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Abstract— We present in this paper an analytical model for the calcu-
lation of network load and drop probabilities in a TCP/IP network with
general topology. First we formulate our model as a nonlinear complemen-
tarity problem. Then we transform the model into two equivalent formu-
lations: fixed point formulation and nonlinear programming formulation.
These equivalent formulations provide efficient computational procedures
for the solution of our model. Furthermore, with the help of the fixed point
formulation we are able to prove the existence of a solution. Our model
has the main advantage of not requiring the pre-definition of bottleneck
links. The model also takes into account the receiver congestion window
limitation. Our approach can be used for TCP/IP networks with drop tail
buggers as well as for TCP/IP networks with active queue management bug-
gers. We solve the problem for some network examples and we show how
the distribution of load varies with network parameters. The distribution
of load is sometimes counter-intuitive which cannot be detected by other
models making prior assumptions on the locations of bottlenecks.

I. I NTRODUCTION

THE prediction of network behavior is an important task for
a well dimensioning of network resources. A typical ex-

ample of such prediction is to decide on how load will be dis-
tributed on different links of the network and how resources will
be shared between the different flows. In particular, it is impor-
tant to know which links will be the bottlenecks so that these
links can be dimensioned properly according to the service we
want to provide to users.

Most of applications in the Internet use the TCP protocol
which reacts in a well known way to the loss of packets in the
network [9]. In the steady state of a TCP connection, the con-
gestion window of the protocol is increased slowly until some
packets are lost and here it is divided by two to alleviate the
congestion of the network which is considered as the reason be-
hind packet losses. Given this behavior of the protocol, different
models have been proposed to predict the average throughput of
a TCP connection [1], [20], [19]. These models consider the
network as an entity that drops packets with a certain probabil-
ity. The expressions for TCP throughput together with a certain
model for the network (e.g., how packets are dropped at a router
for a certain rate of TCP packets) can be used to give some in-
sights on how the network and TCP connections will behave.

In [3], the authors use a fixed-point approximation to calcu-
late some metrics in a network crossed by long-life TCP connec-
tions and implementing Active Queue Management techniques
in routers. Their model requires first the identification of bot-
tleneck nodes. An equation is written for each bottleneck node
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which results in a system of non-linear equations to solve. The
drop probability and the average queue length in every bottle-
neck as well as the throughput of the different TCP connections
are calculated. In [15], the authors use the technique of stochas-
tic differential equations to find the behavior of network traffic
in the transitory regime. Again, their model requires the iden-
tification of bottleneck nodes before the calculation of metrics.
In [4], the authors used Markov chains as well as fixed-point
approach to model one and two routers TCP/IP networks. It is
not clear however if their approach can be easily extended to the
case of general network topology.

Several recent papers (see [10], [11], [12], [16], [22] and
references therein) have analyzed TCP-like congestion control
based on the optimization of some aggregated utility function
for general network topology. These models all have similar-
ities with TCP, especially to versions based on ECN (Explicit
Congestion Notification), but also differences. Discussions on
the differences are given for instance in Section 4.1 in [11].
In particular, most of the above models assume that ACKs ar-
rive continuously in time [10], [12] (or very frequently [11]).
A common feature of all these models is that the utility opti-
mization approach is related to explicit simplified dynamic evo-
lution equations for the transmission rate of connections. Our
approach, in contrast, requires as starting point only a relation
between the average throughput of a connection and its average
packet loss rate. The obtained results do not rely on the ex-
act dynamics that leads to that relation, and could be applied to
variants of congestion control mechanisms which need not have
a linear increase and an additive decrease behavior. Another dif-
ference between our model and [10] is that we do not need to use
an ECN version of TCP; in particular, our model assumes that
losses occur if and only if a link is saturated. This means that
the rate of acknowledgment is not a continuous function of the
global throughput in the congested element, as required in [10].
In spite of the differences between our model and those based
on utility optimization approach [10], [11], [12], [16], [22], it
is remarkable to note that our approach also leads to a global
optimization problem.

In the present paper we investigate the problem of network
performance prediction without the bottleneck pre-identification
requirement. First, we introduce a system of non-linear in-
equalities, which guarantees that the sum of TCP throughputs
on each link does not exceed its capacity. We would like to
note that the structure of the inequalities that we propose is sim-
pler than those in [3], as we consider networks with large delay-
bandwidth products. Then, we addcomplementaritytype con-
ditions which ensure theautomaticlocalization of bottlenecks.
To find a feasible point which satisfies both capacity constraint



inequalities and complementarity type conditions, we use the
fixed point formulation as well as the mathematical program-
ming formulation. By using the fixed point formulation, we are
able to prove the existence of a solution to our model. As a so-
lution of our model, we obtain packet loss probabilities, the dis-
tribution of load in the network and the location of bottlenecks.
We would like to note that our model includes the possibility
of having source rate limitation (e.g., the limitation imposed by
TCP receiver window); this feature of TCP is not included in the
above mentioned models.

