average power constraints, tries to jam the commu-
nications of another mobile. Our results are illustrated and
validated through various numerical examples.

A. Related work

There has been an intensive research effort on non-
cooperative power control in cellular networks [4], [6]–[13].
In all these work, however, the set of available transmission
powers has been assumed to be a whole interval or the whole
set of nonnegative real numbers. In this paper we consider the
case of a discrete set of available power levels, which is in line
with standardized cellular technologies. Very little work on
power control has been done on discrete power control. Some
examples are [14] who considered the problem of minimizing
the sum of powers subject to constraints on the signal to noise
ratio, [15] who studied joint power and rate control, and [8]
(which we describe in more detail below).

The mathematical formulation of the power control prob-
lem shows much similarity with a well studied problem of
assigning transmission powers to parallel channels between a
mobile and a base station with a constraint on the sum of
assigned powers, see e.g. [16, p. 161]. This problem is often
known as the “water filling” (which is in fact the structure of
the optimal policy). The difference between the models is that
in our case we split powers over time, whereas in the water
filling problem the powers are split over space. Our results are
therefore quite relevant to the water filling problem as well.
Some work on water filling games can be found in [9] where
not only mobiles take decisions, but also the base station does,
with the goal of maximizing a weighted sum of the individual
rates. In [17], the non-cooperative water filling game is studied
in the context of the interference channel; two mobiles and two
corresponding base stations.

Game theoretic formulations for non cooperative power
control with finite actions (power levels) and states (channel
attenuations) have been proposed in [8]. An ε equlibrium is
obtained there for the case of a large number of players. The
cost to be minimized by a player i in [8] is the quadratic
difference between the desired and the actual SINR (Signal
to Interference plus Noise Ratio) of that player. In contrast,
in the model we introduce in this paper, the choice of the
transmission power is done in the purpose of maximizing its

own throughput subject to a limit on the average power. Our
setting is different also in the following. In our model, in a
given channel state, each mobile can either choose a fixed
power level or can make randomized decisions, i.e. it can
make the choice of power levels in a state based on some
(state dependent) randomization.

B. Organization of the paper
The structure of the paper is as follows. We first present the

model (Section II) as well as the mathematical formulation
of both the case of centralized information (Section III) as
well as the one of decentralized information (Section IV). In
Section V we identify the structure of best-response policies
and thus of equilibria for the decentralized case. Power control
in the presence of a malicious mobile is studied in Section VI.
In Section VII we present numerical examples that illustrate
the structural properties that we had obtained and which allow
us further to obtain insight in cases for which the question
about the structure of optimal policies remains open. After a
concluding section we present a computation methodology for
computing equilibria in the game of two players. The technical
proofs can be found in Research Report [18].

II. THE MODEL

A. Preliminaries
Consider a set of N mobiles and a single base station. As

in several standard wireless networks (e.g., UMTS and IEEE
802.11), we assume that time is slotted. In each time slot t,
each mobile i transmits data with power level Ai(t) chosen
from a finite set Ai = (1, 2, 3, . . . , αi) containing αi power
levels. The actual power corresponding to the ath power level
where a ∈ Ai is given by hi(a). Denote A =

∏N
i=1 Ai.

The channel state model: We assume that the channel
between mobile i and the base station can be modelled as
an ergodic finite Markov chain Xi(t) taking values in a set
Xi = (1, 2, . . . , mi) of mi states with transition probabilities
Pi

xy. The Markov chains Xi(t), i = 1 . . . N , are assumed
to be independent. Let πi be the row vector of steady state
probabilities of Markov chain Xi(t); let πi(x) be its entry
corresponding to the state x ∈ Xi. It is the unique solution of

πiPi = πi, πi(x) ≥ 0, ∀x ∈ Xi,
∑

x∈Xi

πi(x) = 1.

We also denote by π(x) the probability of state x =
(x1, . . . , xN ). Since the Markov chains that describe the
channel states are independent, π(x) =

∏N
i=1 πi(xi).

