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CDMA Uplink Power Control as a Noncooperative Game
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Abstract. We present a game-theoretic treatment of distributed power control in CDMA wireless systems. We make use of the conceptual
framework of noncooperative game theory to obtain a distributed and market-based control mechanism. Thus, we address not only the power
control problem, but also pricing and allocation of a single resource among several users. A cost function is introduced as the difference
between the pricing and utility functions, and the existence of a unique Nash equilibrium is established. In addition, two update algorithms,
namely, parallel update and random update, are shown to be globally stable under specific conditions. Convergence properties and robustness
of each algorithm are also studied through extensive simulations.
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1. Introduction

In wireless communication systems, mobile users respond to
the time-varying nature of the channel, described using short-
term and long-term fading phenomena [9], by regulating their
transmitter powers. Specifically, in a code division multiple
access (CDMA) system, where signals of other users can be
modeled as interfering noise signals, the major goal of this
regulation is to achieve a certain signal-to-interference (SIR)
ratio regardless of channel conditions while minimizing the
interference due to user transmit power level. Hence, there
are two major reasons for a user to exercise power control: the
first one is the limit on the battery energy available to the mo-
bile, and the second reason is the increase in capacity, which
can be achieved by minimizing the interference.

Power control in CDMA systems are in either open-loop
or closed-loop form. In open-loop power control, the mo-
bile regulates its transmitted power inversely proportional
to the received power. In closed-loop power control, on the
other hand, commands are transmitted to the mobile over
the downlink to increase or decrease its uplink power [12,
p. 182].

A specific proposal to implement distributed power con-
trol made by Yates [13] relies on each user updating its power
based on the total received power at the base station. It has
been shown in [13] that the resulting distributed power con-
trol algorithm converges under a wide variety of interference
models. Another distributed power control scheme has been
introduced in [7], which is adaptive and uses local measure-
ments of the mean and the variance of the interference. The
authors have shown that this algorithm is convergent provided
that a certain condition is satisfied.

Game theory provides a natural framework for developing
pricing mechanisms of direct relevance to the power control
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problem in wireless networks. In such networks, the users be-
have noncooperatively, i.e., each user attempts to minimize
its own cost function (or maximize its utility function) in re-
sponse to the actions of the other users. This makes the use
of noncooperative game theory [1] for uplink power control
most appropriate, with the relevant solution concept being the
noncooperative Nash equilibrium. In this approach, a nonco-
operative network game is defined where each user attempts
to minimize a specific cost function by adjusting his trans-
mission power, with the remaining users’ power levels fixed.
The main advantage of this approach is that it not only leads
to distributed control as in [13], but also naturally suggests
pricing schemes, as we will see in this paper.

Possible utility functions in a game theoretical framework,
and their properties for both voice and data sources have been
investigated in detail in [4], which formulates a class of util-
ity functions that also account for forward error control, and
shows the existence of a Nash equilibrium and the unique-
ness of an optimal response. One interesting feature of this
framework is that it provides utility functions for wireless data
transmission, where power control directly affects the capac-
ity of mobiles’ data transmission rates. Falomari et al. [4] also
propose a linear pricing scheme in order to achieve a Pareto
improvement in the utilities of mobiles.

In an earlier study [10], Nash equilibria achieved under a
pricing scheme have been characterized by using supermodu-
larity. It has been shown that a noncooperative power control
game with a pricing scheme is superior to one without pricing.
One deficiency of this game setup, however, is that it does not
guarantee social optimality for the equilibrium points.

Linear and exponential utility functions based on carrier
(signal)-to-interference ratio are also proposed in [5]. The ex-
istence of a Nash equilibrium is shown under some assump-
tions on the utility functions, and an algorithm for solving the
noncooperative power control game is suggested.



660 ALPCAN ET AL.

In this paper, we propose a power control game similar to
the ones in [4,5]. In the model we adopt, however, we use a
cost function defined as the difference between a linear pric-
ing scheme proportional to transmitted power, and a logarith-
mic, strictly concave utility function based on SIR of the mo-
bile. Furthermore, the utility function is made user-specific by
multiplying it with a utility parameter reflecting the individual
user preferences. We then rigorously prove the existence and
uniqueness of a Nash equilibrium. We also investigate possi-
ble boundary equilibrium solutions, and hence derive a quan-
titative criterion for admission control. As in [13], one way of
extending the model is to include certain SIR constraints. As
an alternative, we suggest a pricing strategy to meet the given
constraints, and analyze the relation between price, SIR, and
user preferences as reflected by the utility parameter. Thus,
we address not only the power control problem, but also pric-
ing and allocation of a single resource among several users.
Furthermore, we study different pricing strategies, and obtain
a distributed and market-based power control mechanism. Fi-
nally, under a sufficient condition we prove the convergence
of two algorithms, parallel update (PUA) and random update
(RUA), to the unique Nash equilibrium.