Finally, we test our general approach on several benchmark
network examples, for which we are able to obtain some analyt-
ical results and good approximations. In particular, the analysis
of the examples shows clearly that the problem of bottleneck
identification is not an easy task and that it is very sensitive to
network resources distribution. For example, by slightly chang-
ing the bandwidth on a link, the bottleneck can move from a link
to another link and it happens that this move is not immediate
so that the two links can be bottlenecks at the same time. The
change in bottleneck position alters significantly the behavior of
the network. We also observed that in some cases the addition
of bandwidth to some parts of the network might deteriorate the
performance of other parts.

In the next section we present our TCP network model and
provide methods for its solution. Then, in Section 3 we present
some Benchmark network examples to show how the bottleneck
position and the load distribution are sensitive to network pa-
rameters. The results of the analysis are validated via NS simu-
lations. Finally, in the Appendix we present the second proof of
the existence result.

II. TCP NETWORK MODEL AND ANALYSIS

Consider a networkG formed ofV nodes (the nodes will rep-
resent the network element at which congestion will occur). Let
I be a set of groups of persistent TCP connections. We denote
the source node of groupi ∈ I by Si and its destination node by
Di, respectively. Connections of groupi ∈ I follow a fixed path
πi = {vi

1, ..., v
i
n(i)}, wherevi

1 corresponds to the first node that

the connections cross after leaving the source nodeSi, andvi
n(i)

is the last node that the connections cross before reaching the
destination nodeDi. We also defineπi(u) = {vi

1, ..., u}, that
is, πi(u) corresponds to the part of the pathπi from the source
nodeSi up to nodeu. Of course, we are aware of the fact that
the routing in the Internet is dynamic and that packets from the
same TCP connection may follow different routes if some links
in the network go down. We suppose that these deficiencies are
not frequent and that the routing tables in Internet routers do not
change during long periods of time so that our assumptions can
hold. This has been shown to be the case in the Internet [21]
where more than 2/3 of routes persist for days or even weeks.
We also introduce the following objects:

• M = {µ1, ..., µ|V |} is the capacity vector whereµv is the ca-
pacity of nodev. In reality, a capacity is associated to a link
rather than a router. A router may have different output inter-

faces and hence different capacities. For such routers, we asso-
ciate a node to each output interface. In our abstract network, we
can see a node as being the part of the router where the multiple
TCP connections routed via the same output interface are mul-
tiplexed together. We focus on routers where each output inter-
face has its own buffer. The routing engine in a router decides (at
a high rate) on how the different arriving packets are distributed
on the different output interfaces. Packets are queued (and pos-
sibly dropped) in the buffer at the output interface before being
transmitted on the link to the next router.
• Γ = {γiv, i ∈ I, v ∈ V } is the incidence matrix, where
γiv = 1 if connectioni goes through nodev, and is equal to
zero otherwise.
• p = (p1, ..., p|V |) is the vector of loss probabilities;pv cor-
responds to the probability that a packet is lost at nodev, or in
other words in the buffer at the input of the link between nodev
and the adjacent router. We suppose here that packets from all
connections are treated in the same manner in network nodes.
This can be the result of some randomization in the drop policy
in router buffers (e.g., RED [6]) or the result of some randomiza-
tion in the multiplexing of flows in routers (in the case of drop
tail routers). Thus, we suppose that all packets are dropped with
the same probability in a node and this probability is indepen-
dent from that in other nodes. It follows that the probability that
a packet of a connection of typei is lost in the network is equal
to

κi =
∑
v∈πi

pv

∏

u∈πi(v)\v
(1− pu). (1)

• T = (T1, ..., T|I|) is the sending rate vector, whereTi is the
sending rate of a connection of typei. The sending rate can be
expressed [1], [14], [20], [19] as a function of the probability
with which packets of the connection are dropped within the
network.
• Ni, i ∈ I is the number of connections of typei. Denote
[NT ] = (N1T1, ..., N|I|T|I|) the vector whoseith entry is the
sending rate of all connections of typei.

We shall make the following assumptions:

A1: All links in the network have large delay-bandwidth prod-
uct. This allows us to neglect queuing delays in routers, and
hence, their impact on TCP throughput.

A2: The sending rateTi(κi) is a continuous function of the
packet loss probabilityκi.