The power received at the base station from mobile i
is given by gi(t)hi(Ai(t)) where the attenuation gi(t) =
gi(Xi(t)) is a function of the channel state Xi(t). We shall
denote the global state space of the system by X =

∏N
i=1 Xi.

Performance measures: The signal to interference plus
noise ratio SINRi at the base station related to mobile i when
the power level choices of the mobiles are a = (a1, . . . , aN )
and the channel states are x = (x1, . . . , xN ) is given by

SINRi(x,a) =
gi(xi)hi(ai)

No +
∑
j 6=i

gj(xj)hj(aj)
.



We consider the following instantaneous utility of mobile i:

ri(x,a) = log2 (1 + SINRi(x,a)) . (1)

ri(x,a) is known as the Shannon capacity and can thus be
interpreted as the throughput that mobile i can achieve at the
uplink when the channel conditions are given by x and the
power levels used by all mobiles are a.

Notation: In the rest of the paper, we shall use the fol-
lowing notation. We shall denote an element of the set X
by x. The ith component of x will be denoted by xi, i.e.,
x = (x1, x2, . . . , xN ), where xi ∈ Xi for i = 1, 2, . . . , N . We
define a and ai in a similar manner. Let X−i and A−i denote
the set of channel states and the set of actions, respectively,
corresponding to all the players other than player i. For an
element x−i ∈ X−i, let x−i

j denote the jth component of
x−i. We define a−i and a−i

j in a similar way.

B. Policy types
A mobile’s choice of successive transmission power levels

is made based on the information it has. The latter could be
local, in which case the policy is said to be distributed. We
shall also consider centralized policies in which all decisions
are taken at the base station. We have the following definitions.

Centralized policy, u(a |x), is the probability that the base
station assigns the transmission power levels a = (a1, . . . , aN )
to the mobiles if the current channel’s states are given by the
vector x = (x1, . . . , xN ). This is equivalent to the situation
where all system information is available to all mobiles,
and moreover, all mobiles can coordinate their actions. This
situation describes central decision making by the base station.
The class of centralized policies is denoted by Uce.

Decentralized policy, ui(a |x), is the probability that
player i chooses the transmission power level a ∈ Ai if
its channel state is x ∈ Xi. Thus, only local information is
available to each mobile, and there is no coordination in the
random actions. This situation describes individual decision
making by each mobile without any involvement of the base
station. The class of decentralized policies for player i is
denoted by U i

dc. Define Udc =
∏N

i=1 U i
dc.

Along with policies we shall use also the occupation mea-
sures. For a given x ∈ X and a ∈ A, the global occupation
measure, ρu(x,a), will be used in the context of a centralized
policy, u ∈ Uce, it is defined as

ρu(x,a) =
N∏

i=1

πi(xi)u(a |x).

Note that given a global occupation measure, ρu, the corre-
sponding u can be obtained by

u(a |x) =
ρu(x,a)∑

b∈A

ρu(x,b)
(2)

(it is chosen arbitrarily if the denominator is zero). For a given
x ∈ Xi and a ∈ Ai, the local occupation measure, ρui

i (x, a),
is defined with respect to a decentralized policy, ui ∈ U i

dc,
and is given by

ρui
i (x, a) = πi(x)ui(a|x).

For a given local occupation measure, ρui
i , the corresponding

ui can be obtained by

ui(a |x) =
ρui

i (x, a)∑
b∈Ai

ρui
i (x, b)

(3)

(it is chosen arbitrarily if the denominator is zero). In case of
decentralized decision making, for a given (u1, u2, . . . , uN )
we define ρu(x,a) as

ρu(x,a) =
N∏

i=1

ρui
i (xi, ai). (4)

C. Problem formulation: objectives and constraints

For any given policy1, u, and the corresponding occupation
measure2, ρu(x,a), we now define the utility function, the
constraints, and the optimization problem.
The utility functions: We define the utility for player i as

Ri(u) :=
∑

x∈X

∑
a∈A

ri(x,a)ρu(x,a). (5)

Power constraints: In the centralized case, player i is assumed
to have the following average power constraint

∑
x∈X

∑
a∈A

ρ(x,a)hi(ai) ≤ Vi, (6)

and in the decentralized case the corresponding constraint is

∑
x∈Xi

∑
a∈Ai

ρui
i (x, a)hi(a) ≤ Vi. (7)

Note that in the decentralized case the state-action frequen-
cies of a particular mobile are independent of decisions of
the other mobiles (see equation (4)). Consequently, in the
decentralized case, the average power constraint of a mobile
does not depend on the decision of the others. However,
in the centralized case, the decisions of all the mobiles are
interdependent.