In order to illustrate the convergence, stability and robust-
ness of the update algorithms, we use extensive simulations
using MATLAB. Moreover, we study the effect of the various
parameters of the model, especially different pricing schemes.
In order for the simulations to capture realistic scenarios, we
introduce feedback delay and modeling disturbances, where
the latter is caused by variations in the number and location
of users in the network.

The next section describes the model adopted and the cost
function. In section 3, we prove the existence and uniqueness
of the Nash equilibrium. We present update algorithms for
mobiles in section 4, whereas section 5 introduces different
pricing strategies at the base station. The simulation results
are given in section 6, which is followed by the concluding
remarks of section 7.

2. The model and cost function

We describe here the simple model adopted in this paper for a
single cell CDMA system with up toM users. The number of
users is limited under an admission control scheme that en-
sures the minimum necessary SIR for each user in the cell.
For the ith user, we define the cost function Ji as the differ-
ence between the utility function of the user and its pricing
function, Ji = Pi − Ui . The utility function, Ui , is chosen
as a logarithmic function of the ith user’s SIR, which we de-
note by γi . This utility function can be interpreted as being
proportional to the Shannon capacity [9,11] for user i, if we
make the simplifying assumption that the noise plus the inter-
ference of all other users constitute an independent Gaussian
noise. This means that this part of the utility is simply linear in
the throughput that can be achieved (or approached) by user
i using an appropriate coding, as a function of its transmis-
sion power. This logarithmic function is further weighted by

a user-specific utility parameter, ui > 0, to capture the user’s
level of “desire” for SIR.

The pricing function defines the instantaneous “price” a
user pays for using a specific amount of power that causes
interference in the system. It is a linear function of pi , the
power level of the user. Accordingly, the cost function of the
ith user is defined as

Ji(pi, p−i ) = λipi − ui ln(1 + γi), pi � 0 ∀i, (2.1)

where p−i denotes the vector of power levels of all users ex-
cept the ith one, and γi is the SIR function for user i, given by

γi = L
hipi∑

j �=i hjpj + σ 2
. (2.2)

Here, L = W/R is the spreading gain of the CDMA system,
where W is the chip rate and R is the total rate; we assume
throughout that L > 1. The parameter hj , 0 < hj < 1, is the
channel gain from user j to the base station in the cell, and
σ 2 > 0 is the interference. For notational convenience, let us
denote the ith user’s power level received at the base station
as yi := hipi , introduce the quantity y−i := ∑

j �=i yj , and
further define a user specific parameter (ai) for the ith user as

ai := uihi

λi
− σ 2

L
. (2.3)

3. Existence and uniqueness of Nash equilibrium

The ith user’s optimization problem is to minimize its cost,
given the sum of powers of other users as received at the base
station, y−i , and noise. The nonnegativity of the power vector
(pi � 0 ∀i) is an inherent physical constraint of the model.
Taking the derivative of the cost function (2.1) with respect to
pi , we obtain the first-order necessary condition:

∂Ji(pi, p−i )
∂pi

= λi− Luihi∑
j �=i hjpj + Lhipi + σ 2

� 0. (3.1)

In the case of a positive inner solution, (3.1) holds with
equality. It is easy to see that the second derivative is also pos-
itive, and hence the inner solution, if it exists, is the unique
point minimizing the cost function. The boundary solution,
pi = 0, is the other possible optimal point for the constrained
optimization problem. If the user’s cost function, Ji(pi, p−i ),
attains its minimum for a power value less than zero,
pi,min < 0, the optimal solution will be the boundary point.
Solving equation (3.1) and invoking the positivity constraint
pi � 0, we obtain the reaction function,�i , of the ith user:

pi =�i(y−i , ai)

=


1

hi

[
ai − 1

L
y−i

]
, if y−i � Lai,

0, else.