We shall consider in particular some well known forms of
relations between loss probabilities and throughput. The fol-
lowing expression (so-called “square root formula” [19]) is well
suited for a small number of timeout events, which is typical in
large delay-bandwidth product networks

Ti(κi) = MSSi min{ 1
θi

√
ci

κi
,
W i

max

θi
}, i ∈ I, (2)

whereMSSi is the maximal segment size,W i
max is the receiver

window size,θi is the average round-trip time of the connec-
tion andci is a constant that depends on the version of the TCP



implementation and on the characteristics of the process of inter-
loss times [1]. For example, if we assume that inter-loss times
are exponentially distributed and the delay ACK mechanism is
disabled, thenci = 2 [1].

The next expression [20] (which we shall refer to as “PFTK
formula”) is known to be more suitable when the timeout prob-
abilities are not negligible:

Ti(κi) = (3)



MSSi

(1− κi

κi
+ W (κi) + Q(κi, W (κi))

)

θi(
bi

2
W (κi) + 1) +

Q(κi,W (κi))F (κi)T i
0

1− κi

if W (κi) < W i
max,

MSSi

(1− κi

κi
+ W i

max + Q(κi,W
i
max)

)

θi(
bi

8
W i

max +
1− κi

κiW i
max

+ 2) +
Q(κi,W

i
max)F (κi)T i

0

1− κi

otherwise,

where

W (q) = 2/3 + 2
√

(1− q)/(3q) + 1/9,

Q(q, w) = min{1, (1− (1− q)3)(1 + (1− q)3 ×
×(1− (1− q)w−3))/(1− (1− q)w)},

F (q) = 1 + q + 2q2 + 4q3 + 8q4 + 16q5 + 32q6,

and wherebi is the number of packets acknowledged by an
ACK, andT i

0 is the basic timeout duration.

A. Network analysis and complementary formulation

It is clear that the capacity at each node cannot be exceeded
by the rate of packets that cross it. This leads to the following
system of inequalities

∑

i∈I

γiv


 ∏

u∈πi(v)

(1− pu)


 NiTi(κi) ≤ µv, v ∈ V. (4)

where the left-hand term represents the sending rate of TCP
connections crossing nodev reduced by the number of packets
dropped before reaching the output interface ofv.

Thus, we have obtained a system of|V | inequalities for|V |
unknownsp1, ..., p|V | that we have to solve in order to model the
performance of TCP connections and the distribution of load on
network nodes. First, let us show that this system of inequalities
is feasible.

Proposition 1: Under A2, the system of inequalities(4) is
feasible. Moreover, there is a continuum of feasible solutions.

Proof: There is an obvious feasible solution:pv = 1,∀v ∈
V , which results in a strict inequality in (4). Since this point is

interior, andκi are continuous in thepv ’s and consequentlyTi’s
are continuous in theκi’s, there is a feasible region with nonzero
measure.

Even though there is a continuum of feasible solutions to (4),
most of them do not correspond to a real TCP network state. An
example of such solutions is a one that gives high drop proba-
bilities so that all nodes are poorly utilized. On contrary, TCP is
designed to fully utilize the available resources of the network.
We observed from numerous TCP network simulations carried
out with the help of the network simulator NS [17] that a link can
be either bottleneck with a substantial amount of packet losses
at its input, or it can be underutilized with negligible packet-
loss probability. These two states of a link are quite mutually
exclusive. The latter observation leads us to the followingcom-
plementaritytype conditions

pv


µv −

∑

i∈I

γiv


 ∏

u∈πi(v)

(1− pu)


NiTi(κi)


 = 0, (5)

for v ∈ V .

These conditions say that packets are only dropped in nodes
which are fully utilized. These are the bottleneck nodes that
limit the performance of TCP connections. Other nodes are well
dimensioned so that they do not drop packets and thus they do
not impact the performance of TCP.

We shall refer to the system of (4) and (5), plus the natural
condition

0 ≤ pv ≤ 1, v ∈ V, (6)

as theComplementarity Problem Formulation(CP formulation).

B. Solution algorithms

We provide below two approaches to solve CP. We first show
that the Complementarity Problem Formulation is equivalent to
a Fixed Point Formulation(FP formulation). Since conditions
for the existence of fixed point solutions are well known, this
will allow us to establish the existence of a solution for the ini-
tial problem. The fixed point approach will also suggest an iter-
ative solution method. We shall then introduce a second solution
method through a non-linear optimization problem.

Fixed point iteration approach.

Lemma 1:The CP formulation (4), (5) and (6) is equivalent
to the following Fixed Point formulation

pv = Pr[0,1]

{
pv−

α
(
µv −

∑

i∈I

γiv

( ∏

u∈πi(v)

(1− pu)
)
NiTi(p)

)}
, (7)

whereα > 0 and Pr[0,1]{x} is the projection on the interval



[0, 1], that is,

Pr[0,1]{x} =





0, x < 0,
x, 0 ≤ x ≤ 1,
1, 1 < x.