1) Cooperative optimization: We consider here the problem
of maximizing a common objective subject to individual side
constraints. Namely, we define for any policy u

Rγ(u) :=
N∑

i=1

γiRi(u), (8)

where γi are some nonnegative constants. For an arbitrary set
of policies U we consider the problem:

COOP(U) : max
u∈U

Rγ(u), s.t. (7), ∀i = 1, . . . , N. (9)

1With slight abuse of notation, we shall denote both centralized and
decentralized policies by u. In the centralized case, u(a|x) will denote a
probability measure over a for a given x. In the decentralized case, u will
denote the vector u = (u1, u2, . . . , uN ), where ui is the decentralized policy
for player i, for i = 1, 2, . . . , N .

2For the decentralized case, we note that ρu(x,a) is given by (4).



2) Non-cooperative optimization: Here each mobile is con-
sidered as a selfish individual non-cooperative decision maker,
which we then call “player”. It is interested in maximizing its
own average throughput (5). In the non-cooperative it is natural
to consider only decentralized policies Udc.

For a policy u = (u1, . . . , uN ) ∈ Udc we define u−i to be
the set of components of u other than the ith component. For
a policy vi ∈ U i

dc we then define the policy [vi, u
−i] as one in

which player j 6= i uses the element uj of u whereas player
i uses vi.

Definition 1: We say that u∗ ∈ Udc is a constrained Nash
equilibrium [19] if it satisfies (7) for all players, and if

Ri(u∗) ≥ Ri([vi, (u∗)−i])

for any i and any vi ∈ Udc such that (7) holds for the policy
[vi, (u∗)−i].

III. CENTRALIZED COOPERATIVE OPTIMIZATION

When the cooperative optimization is considered over the
set of centralized policies, then the problem is in fact of a sin-
gle controller (the base station) which has all the information.
Let rγ(x,a) :=

∑N
i=1 γiri(x,a), γi ≥ 0, i = 1, 2, . . . , N ,

denote the common instantaneous utility when power level a
is chosen in channel state x. The next Theorem states the
existence of an optimal strategy if the constraint set is not
empty. The optimal strategy can be obtained by means of
provided Linear Program (LP).

Theorem 1: Consider the cooperative optimization problem
COOP(Uce) over the set of centralized policies. Assume that
there exists a policy u under which the power constraints (7)
hold for all the mobiles. Then,

(i) there exists an optimal centralized policy u∗ ∈ Uce.
The policy u∗ can be obtained from the solution of the
following LP by formula (2)

maxρ Rγ(u) :=
∑

x∈X

∑
a∈A

ρ(x,a)rγ(x,a) (10)

s.t.
∑

x∈X

∑
a∈A

ρ(x,a)hi(ai) ≤ Vi, i = 1, . . . , N ;

∑
a∈A

ρ(x,a) = π(x) =
N∏

i=1

πi(xi), ∀x ∈ X;

ρ(x,a) ≥ 0, ∀x ∈ X, ∀a ∈ A;∑
x∈X

∑
a∈A

ρ(x,a) = 1.

(11)

(ii) An optimal policy u∗ can be chosen with no more than
N randomizations.

Note that in the centralized framework it does not make
sense to speak about a non-cooperative game, since there is a
single decision maker.

IV. DECENTRALIZED INFORMATION

A. Non-cooperative equilibrium

Here we consider the case when the players optimize their
own objective (5) subject to the constraints (7) given the local
information only. For this case we show the existence of the
constrained Nash equilibrium.