(3.2)

The reaction function is the optimal response of the user to
the varying parameters in the model. It depends not only on
the user-specific parameters, like ui , λi , and hi , but also on
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Figure 1. A simplified block diagram of the system.

the network parameter, L, and total power level received at
the base station,

∑M
j=1 yj . Actually, (3.2) shows dependence

only on y−i , but adding (−pi/L) to both sides, and dividing
both sides by (1 − 1/L), one can express the response of the
ith user as a function of the quantity

∑M
j=1 yj . The base sta-

tion provides the user with total received power level using
the downlink. If the frequency of user updates is sufficiently
high, this can be done incrementally in order to decrease the
overhead to the system. A simplified block diagram of the
system is shown in figure 1.

Similar to the transmission control protocol (TCP) in the
Internet [8], there is an inherent feedback mechanism here,
built into the reaction function of the user. In this model,
the total received power at the base station provides the user
with information about the “demand” in the network, which
is comparable to congestion in case of the TCP. However, one
major difference is that here the reaction function itself takes
the place of the window based algorithms in the TCP.

In order for the ith mobile to be “active”, or pi > 0 the
following conditions from (3.2) have to hold: ai > 0 and
y−i � Lai . An intuitive interpretation for these conditions is
the following: if the price, λi , is set too high for a mobile, the
mobile prefers not to transmit at all, depending on its channel
gain and utility parameter, and the spreading gain and inter-
ference level.

For any equilibrium solution, the set of fixed point equa-
tions can be written in matrix form by exploiting the linear-
ity of (3.2). In case of a boundary solution, the rows and
columns corresponding to users with zero equilibrium power
are deleted, and the equation below involves only the users
with positive powers. Hence, we have (assuming here that
all M users have positive power levels at equilibrium):

1
h2

Lh1

h3

Lh1
· · · hM

Lh1

h1

Lh2
1

h3

Lh2
· · · hM

Lh2

...
...

. . .
...

h1

LhM

h2

LhM
· · · hM−1

LhM
1




p∗

1

p∗
2

...

p∗
M

 =


c1

c2

...

cM



⇔ Ap∗ = c, (3.3)

where the variable ci is defined as ci = ai/hi . Note that
ci > 0 if ai is positive.

Theorem 3.1. In the power game just defined (withM users),
let the indexing be done such that ai < aj ⇒ i > j , with the
ordering picked arbitrarily if ai = aj . Let M∗ � M be the
largest integer M̃ for which the following condition is satis-
fied:

aM̃ >
1

(L+ M̃ − 1)

M̃∑
i=1

ai. (3.4)

Then, the power game admits a unique Nash equilibrium
(NE), which has the property that usersM∗ + 1, . . . ,M have
zero power levels, p∗

j = 0, j � M∗ + 1. The equilib-
rium power levels of the first M∗ users are obtained uniquely
from (3.3) with M replaced by M∗, and are given by

p∗
i = 1

hi

{
L

L− 1

[
ai − 1

L+M∗ − 1

∑
j∈M∗

aj

]}
,

i ∈ M∗ := {
1, 2, . . . ,M∗}. (3.5)

If there is no M̃ for which (3.4) is satisfied, then the NE
solution is again unique, but assigns zero power level to allM
users.

Proof. We first state and prove the following lemma, which
will be useful in the proof of the theorem.

Lemma 3.2. If condition (3.4) is satisfied for M̃ = M̂ , it is
also satisfied for all M̃ such that 1 � M̃ < M̂ .

Proof. Suppose that condition (3.4) holds for M̃ = M̂; then
we argue that it also holds for M̃ = M̂ − 1. Substituting
in (3.4) M̂ for M̃ , we rewrite it as

(
L+ M̂ − 2

)
aM̂ − aM̂−1 >

M̂−2∑
i=1

ai.

Due to the indexing of users, we have aM̂−1 � aM̂ . Substitut-
ing aM̂−1 for aM̂ above, we obtain

(
L+ M̂ − 3

)
aM̂−1 >

M̂−2∑
i=1

ai.