Proof:

First let us prove that any solution of CP is a solution of FP.
Take anyv ∈ V . According to the complementarity condition
(5), if the inequality (4) is strict,pv = 0. Hence, we have

0 = Pr[0,1]{−α(µv −
∑

i∈I

γiv(
∏

u∈πi(v)

(1− pu))NiTi(p))},

and consequentlypv satisfies (7). Now, ifpv > 0,

∆v := µv −
∑

i∈I

γiv(
∏

u∈πi(v)

(1− pu))NiTi(p)) = 0

we havepv = Pr[0,1]{pv}, that is true, sincepv ∈ [0, 1]. In case
bothpv = 0 and∆v = 0, the equality (7) holds trivially.

Next let us show that any solution of FP is also a solution of
CP. The condition (6) follows immediately from the definition
of the projection. Next we show that the inequality (4) holds.
Suppose on contrary that∆v < 0. Then, it follows from (7)
thatpv is necessarily equal to one. However, ifpv = 1, ∆v =
µv > 0. Thus, we came to the contradiction and hence (4) holds.
Finally, we need to show that the complementarity condition (5)
holds, namely, we need to show that it is not possible to have
pv > 0 and∆v > 0 simultaneously. Suppose on contrary that
these two strict inequalities hold. The inequality∆v > 0 implies
thatpv − α∆v < 1. Hence, according to (7),

pv = pv − α∆v.

The latter implies that∆v = 0, which is the contradiction. Thus,
the complementarity condition (5) holds as well. This completes
the proof.

Now, using the FP formulation, we are able to prove the exis-
tence of a solution to our model.

Theorem 1:The TCP network model (4), (5) and (6) has a
solution.

Proof: From Lemma 1 we know that the TCP network
model (4), (5) and (6) is equivalent to the Fixed Point formula-
tion (7). Under Assumption A2, the mapping (7) is well-defined
and continuous on the compact and convex set×v∈V [0, 1]. Fur-
thermore, (7) maps the set×v∈V [0, 1] into itself. Hence, all
conditions of Brouwer Fixed Point Theorem [8], [18] are satis-
fied and we can conclude that the system of (4), (5) and (6) has
a solution.

Fixed point iteration algorithm.

The FP formulation provides not only the theoretical means
to prove the existence of a solution to our model, but it also

suggests a practical algorithm for its calculation. Namely, we
can calculate a solution by using the following:

p(k+1)
v = Pr[0,1]

{
p(k)

v − (8)

α


µv −

∑

i∈I

γiv


 ∏

u∈πi(v)

(1− p(k)
u )


 NiTi(p(k))




}
,

whereα is a parameter that can be chosen to control stability
and the speed of convergence.

Mathematical Programming Formulation.

Next we propose yet another formulation which also leads
to an efficient computational algorithm for the solution of the
system (4), (5) and (6). This third formulation is based on the
application of the nonlinear mathematical programming to com-
plementarity problems [5]. Therefore, we shall refer to it as
Nonlinear Programming formulation(NP formulation). Let us
consider the following nonlinear mathematical program

min
∑

v∈V

pvzv (9)

subject to

∑

i∈I

γiv


 ∏

u∈πi(v)

(1− pu)


 NiTi(p) + zv = µv,

0 ≤ zv, 0 ≤ pv ≤ 1, v ∈ V.

Note that variableszv play the same role as the supplementary
variables introduced in linear programming. They transform a
system of inequalities into a system of equations. The intuition
behind the mathematical program (9) can be explained as fol-
lows: we start from a feasible point inside the region defined by
inequalities (4), and then, by minimizing

∑
v∈V pvzv, we try to

satisfy the complementarity conditions (5). Since in (9) we min-
imize a continuous function over a compact set, this program has
a global minimum. Furthermore, the value of the objective func-
tion evaluated at this minimum is zero if and only if the original
system (4), (5), (6) has a solution. Thus, due to Theorem 1, the
mathematical program (9) provides a solution to the system (4),
(5), (6).

We would like to emphasize that the main advantage of using
either FP formulation or NP formulation is that one does not
need to care as in [3] about locating bottleneck nodes in order to
establish a system of equations that solves the problem. If there
is no a priori information on the location of the bottlenecks,
then one can need to check up to2|V | cases. As we shall see
later in the section on the Benchmark examples, the localization
of bottleneck nodes is not always so intuitive. A small change
in network parameters may shift the bottleneck from one node
to another.



C. Rough approximation model

For TCP/IP networks with high delay-bandwidth products,
the packet loss probabilitiespv are typically small (connec-
tions operate at large windows). Therefore, we can simplify our
model even further. Equations (1) and (4) take now the form

κi =
∑
v∈πi

pv,

∑

i∈I

γivNiTi ≤ µi.