Theorem 2: Under the assumptions on the objective func-
tions Ri(u), constraints (7), and the set of decentralized
policies Udc made above, there exists a policy u∗ ∈ Udc

satisfying Definition 1.

B. The cooperative case

Here we discuss the situation where, even though there is a
common goal that is optimized, the power level choices are not
done by the base station but by the mobiles themselves who
have only their local information available to take decisions.
Coordination is thus not possible.

Considering the decentralized framework, we make the
following observation concerning the relation between the
cooperative and the non-cooperative cases.

Theorem 3: Any policy u that maximizes the common
objective Rγ(u) while satisfying the constraints is necessarily
a constrained Nash equilibrium in the game where each mobile
maximizes the common objective Rγ(u).

Now we show in Theorem 4 that there exists an optimal
decentralized policy.

Theorem 4: Let all the players have the common objective
function Rγ(u) defined by (8). Under the assumptions on
constraints (7) and the set of decentralized policies Udc made
above, there exists a solution u∗ ∈ Udc to the problem
COOP(Udc) (9).

V. STRUCTURE OF NON-COOPERATIVE EQUILIBRIUM

In this section we identify the structure of equilibria policies
for the decentralized non-cooperative case. To that end we
first study the structure of best response policies of any given
user when the policies of the other users are fixed. Using the
results on the structure of the best response we then establish
the structure of the equilibrium policies.

We fix throughout the policy v−i of players other than
player i, where

v−i(a−i |x−i) =
∏
j 6=i

vj(a−i
j |x−i

j )

is the probability that each mobile j 6= i chooses aj when
its local state is xj . The product form here is due to the
decentralized nature of the problem and to the fact that there
is no coordination between the mobiles is possible.

We shall make the following assumption on the properties
of gi, hi, and πi.

Assumption 1: (i) The function gi has an increasing in-
terpolation in x.

(ii) The function hi has a strictly convex and increasing
interpolation in a.

(iii) The probability measure πi(x) has a non-decreasing
interpolation in x.

Let us discuss why the above assumptions are non-
restrictive. Assumption 1.i can be satisfied by enumerating
the states so that the quality of the associated channel state
increases with the index of the state. In 3G wireless networks
the mobile terminals typically select transmit power levels in
steps of 1 or 2 dB [20], [21]. This linear interpolation in the



logarithmic scale translates to a strictly convex interpolation
in the absolute scale, which is used in our formulation. Thus,
Assumption 1.ii is naturally satisfied. Assumption 1.iii means
that we expect the channel to be more often in better states.

We shall establish the following main result on the structure
of any best response policy:

Theorem 5: Consider the decentralized non-cooperative
case. Under Assumption 1, the following holds:

(i) In each channel state xi, the best response policy con-
sists of either the choice of a single action, or in a
randomized choice between at most two adjacent power
levels.

(ii) The optimal power levels are non-decreasing functions
of the channel state.

(iii) If two power levels are jointly optimal for a given
channel state then they cannot be jointly optimal for
another channel state.

Now, using Theorem 5 we can establish the structure of the
constrained Nash equilibria.

Corollary 1: Consider the decentralized non-cooperative
case. For each mobile i, assume that hi, gi, and πi satisfy
Assumption 1. Then there exists at least one equilibrium.
Moreover, at any equilibrium u∗i the following hold for each
mobile i:

(i) In each channel state x ∈ Xi, u∗i (·|x) consists of either
a choice of a single power level, or in a randomized
choice between at most two adjacent power levels.

(ii) The power levels used in u∗i are non-decreasing func-
tions of the channel state.

(iii) If two power levels are used at a state x by mobile i with
positive probability (i.e. u∗i (aj |x) > 0 and u∗i (ak|x) > 0
for ak 6= aj) then under u∗i , not more than one of them
is used with positive probability at any other channel
state.

VI. POWER CONTROL IN THE PRESENCE OF A MALICIOUS
MOBILE

In recent years, there has been a growing interest in iden-
tifying and studying the behavior of potential intruders to
networks or of malicious users, and in studying how to best
detect these or to best protect the network from their actions
(see e.g. [22]–[24] and references therein).