Hence, (3.4) is satisfied for M̃ = M̂ − 1. The proof then
follows by induction on M̃ . �

Returning to the proof of the theorem, we first show that
the matrix A in equation (3.3) is full rank and hence invert-
ible, and thereby the solution to (3.3), p∗, is unique. Then we
show that the solution is strictly positive (i.e., p∗

i > 0 ∀i ∈ M)
if, and only if, condition (3.4) is satisfied for M̃ = M . Finally,
we relax condition and allow for boundary solutions, and con-
clude the proof by proving the uniqueness of the boundary
solution.

In order for the matrix A in (3.3) to be full rank and
hence invertible, there should not exist a nonzero vector
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q = (q1q2 . . . qM)
T �= 0 such that Aq = 0. This equation

can be written as

Lhiqi +
∑
j �=i

hj qj = 0 ∀i

⇒ (L− 1)hiqi +
M∑
j=1

hj qj = 0 ∀i. (3.6)

Summing up this set of equations over all users (i = 1,
. . . ,M), we arrive at

(L− 1 +M)

(
M∑
j=1

hjqj

)
= 0.

The term L − 1 + M above is nonzero, and hence, the sum∑M
j=1 hjqj has to be zero. Since the channel gains are strictly

positive, hi > 0 ∀i, and L > 1, it follows from (3.6) that
qi = 0 ∀i. Accordingly, the matrix A is full rank and hence
invertible, which leads to a unique solution for equation (3.3).
Simple manipulations lead to (3.5), with M∗ = M , for this
unique solution.

If the NE exists and is strictly positive, then (3.3) has to
have a unique positive solution, which we already know is
given by (3.5). Hence, (3.5) has to be positive, which is pre-
cisely condition (3.4) in view of also the indexing of the users.
On the other hand, if (3.4) holds for M̃ = M , then we obtain
from (3.5) that the equilibrium power level of each user is
strictly positive. The existence and uniqueness of the NE fol-
lows from (3.3). We thus conclude that condition (3.4) with
M̃ = M is both necessary and sufficient for the existence of
a unique positive Nash equilibrium.

To complete the proof for the case M∗ = M , possible
boundary solutions need to be investigated to conclude the
uniqueness of the inner Nash equilibrium. We have to show
that there cannot be another NE, with a subset M̃ of M̃
users transmitting with positive power, and the remaining
M − M̃ users having zero power level. In this case, the re-
active power level of the ith mobile, i ∈ M̃, is given by (3.5)
with M∗ = M̃ .

For any ith mobile, i /∈ M̃, in order for the zero power
level to be part of a Nash equilibrium, condition

y−i � Lai (3.7)

should fail according to the reaction function (3.2) of the mo-
bile. Summing up the equilibrium power levels as received
by the base station of M̃ users with positive power levels
(from (3.5) with M∗ = M̃) results in

1

L

∑
j∈M̃

yj = 1

L+ M̃ − 1

∑
j∈M̃

aj . (3.8)

Substituting in (3.7) the expression (3.8) for y−i yields

ai � 1

L+ M̃ − 1

∑
j∈M̃

aj . (3.9)

On the other hand, from lemma 3.2, and (3.4), we have
for any ith user in the indexed set {1, . . . , M̃ + 1} the follow-
ing:

ai � 1

L+ M̃ − 1

M̃∑
j=1

aj . (3.10)

Also, from the indexing of the users it follows that
∑M̃
j=1 aj �∑

j∈M̃ aj . Using this in (3.10), we see that inequality (3.9)

is satisfied for any ith user, i ∈ {1, . . . , M̃ + 1}, regard-
less of the choice of the subset M̃. We note that there
exists at least one user belonging to the set {1, . . . ,
M̃ + 1}, but not the subset M̃. Thus, the power of that mobile
must be positive, and hence the boundary solution cannot be a
Nash equilibrium. As this argument is valid for any subset M̃,
all boundary solutions fail similarly for being an equilibrium,
including the trivial solution, the origin. We thus conclude
that the inner Nash equilibrium is unique. This completes the
proof for the case M∗ = M .

IfM∗ < M in condition (3.4), then the equilibrium (when-
ever it exists) will clearly be a boundary point. If condi-
tion (3.4) fails for users M∗ + 1, . . . ,M where users are in-
dexed as described in theorem 3.1, then these users use zero
power in the equilibrium. Hence, for any ith user among
M∗ + 1, . . . ,M , condition (3.7) should fail. It was shown
above that equation (3.8) holds with M̃ = M∗. As condi-
tion (3.4) does not hold for the ith user, equation (3.9), and
hence (3.7) fails. Thus, from (3.2) power level of the ith user
is zero, pi = 0, at the equilibrium. As this holds for any
i ∈ {M̂ + 1, . . . ,M}, the equilibrium power levels for these
users are zero.