As an example, if we use the square root formula for TCP
throughput, we obtain the following system of equations and
inequalities

∑

i∈I

γiv
ki√∑
v∈πi

pv

≤ µi, v ∈ V, (10)

pv


µv −

∑

i∈I

γiv
ki√∑
v∈πi

pv


 = 0, v ∈ V, (11)

where we denoteNi
√

c/θi by ki to simplify notations. In the
sequel, we shall refer to the above system as therough approxi-
mation model. Note that the rough approximation model can be
written in an elegant form by using the matrix notations intro-
duced in the beginning of the present section. Namely, the in-
equalities and the equations for the rough approximation model
can be written as follows:

[NT ]Γ ≤ M, [M − [NT ]Γ]vpv = µv.

Remark 1:There are arguments in favor of infiniteW i
max. In

this case, we allow TCP to load the network as much as possible
without any limitation from the side of the receiver. Clearly it
is important to model such a situation as well. Note that if we
takeW i

max = ∞, the Assumption A2 will be violated at points
κi = 0. However, if one choosesW i

max = maxv∈V {µv}, the
Assumption A2 holds and TCP rates are only bounded by the
network resources.

III. B ENCHMARK EXAMPLES

In this section we present several benchmark examples. Even
though we have succeeded to prove the existence of a solu-
tion to our model, the uniqueness is still an open problem. We
are able to show the uniqueness for some benchmark examples.
We compare the analytical results and approximations with the
fixed point iterations (8), the numerical solution of mathemat-
ical program (9) and with simulations obtained via NS. Ac-
tually, the numerical solutions obtained via (8) and (9) coin-
cide within the computer precision. However, we would like
to note that the method of fixed point iterations achieves the
solution much faster in comparison with (9). We have cho-
sen the parameters of the simulations so that to avoid time-
outs. Thus, we could use the simple square root formula (2)

for TCP throughput. We are interested in the case when TCP
has no restrictions on its throughput other than the network ca-
pacity. Hence, we takeW i

max = ∞ for our analytical calcu-
lations andW i

max = maxv∈V {µv} for our numerical calcula-
tions. In all our experiments, we have used the New Reno TCP
version and we have setMSSi = 512Bytes. For routers, we
have chosen RED as queue management policy with the follow-
ing parameters: minthresh=10 packets, maxthresh=30 pack-
ets, queuelimit=50, p max=0.1, and averagingweight=0.002.

A. One node case

For completeness of the presentation let us consider a single
node example. Namely, letm different type TCP connections
cross a single node. In the case of the rough approximation
model, we have the following equation for the packet loss prob-
ability

m∑

i=1

Ni

θi

√
ci

p
= µ.

Clearly, the above equation always has a unique solution which
is given by

p∗ =
1
µ2

(
m∑

i=1

Ni
√

ci

θi

)2

. (12)

Note that if the delay-bandwidth products are large (µθi >> 1),
the above formula gives a small packet loss probability. We may
expect that the rough approximation model and the following
more precise model have close solutions

m∑

i=1

Ni

θi

√
ci

p
(1− p) = µ.

The above equation leads to the following equivalent quadratic
equation

p2 − (
1
p∗

+ 2)p + 1 = 0,

with p∗ as in (12). It has two roots:

p1,2 =
1
2

(
(

1
p∗

+ 2)±
√

1
p∗

(
1
p∗

+ 4)
)

.

The root corresponding to “+” in the above expression is greater
than one. Therefore we choose the root corresponding to “−”.
For small values ofp∗ this root has the following asymptotics

p = p∗ − 2p2
∗ + o(p2

∗).

Thus, we can see that indeed for the case of large delay-
bandwidth products the rough approximation model gives re-
sults that are very close to the ones of the original model (4), (5)
and (6). In particular, the two models have unique solutions.

B. Simple two node tandem network

Let a group ofN TCP connections of the same type succes-
sively cross two nodes with capacitiesµ1 andµ2 (see Figure 1).
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Fig. 1. Topology for Example 2

We denote the probability of packet loss at the first node by
p1 and the probability of packet loss at the second node byp2.
From (2) the sending rate of a TCP connection is given by

T (p1, p2) =
1
θ

√
c

p1 + (1− p1)p2
.