We consider in this section a scenario where a malicious
player attempts to jam the communications of a mobile to the
base station. We consider the distributed case and restrict for
simplicity to two mobiles and a base station.

The first mobile (player 1) seeks to maximize the rate of
information that it transmits to the base station. In other words
it wishes to maximize R1(u) defined in (5) with r1 given
by (1).

The second mobile (player 2) has an antagonistic objective:
to prevent or to jam the transmissions of the first mobile, with
the objective of minimizing the throughput of information that
mobile 1 transmits to the base station. It thus seeks to minimize
R1(u). We assume that the interference of the second mobile
is presented as a Gaussian white noise.

Except for the objective of the jamming mobile, the model,
including the average power constraints, defined in Section II
holds. In particular, we conclude that Theorem 5 applies to
player 1 at equilibrium.

We now specify the objective of the players and some
properties of the equilibrium. Denote U i

c the set of policies for
player i, (where i takes the values 1 and 2) that satisfy player
i’s power constraints, i.e., ui ∈ U i

c if it satisfies (7). Player 1
seeks to obtain an optimal policy, i.e. a policy u∗1 ∈ U1

c such
that for any other u1 ∈ U1

c ,

inf
u2∈U2

c

R1(u∗1, u2) ≥ inf
u2∈U2

c

R1(u1, u2).

We call this the jamming problem. It consists of identifying
a policy for player 1 that guarantees the largest throughput
under the worst possible strategy of player 2. In fact, we shall
be able not only to identify the optimal policy for player 1 but
also the “optimal” policy for player 2 (which is the worst for
player 1).

A policy u∗ = (u∗1, u
∗
2) is said to be a saddle point if

sup
u1∈Uc

1

inf
u2∈Uc

2

R1(u1, u2) = inf
u2∈Uc

2

R1(u∗1, u2) = R1(u∗1, u
∗
2)

= sup
u1∈Uc

1

R1(u1, u
∗
2) = inf

u2∈Uc
2

sup
u1∈Uc

1

R1(u1, u2),

and u∗1 and u∗2 are called saddle point policies or optimal
policies.

Unlike all the decentralized problems we considered previ-
ously, deriving both u∗1 as well as u∗2 is possible using a linear
program. The computation is not included here, but it can be
found in [25]. Below we derive the properties of the optimal
policies.

Theorem 6: (i) There exists a saddle point policy u∗ in
the above game.

(ii) Under Assumption 1 any optimal policy for player 1
(transmitter) has the structure identified in Theorem 5.

We now identify a structural property of the optimal policy
of player 2, i.e., of the jammer. Let h2 have a convex
interpolation in a, and g2 have an increasing interpolation in
x then

(i) there is only one action, say a, which has a non-zero
probability to be used by any optimal policy, or

(ii) except for two adjacent actions, say a and a+1, all other
actions are not used by any policy which is optimal.

We finally note that the monotonicity property enjoyed by
the saddle point policy of mobile 1, need not hold for mobile
2. This will be illustrated in Section VII-C (see Figure 5).

VII. NUMERICAL EXAMPLES

In this section we provide examples of power control
problem for two mobiles that interact with the same base
station. The decentralized policies are provided both for the
cooperative and non-cooperative cases. Moreover, the single
controller problem for centralized cooperative framework is
also solved. All three problems are considered in the same
settings, so one has an opportunity to compare the obtained



strategies and the objective value functions for different ap-
proaches.

We assume, that the radio channel between mobile i = 1, 2
and the base station is characterized by a Markov chain
Xi with states xi ∈ Xi = {1, . . . , M}, M = 11, and
a uniform vector of steady state probabilities. One of the
transition probability matrices which has a uniform steady
state probability vector is given by Pi

xy = 1
M .

The power attenuation for each state of the Markov chain
Xi is defined by the following:

xi 1 2 3 . . . 11
gi(xi) 0.0 0.1 0.2 . . . 1.0.