We now argue that the given boundary solution is unique.
One possibility is the existence of an ith user, where
1 � i � M∗, to have zero power. This cannot be a Nash
equilibrium, as it follows from (3.8) and (3.9) with M̃ = M∗.
Another possibility is the existence of an ith user, where
M∗ � i � M , transmitting with positive power level. This
cannot be an equilibrium, either, as it was shown above that
(3.7) fails for such an ith user, and pi = 0 follows directly
from the reaction function (3.2). All possible boundary solu-
tions can be captured by various combinations of these two
cases. Consider the case where a subset of users among
1, . . . ,M∗ use zero power whereas some of the users among
M∗ + 1, . . . ,M use positive power levels. Since for the sub-
set of users with positive power levels amongM∗ +1, . . . ,M
condition (3.4) does not hold, they cannot be in equilibrium
following an argument similar to the one above. Otherwise, as
condition (3.4) holds for the subset of users with zero power
level among 1, . . . ,M∗, they cannot be in equilibrium, ei-
ther. We conclude, therefore, that the boundary solution is
unique.

Finally, in the case where no M∗ exists satisfying condi-
tion (3.4), all users fail to satisfy (3.4), and the only solution
is the trivial one, p∗

i = 0 ∀i. �
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4. Update schemes for mobiles, and stability

In this section, we investigate the stability of the Nash equi-
librium in the given model under two relevant asynchronous
update schemes: parallel and random update. We establish a
sufficient condition which guarantees the convergence to the
unique equilibrium point for both algorithms.

4.1. Parallel Update Algorithm (PUA)

In the PUA, users optimize their power levels at each iteration
(in discrete time intervals) using the reaction function (3.2). If
the time intervals are chosen to be longer than twice the max-
imum delay in the transmission of power level information,
it is possible to model the system as a delay-free one. In a
system with delays, there are subsets of users, updating their
power levels given the delayed information.

The algorithm is given by

p
(n+1)
i =�i

(
y
(n)
−i , ai

) = max

(
0,

1

hi

[
ai − 1

L

∑
j �=i

y
(n)
j

])
,

y
(n)
j = hjp(n)j , (4.1)

or equivalently by

y
(n+1)
i = max

(
0, ai − 1

L

∑
j �=i

y
(n)
j

)
,

whose global stability is established in the next theorem. This
means that PUA converges to the unique Nash equilibrium of
theorem 3.1 given as

p∗
i = max

(
0,

1

hi

[
ai − 1

L

∑
j �=i

hjp
∗
j

])
(4.2)

from any feasible initial point, pi � 0 ∀i.

Theorem 4.1. PUA is globally stable, and converges to the
unique equilibrium solution from any feasible starting point
if the following condition is satisfied:

M − 1

L
< 1. (4.3)

Proof. Let us define the distance between the ith user’s
power level received in the base station at any time (n) and
received equilibrium power level as �y(n)i := y

(n)
i − y∗

i . We
consider first the case when y∗

i > 0 for an arbitrary ith user.
Then, given the received power levels of all users except the
ith one at time n, y(n)j j �= i, we have the following from (4.1)
and (4.2):

∣∣�y(n+1)
i

∣∣

<

1

L

∣∣∣∣∑
j �=i

�y(n)j
∣∣∣∣, if ai <

y
(n)
−i
L
,

= 1

L

∣∣∣∣∑
j �=i

�y(n)j
∣∣∣∣, else.

Thus, we obtain ∣∣�y(n+1)
i

∣∣ � 1

L

∑
j �=i

∣∣�y(n)j ∣∣. (4.4)

Next, we consider the case when the received equilibrium
power level for an arbitrary ith user is zero, y∗

i = 0. Then,
from (4.1) and (4.2) it follows that

∣∣�y(n+1)
i

∣∣ �


1

L

∣∣∣∣∑
j �=i

�y(n)j
∣∣∣∣, if ai >

y
(n)
−i
L
,

0, else.