Then, according to (4), we have

T (p1, p2)(1−p1) ≤ µ1, T (p1, p2)(1−p1)(1−p2) ≤ µ2. (13)

wherek = N
√

c/θ. The complementarity conditions (5) take
the form

p1 (µ1 − T (p1, p2)(1− p1)) = 0,

p2 (µ2 − T (p1, p2)(1− p1)(1− p2)) = 0. (14)

First let us consider the rough approximation model:

k√
p1 + p2

≤ µ1,
k√

p1 + p2
≤ µ2, (15)

p1

(
µ1 − k√

p1 + p2

)
= 0, p2

(
µ2 − k√

p1 + p2

)
= 0. (16)

We note that for the rough approximation model, the analysis
of the two cases:µ1 < µ2 andµ1 > µ2 is the same. Let us
consider for example the caseµ1 < µ2. Clearly,

k√
p1 + p2

< µ2

and hence from complementarity conditions (16), we conclude
thatp2 = 0. The first inequality in (15) becomes equality. The
latter leads to the expression for the packet loss probability in
the first node.

p1 =
k2

µ2
1

=
N2c

µ2
1θ

2

Now let us consider the caseµ1 = µ2 = µ. Inequalities (15),
which become equalities, and conditions (16) are now satisfied
for all p1 andp2 such thatp1 + p2 = N2c/µ2θ2. That is, the
rough approximation model has a non unique solution ifµ1 =
µ2.

Next we analyze the more precise model (13),(14). In par-
ticular, we shall see that (13) and (14) always possess a unique
solution. First we consider the caseµ1 ≤ µ2. According to
conditions (14), there could be three possibilities: (a) only the
second node is a bottleneck(p1 = 0, p2 > 0); (b) both nodes
are bottlenecks(p1 > 0, p2 > 0); and (c) only the first node is a
bottleneck(p1 > 0, p2 = 0). In case (a), (13) and (14) imply

k√
p2
≤ µ1,

k√
p2

(1− p2) = µ2.

The above inequality and equation lead to

µ2 =
k√
p2

(1− p2) ≤ µ1(1− p2) < µ1.

The latter means thatµ2 < µ1, which is the contradiction, and
hence possibility (a) cannot be realized. In case (b), according
to complementarity conditions (14), inequalities (13) become
equalities which lead to

µ2 = µ1(1− p2) < µ1.

This is again the contradiction, and consequently, possibility (b)
cannot be realized as well. Only possibility (c) is left. In this
case, (13) and (14) imply

k√
p1

(1− p1) = µ1, (17)

k√
p1

(1− p1) ≤ µ2. (18)

If equation (17) has a solution, inequality (18) is satisfied as
µ1 ≤ µ2. The existence and uniqueness of a solution to (17) has
been shown in the previous subsection. Therefore, the system
(13),(14) has a unique solution ifµ1 ≤ µ2. In particular, we
conclude that in this case the first node is a bottleneck.

The caseµ1 > µ2 is more difficult to analyze. It turns out
that if we setµ1 = µ2 = µ and we start to increase the value of
µ1, then initially there will be an interval(µ, µ∗) inside which
there is a solution to the system of equations

T (p1, p2)(1−p1) = µ1, T (p1, p2)(1−p1)(1−p2) = µ2, (19)

with bothp1 andp2 positive, and then for the interval[µ∗,∞),
the second node becomes a bottleneck (p1 = 0). To analyze
this phenomenon, one can directly solve the system of equa-
tions (19) for the interval(µ, µ∗). However, it is simpler to use
the “perturbation approach”. Takeµ1 = µ + ε andµ2 = µ and
look for the solution of the system (19) in the following form
p1(ε) = p∗1 + q1ε + ... andp2(ε) = q2ε + ... . p∗1 is the solution
of equation (17) andq1 andq2 are two coefficients to calculate.
After the substitution of these series into equations (19), expand-
ing nonlinear expressions as power series and collecting terms
with the same power ofε, we obtain the next system for the first
order approximation

q1 + (1− p∗1)q2 = 0,

(1 + p∗1)q1 + (1− p∗1)
2q2 = −2p∗1

√
p∗1

k
.

The solution of the above equations gives

p1(ε) = p∗1 −
√

p∗1
k

ε + ..., (20)

p2(ε) =

√
p∗1

(1− p∗1)k
ε + ... =

ε

µ
+ ... (21)

Using the approximate expression forp1(ε), we can estimate
µ∗. Namely,µ∗ = µ + ε∗, whereε∗ = k

√
p∗1.
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Fig. 3. Topology for Example 3

By using either the fixed point iteration method (8) or the non-
linear programming (9) we can obtain the packet loss probabil-
ities p1 andp2 (see Figure 2). At the same Figure 2 we also
plot the packet loss probabilities obtained by NS. The following
parameters were used:N = 40, θ = 204ms, µ = 10Mbits/s.

We would like to note that the analytical approximations (20)
and (21) are so good that they cannot be distinguished from the
plots obtained via (8) or (9).

C. Two node network with cross traffic

Next we consider a two node tandem network with cross traf-
fic (see Figure 3).