Let mobile i’s action set Ai be given by Ai = (0, . . . , 11).
The actual power corresponding to the aith power level, where
ai ∈ Ai, is

ai 0 1 2 . . . 11
hi(ai) 0 0 dB 1 dB . . . 10 dB

where the level of 0 dB corresponds to some base value of
power W0. We assume that the background noise power at the
base station, N0, is equal to 0 dB. Since (1) depends only on
the ratio between the power of signal received from a certain
mobile and the total power received from other mobiles and
the thermal noise power at the receiver, we do not specify the
exact value of the base power W0.

We note that, with the above definitions, gi, hi and πi satisfy
the properties in Assumption 1.

The constraints for mobiles are given by (6) for the cen-
tralized case and by (7) for the decentralized case with the
following power consumption bounds:

V1 = 2.7W0, V2 = 5.1W0.

Note, that both right and left hand sides of (6) and (7) have
the multiplier W0, which can be canceled.

The proposed model is quite simple, we chose it so as
to avoid technical difficulties related to Markov chains with
infinite state space. Thus we assume that a finite Markov chain
can approximate well randomness due to fading, shadowing,
mobility, as well as time correlation phenomena which are
often ignored. Nevertheless, the main goal of the example is
to validate the structure that we obtain rather than to propose a
reliable model that could include mobility, handovers, shadow-
ing, fading, interference from other cells etc. Further research
including these features is planned.

A. Decentralized policies

First we consider the decentralized problems that arise
in cooperative and non-cooperative case. Both problems are
formulated in terms of occupation measures ρi(xi, ai). In
order to compute the strategies one can use (3).

1) Cooperative optimization: Let x = (x1, x2) and a =
(a1, a2). Here we consider the following cost function

r(x,a) = r1(x,a) + r2(x,a), (12)

where ri(x,a) are defined by (1).

Consider the following bilinear problem

max
ρ1,ρ2

∑
x1 ∈ X1
a1 ∈ A1

∑
x2 ∈ X2
a2 ∈ A2

ρ1(x1, a1)r(x,a)ρ2(x2, a2),

where
∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)hi(ai) ≤ Vi,

∑
xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)(δ(xi, yi)−Pi
xiyi

) = 0, ∀yi ∈ Xi,

∑
xi ∈ Xi

ai ∈ Ai

ρi(xi, ai) = 1,

ρi(xi, ai) ≥ 0, ∀xi ∈ Xi, ai ∈ Ai.

Here Pi is the transition matrix of the Markov chain, which
describes the radio channel between the mobile i and the base
station, and δ(x, y) is equal to one if x = y and is zero
otherwise.

This problem could be solved using the quadratic program-
ming technique. In Fig. 1, the supports of the optimal policies
for both players are shown as a function of the channel state.
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Fig. 1. Supports of the optimal policies in cooperative case.

As one can see3, the mobile 1 has a pure strategy at all the
points but one, where g1(x1) = 0.8. The mobile 2 also has
only one randomization point g2(x2) = 0.6. The value of the
objective function in this problem is R(u∗) = 1.9225.

2) Non-cooperative equilibrium: Now, in the same setting
as in the cooperative case, we consider an example of non-
cooperative optimization. Each mobile needs to maximize its
own objective function

max
ρ1,ρ2

∑
x1 ∈ X1
a1 ∈ A1

∑
x2 ∈ X2
a2 ∈ A2

ρ1(x1, a1)ri(x,a)ρ2(x2, a2), (13)

3Here and in all the rest examples we provide just the structure of the
optimal policies. The exact values one can find in Research Report [18]



where i = 1, 2, subject to the constraints

ρi(xi, ai) ≥ 0, ∀xi ∈ Xi, ai ∈ Ai,∑
xi ∈ Xi

ai ∈ Ai

ρi(xi, ai) = 1,

∑
ai∈Ai

ρi(xi, ai) = πi, ∀xi ∈ Xi,

(14)

∑
xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)hi(ai) ≤ Vi, i = 1, 2. (15)

By means of the LCP (20) one can obtain the optimal
strategies depicted on Fig. 2. We note that the structure
obtained in Theorem 5 holds for both the players.
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Fig. 2. Supports of the optimal policies in non-cooperative case.