Thus, the inequality (4.4) holds for any ith user at any time
instant n for both cases. We now show that (4.3) is a suffi-
cient condition for the right-hand side of (4.4) to be a contrac-
tion mapping. Let ‖�y‖∞ denote the l∞-norm of the vector
(�y1�y2 . . .�yM)T, i.e.,

‖�y‖∞ = max
i

|�yi |. (4.5)

Then, from (4.4),∥∥�y(n+1)
∥∥∞ � 1

L
max
i

∑
j �=i

∣∣�y(n)j ∣∣ � M − 1

L

∥∥�y(n)∥∥∞.

Hence, (4.4) is a contraction mapping under condition (4.3),
which leads to the stability and global convergence of the
PUA (4.1). �

We finally note that using an initial admission control
mechanism and user dropping scheme, which limits the num-
ber, M , of users in the cell, this condition can easily be satis-
fied for a given L. Thus, the stability and convergence of the
algorithm follows.

4.2. Random Update Algorithm (RUA)

Random update scheme is a stochastic modification of PUA.
The users optimize their power levels in discrete time in-
tervals and infinitely often, with a predefined probability
0 < πi < 1. Thus, at each iteration a set of randomly picked
users among the M update their power levels. The system
with delay is also similar to PUA. The users make decisions
based on delayed information at the updates, if the round trip
delay is longer than the discrete time interval.

The RUA algorithm is described by

y
(n+1)
i =

hi�i
(
y
(n)
−i , ai

)
, with probability πi,

y
(n)
i , with probability 1 − πi,

where �i was defined in (4.1). We already know from the
proof of theorem 4.1 that if user i updates, then (4.4) holds.
Hence, for each i = 1, . . . ,M ,

E
∣∣�y(n+1)

i

∣∣
= E

{∣∣�y(n+1)
i

∣∣∣∣∣user i updates at time n
}
πi

+ E
{∣∣�y(n)i ∣∣∣∣∣user i does not update at time n

}
(1 − πi)

� πi

L

∑
j �=i

E
∣∣�y(n)j ∣∣ + (1 − πi)E

∣∣�y(n)i ∣∣. (4.6)
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Using again the l∞-norm defined in (4.5), but with |�yi |
replaced by E|�yi | (that is, ‖�y‖∞ := maxi E|�yi |), and
following steps similar to the ones of PUA, we obtain

max
i
E
∣∣�y(n+1)

i

∣∣
� M − 1

L

∥∥�y(n)∥∥∞ max
i
πi + max

i
(1 − πi)

∥∥�y(n)∥∥∞

which leads to∥∥�y(n+1)
∥∥∞ �

(
M − 1

L
π + (1 − π )

)∥∥�y(n)∥∥∞,

where π < 1 and π > 0 are the upper and lower limits for the
update probability of the ith user respectively, π < πi < π .
Therefore,

M − 1

L
π + (1 − π) < 1 (4.7)

is a sufficient condition for the right-hand side of (4.6) to be
a contraction mapping, and for the stability and convergence
of RUA in norm. We also note that when all users have the
same update probability, πi = π ∀i, this condition simplifies
to (M − 1)/L < 1, same sufficient condition (4.3) as the
one for PUA. We show next a stronger result, almost sure
(a.s.) convergence of RUA, under condition (4.7). By the
Markov inequality and using the definition of the l∞-norm,
we have

∞∑
n=1

P
(∣∣�y(n)i ∣∣ > ε)�

∞∑
n=1

E|�y(n)i |
ε

� 1

ε

∞∑
n=1

∥∥�y(n)∥∥∞, (4.8)

where P(·) denotes the underlying probability measure.
Since E|�y(n)i | is a contracting sequence with respect to the
l∞-norm as shown,∥∥�y(n)∥∥∞ � α

∥∥�y(n−1)
∥∥∞

� · · · � αn
∥∥�y(0)∥∥∞,

where 0 < α < 1. Using this in (4.8), it follows that

∞∑
n=1

P
(∣∣�y(n)i ∣∣ > ε)�

∞∑
n=1

αn
‖�y(0)‖∞

ε

= ‖�y(0)‖∞
ε(1 − α)

,

and thus, follows that

∞∑
n=1

P
(∣∣�y(n)i ∣∣ > ε) � K

ε(1 − α)
,

where K is a constant (actually,K = ‖�y(0)‖∞). Hence, the
increasing sequence of partial sums

∑N
n=1 P(|�y(n)i | > ε) is

bounded above byK/(ε(1−α)). Thus, it converges for every

ε > 0. From the Borel–Cantelli lemma [2,3], it then follows
that

P
(

lim sup
n→∞

{
ω:

∣∣�y(n)i ∣∣ > ε}) = 0.