Let us show that both nodes in this example are bottlenecks.
Namely, we need to show that the following system of equations
always has a solution

k1√
p1 + p2

+
k2√
p1

= µ1, (22)

k1√
p1 + p2

+
k3√
p2

= µ2, (23)

whereki = Ni
√

ci/θi. Here we first analyze the rough approx-
imation model. Later on we shall show that the refined approx-
imation model gives practically the same results as the rough
approximation model. The system (22),(23) is equivalent to the

min{ µ , µ 1 2}
0

y = f(x)

y = x

y

x

Fig. 4. Uniqueness of the solution for Example 3

following set of equations

k1√
p1 + p2

= x,
k2√
p1

= µ1 − x,
k3√
p2

= µ2 − x.

In turn, the above set of equations gives the following single
equation for unknownx.

k1√
k2
2

(µ1 − x)2
+

k2
3

(µ2 − x)2

= x (24)

Denote the left hand side of this equation byf(x). Next, we
prove that the graph ofy = f(x) intersects the liney = x only
at one point (see Figure 4). Towards this end, we compute the
derivative

f ′(x) = −
k1(

k2
2

(µ1 − x)3
+

k2
3

(µ2 − x)3
)

(
k2
2

(µ1 − x)2
+

k2
3

(µ2 − x)2
)3/2

and observe that it is negative forx ∈ [0, min{µ1, µ2}).
Hence, the functionf(x) is monotonous on the interval
[0, min{µ1, µ2}), and consequently, equation (24) always has
a unique solution. The latter implies that the system (22),(23)
has a unique solution as well. Note that the system (22),(23) can
be solved via the direct application of Newton type methods for
the solution of nonlinear systems.

Let us now consider a particular symmetric case when we are
able to obtain exact analytical expressions. Letµ1 = µ2 = µ,
θ1 = θ2 = θ3 =: θ andN1 = N2 = N3 =: N . Clearly, in this
casep1 = p2 = p. After straightforward calculations, we get

p =
(1 +

√
2)2

2
cN2

(θµ)2
=

3 + 2
√

2
2

cN2

(θµ)2
.

We also obtain
T2

T1
=

T3

T1
=
√

2.
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Fig. 5. Two node network with cross traffic

This symmetric two node network with cross traffic was an-
alyzed in [7] to study TCP fairness. In particular, in [7], the
ratio T2/T1 is estimated as 1.5. Thus, we can see that our
model agrees well with previous observations. The fact that
T2/T1 ≈ 1.5 means that TCP fairness is between max-min fair-
ness (T2/T1 = 1) and proportional fairness (T2/T1 = 2) [2],
[10], [13].

Next we study a non symmetric case. We fixµ2 = µ =
10Mbits/s and we vary the value ofµ1 (The other parameters
areN1 = N2 = N3 = 20, θ1 = θ2 = θ3 = 204ms). We plot
the packet loss probabilitiesp1, p2 and the values of throughputs
T1, T2, T3 with respect to the ratioµ1/µ2 in Figures 5 and Fig-
ure 6, respectively. Note that if we increaseµ1 from the value
µ and keepµ2 unchanged, the throughput of connection 3 is
deteriorated. At the first sight, this fact might appear to be sur-
prising, as we are only increasing the total capacity of the net-
work. However, we can propose the following explanation for
this phenomenon: with the increase of the capacity of node 1,
the throughput of type 1 connections increases as well; the latter
creates an additional load on node 2, which leads to the deterio-
ration in the performance of connections of type 3.

Finally, we have plotted the same graphs for the more pre-
cise model (4),(5) and it turns out that for the set of the network
parameters under consideration, the results from the rough ap-
proximation model and the results from the more precise model
(4),(5) are practically indistinguishable. The figures also show
graphs from NS simulations which validate our modeling re-
sults.

D. Three node tandem network

Finally let us consider a three node tandem network (see
Figure 7). We set the following values of the parameters:
θ1 = 304ms, θ2 = θ3 = 204ms, N1 = N2 = N3 = 20,
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µ1 = 12Mbits/s, µ3 = 8Mbits/s and we vary capacity
µ2 over the range [10Mbits/s;22Mbits/s]. In Figures 8 and 9,
we plot packet loss probabilitiesp1, p2, p3, and sending rates
T1, T2, T3, respectively. The probabilities are calculated with
the help of the fixed point iteration method (8). The plots show
that first only the node 2 is a bottleneck (we call it, phase 1), then
node 3 also becomes a bottleneck (phase 2), then with the further
increase in the value ofµ2, all three nodes become bottlenecks
(phase 3), and finally for large values ofµ2 only nodes 1 and
3 are left as bottlenecks (phase 4). Even though this sequence
of changes in the network is quite intuitive, it is practically im-
possible to relay on intuition to predict the boundaries for these
phases. This fact highlights utility of the formal approaches such
as FP and NP formulations.