The values of the objective functions in this problem are
R1(u∗) = 0.6484, R2(u∗) = 1.1584. As it was expected, the
total throughput value R(u∗) = R1(u∗) + R2(u∗) = 1.8067
is smaller than in cooperative case.

B. Centralized optimization

Now let us consider the single controller problem, that arises
in the case of centralized optimization. As in the decentralized
framework, we operate here in terms of occupation measures.
Thus, the problem (10) for the case of two players can be
rewritten as follows:

max
ρ

∑
x∈X

∑
a∈A

ρ(x,a)r(x,a), (16)

where r(x,a) is defined by (12). The maximization is per-
formed subject to the following constraints:

∑
x∈X

∑
a∈A

ρ(x,a)hi(ai) ≤ Vi, i = 1, 2; (17)

∑
a∈A

ρ(x,a) = π(x) = π1(x1)π2(x2);

ρ(x,a) ≥ 0, ∀x ∈ X, ∀a ∈ A;∑
x∈X

∑
a∈A

ρ(x,a) = 1.

Define the following sets:
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Fig. 3. The sets Ψ1 and Ψ2.

• Ψ1: pairs (x1, x2): ∃a∗1 such that h1(a∗1) > 0 and
u(a∗1, a2 |x1, x2) > 0 for some a2 ∈ A2;

• Ψ2: pairs (x1, x2): ∃a∗2 such that h2(a∗2) > 0 and
u(a1, a

∗
2 |x1, x2) > 0 for some a1 ∈ A1.

Note, that the set Ψi is the set of states in which ith player
should transmit with nonzero probability according to the
optimal strategy.

In Fig. 3 these sets are provided for the centralized opti-
mization problem (16). The set Ψ1 is depicted by circles, and
the set Ψ2 — by stars. One can see, that the sets have no
mutual points. It means, that the mobiles never transmit at the
same time.
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Fig. 4. Supports of the optimal policies in cooperative case.

In Fig. 4 one can see the supports of the optimal strategies.
A circle on the place (g1(x∗1), h1(a∗1)) means that the first

mobile should transmit with the power level h1(a∗1) with
nonzero probability in all states (x∗1, x2) ∈ Ψ1.

A star on the place (g2(x∗2), h2(a∗2)) means that the second
mobile should transmit with the power level h2(a∗2) with
nonzero probability in all states (x1, x

∗
2) ∈ Ψ2.



If there are two or more power levels hi(a∗i ) for some
particular state gi(x∗i ), then the player should randomize. In
other case (single power level hi(a∗i ) for the state gi(x∗i )), the
player should always transmit with power level hi(a∗i ).

Note, that the centralized power management provides bet-
ter throughput in comparison with other considered controls,
the value of the cost function is R(u∗) = 2.5614.

Another interesting point that we want to discuss is the
attainability of the power constraints.

Consider the problem (16) without power constraints. The
optimal policies for this problem are as follows:
• Player 1 should transmit at the top power level if

g1(x1) ≥ g2(x2);
• Player 2 should transmit at the top power level if

g2(x2) ≥ g1(x1).
The value of the objective function for this policy is R(u∗) =
2.8560. The experiments show, that at the optimal point for
problem with constraints (17), where the bounds Vi are both
greater then 7 dB, the power constraints are not attained, and
the optimal strategy and the value of the objective function
are the same as in unconstrained case.

C. Jamming

The average power bounds are the same as in previous
examples: for the transmitter V1 = 2.7, and for the jammer
V2 = 5.1.

The supports of the optimal strategies in this problem are
depicted in Fig. 5. We note that the structure obtained in
Theorem 5 holds for player 1, whereas the structure obtained
in Section VI holds for player 2.
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Fig. 5. Supports of the optimal policies in case of jamming.

The value of the objective function is R1(u∗) = 0.6237
which is less then the same value for the decentralized non-
cooperative case.

VIII. CONCLUSION AND FURTHER WORK

We have studied power control in both cooperative and non-
cooperative setting. Both centralized and decentralized infor-
mation patterns have been considered. We have derived the

structure of optimal decentralized policies of selfish mobiles
having discrete power levels. We further studied the structure
of power control policies when a malicious mobiles tries to
jam the communication of another mobile. We have illustrated
these results via several numerical examples, which also
allowed us to get insight into the structure in the cooperative
framework.

The modelling and results open many exciting research
problems. Our setting, which could be viewed as a temporal
scheduling problem, is quite similar to the “space scheduling”
(i.e. the water-filling) problems discussed in Introduction, for
which the context of discrete power levels along with the non-
cooperative setting have not yet been explored. It is interesting
not only to study the water-filling problem in the discrete
noncooperative context but also to study the combined space
and temporal scheduling problem, where we can split the
transmission power both in time and in space (different parallel
channels).

From both a game theoretic point of view as well as from
a wireless engineering point of view, it is interesting to study
possibilities for coordination between mobiles in the decentral-
ized case (in both cooperative and non-cooperative contexts).
This can be done using the concepts from correlated equilibria
[26]–[29], which is known to allow for better performance
even in the selfish non-cooperative cases. We note however,
that existing literature on correlated equilibria do not include
side constraints, which makes the investigation novel also in
terms of fundamentals of game theory.

IX. APPENDIX

In this section we show how the non-cooperative equilib-
rium can be obtained in the case of two players by means of
linear complementarity problem (LCP). Consider the follow-
ing problem, where each player wants to maximize his own
payoff (13) subject to the constraints (14)-(15).

First, assume, that at the equilibrium point the power
consumption constraints (15) are active:

∑
xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)hi(ai) = Vi, i = 1, 2. (18)

This assumption is not restrictive, because if one or both
of these constraints are not active, they can be omitted. So
one need first solve the problem without constraints (15),
then calculate the values of cost functions in RHS of (15).
If both calculated values are less then Vi, then the solution
of (13)—(14) is a solution of (13)—(15) as well. If one of
the constraints (15) is violated, the problem should be solved
again subject to the corresponding constraint of equality type
form (18). If in the obtained equilibrium point the second
constraint is still violated, then the problem should be solved
again subject to both constraints of (18).

Now let ξ be the vector, containing all the ρ1(x1, a1), ∀x1 ∈
X1, a1 ∈ A1, and ζ — the same vector for ρ2(x2, a2).



Indeed, the problem (13), (14), (18) can be represented in
the form of the bimatrix game with linear constraints:

max
ξ,ζ

ξ∗Aζ, max
ξ,ζ

ξ∗Bζ,

s.t. C∗ξ = c, D∗ζ = d, ξ ≥ 0, ζ ≥ 0.
(19)

Following [30] we introduce the LCP whose solution char-
acterizes the equilibrium point of (19):

z = (ξ, ζ, z1, z2, z3, z4)∗ ≥ 0,
q + Mz ≥ 0,
z∗(q + Mz) = 0,

(20)

where q = (0, 0, c∗,−c∗, d∗,−d∗)∗ and

M =




−A C∗ −C∗

−B∗ D∗ −D∗

−C
C

−D
D


.

It is also shown in [30], that under the conditions A ≤ 0
and B ≤ 0 Lemke’s algorithm [31] computes a solution of
the LCP (20). It should be noted, that in order to satisfy the
conditions A ≤ 0, B ≤ 0 we can always replace cost matrices
A and B with A− kE and B − kE, where E is a matrix of
unities, and k is the maximal positive entry of A and B.

Once the solution of LCP (20) (ξo, ζo) is found, the equi-
librium point (ξ′, ζ ′) of the bimatrix game (19) could be
computed using the following formulas:

ξ′ =
ξo

e∗1ξo
, ζ ′ =

ζo

e∗2ζo
, (21)

where e1 and e2 are vectors of appropriate dimension, whose
components are all ones.
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