The non monotonous behavior of the sending rateT1 is an-
other interesting fact. We have already noticed such behavior in
the previous Example 3; the increase of the capacity in one part
of the network can sometimes lead to the decrease of through-
puts of some TCP connections. We also note that the previous
examples of one node network and two node tandem network
with cross traffic, are the limiting cases of this more general
topology and can be used to construct approximations when ei-
therµ2 << µ1, µ3 or µ2 >> µ1, µ3.
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IV. CONCLUSIONS

Several approaches exist for modeling and analyzing TCP/IP
networks. On one hand, there is the approach that focuses on a
single TCP connection and calculates its throughput as a func-
tion of the characteristics of the packet loss process. On the
other hand, there are approaches that consider the whole net-
work and try to predict the throughput of all connections si-
multaneously, taking into account their mutual interaction. This
paper belongs to the second research direction. We proposed a
model for the network and we presented three equivalent formu-
lations (CP, FP and NP) of it. In particular, FP and NP formula-
tions lead to efficient computational procedures and FP formula-
tion helps us to prove the existence of a solution. The presented
model does not require the pre-identification of bottleneck links
and include the possibility of the source rate limitation. Even

simple Benchmark network examples demonstrate that the lo-
calization of bottlenecks is not intuitive and TCP throughput is
not always a monotonous function of the total capacity of the
network.

V. A PPENDIX: ANOTHER PROOF OF EXISTENCE

Here we give another proof of existence of a solution to (4),
(5) and (6), which is based on the Nash Theorem [8] and uses
the technique proposed in [16]. Unfortunately, it is possible to
use this approach only in the case of a simple relation between
the throughputTi and the packet loss probability on the pathκi,
such as square root formula. We chose to present both proofs
since problems of obtaining the existence of fixed point solu-
tions are encountered often in other settings and one or the other
proof techniques could thus be used in other networking con-
texts (such as in the framework of [3]).

Theorem 2:Let the relation between the throughputTi and
the packet loss probability on the path be given by the square
root formula (2). Then, the system of (4), (5) and (6) has a
solution.

Proof: Let us define the functions

fv(pv, pv) := µv −
∑

i∈I

γiv


 ∏

u∈πi(v)

(1− pu)


×

NiMSSi min{ 1
θi

√
ci

κi(p)
,
W i

max

θi
}

and
hv(pv, pv) := −(fv(pv, pv))2,

wherepv = (p1, ..., pv−1, pv+1, ..., p|V |). We have introduce
the notationpv, as we want to study the behavior of functions
fv andhv with respect to the probabilitypv, having the other
probabilities fixed.

Next let us show that the functionshv are quasi-concave in
pv, that is, the level sets{pv|hv(pv, pv) ≥ a} are convex. We
note that the functionfv(pv, pv) is a constant minus the sum of
functions of the form

ϕ(pv) = c(1− pv) min{ 1√
a + bpv

, d},

where the constantsa, b ∈ [0, 1] andc depend onpv. We note
that the functionϕ(pv) is piece-wise differentiable on[0, 1]. In
particular, we have

ϕ′(pv) =




−cd, if
1√

a + bp
> d,

−c
(a + bpv) + 0.5(1− pv)

(a + bpv)3/2
, if

1√
a + bp

< d.

Hence, we can see that this function is decreasing on the interval
[0, 1]. Since the sum of decreasing functions is again decreasing,



the functionfv(pv, pv) is increasing inpv. Now we consider two
cases: (a)fv(0, pv) ≥ 0 and (b)fv(0, pv) < 0. In the case (a),
the functionhv(pv, pv) is decreasing inpv for the whole interval
[0, 1], and hence it is quasi-concave. Note that in the case (a) the
functionhv(pv, pv) achieves its maximum atpv = 0. In the case
(b), asfv(1, pv) = µi > 0, the functionfv(pv, pv) necessarily
crosses zero on the interval[0, 1]. The latter implies that in the
case (b) the functionhv(pv, pv) is unimodal, and hence, quasi-
concave. Moreover, in this case its maximal value is equal to
zero.

Since all functionshv(pv, pv) are quasi-concave inpv for any
fixed pv, we conclude from the Nash theorem [8] that there ex-
ists at least one set(p∗1, ..., p

∗
|V |) ∈ ×v∈V [0, 1] such that

p∗v = arg max
pv∈[0,1]

hv(p∗1, ..., p
∗
v−1, pv, p∗v+1, ..., p

∗
|V |), v ∈ V.

From the proof of the quasi-concavity ofhv(pv, pv), it immedi-
ately follows that eitherp∗v = 0 or fv(p∗v, pv∗) = 0, and in both
casesfv(p∗v, pv∗) ≥ 0 . Hence the set(p∗1, ..., p

∗
|V |) is a solution

to (4) and (5).

REFERENCES

[1] E. Altman, K. Avrachenkov, and C. Barakat, “A stochastic model of
TCP/IP with stationary random losses”,ACM SIGCOMM, Stockholm,
pp.231-242, August 2000.
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