Hence, RUA converges also a.s. under condition (4.7).

4.3. Comparison of PUA and RUA

One important feature of PUA is that it ascribes a myopic be-
havior to the users, that is they optimize their power levels
based on instantaneous costs and parameters, ignoring future
implications of their actions. This behavior of users is realis-
tic for the analyzed wireless network as it may not be feasible
or even possible for a mobile to estimate future values of total
interference in the cell or future variations in its own channel
gain.

In the case of RUA, the users are again myopic and update
their power levels based on instantaneous parameters. But,
not all of them act at every iteration; whether a particular user
responds or not is determined probabilistically. In the lim-
iting case when all update probabilities, πi , are equal to 1,
RUA is the same as PUA. An advantage of RUA, however, is
that through it one can investigate the convergence of thep-
roposed scheme when there are random delays in the system.
Such delays may be due to differences in the processing or
propagation times.

As we will see in the simulations included in section 6, in
a delay-free system if all the users have the same initial power
level, then RUA performs better than PUA. This is due to the
myopic behavior of users, as well as the inherent randomiza-
tion in the case of RUA. On the other hand, the opposite is
true for a system with delay as variations in delay provide
sufficient randomization, and PUA becomes more advanta-
geous due to frequent updates. More detailed observations on
the convergence of both algorithms can be found in section 6
for both delay-free and delayed cases.

5. Pricing strategies at the base station

In a noncooperative network, pricing is an important design
tool as it creates an incentive for the users to adjust their
strategies, in this case power levels, in line with the goals of
the network. In the CDMA system we are studying here, the
price per unit power of the ith user, λi , is determined by the
base station in a manner to be discussed shortly. We intro-
duce a pricing scheme where the price charged to each user is
proportional to the received power from the user at the base
station. Thus, the price is proportional to the channel gain of
the ith user, λi = kihi .

The inner Nash solution by itself does not guarantee that
the users with nonzero power levels will meet the minimum
SIR requirement to establish a connection to the base station.
Achieving the necessary SIR level is obviously crucial to the
successful operation of the system. Furthermore, one has to
recognize that different communication applications in wire-
less systems leads to different types of users and SIR require-
ments in addition to the minimum SIR level.
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In view of these considerations, we will consider in this
section two different pricing schemes:

(i) A centralized pricing scheme. Users are divided into
classes, with all users belonging to a particular class hav-
ing the same utility function parameter (ui). Further, all
users within a class have the same SIR requirement. The
role of the base station is to set prices for these different
classes such that, under the resulting Nash equilibrium,
the SIR targets of the users are met.

(ii) Decentralized, market-based pricing. The base station
sets a single price for all users, and the users choose their
willingness to pay parameter, ui , to satisfy their QoS re-
quirements. As compared to the centralized scheme, this
one is more flexible, and allows users to compete for the
system resources by adjusting their individual ui’s.

5.1. Centralized pricing schemes and admission control

First, we consider the symmetric-user case where every mo-
bile has the same SIR requirement, and for convenience we
let ui = 1. It is possible to find a simple pricing strategy by
picking the price directly proportional to the channel gain,
λi = khi , where the pricing factor, k, is user independent.
The parameter k is a function of the number of users and the
desired SIR level.

Notice that this approach is equivalent to centralized power
control as the prices are adjusted by the base station in such a
way that the mobiles use the power levels determined by the
unique Nash equilibrium as a result of their individual opti-
mization. Moreover, the base station can set the prices such
that the SIR requirements of the users are satisfied. A precise
result covering this case is now captured by the following the-
orem.

Theorem 5.1. Assume that the users are symmetric in their
utilities, ui = 1 ∀i, they have the same minimum SIR re-
quirement, γ ∗, and are charged in proportion with their chan-
nel gain, λi = khi . Then the maximum number of users,M∗,
the system can accomodate is bounded by

M∗ < L

γ ∗ + 1. (5.1)

Moreover, the pricing parameter k under which M � M∗
users achieve the SIR level γ ∗ is

k = λi

hi
= L

σ 2

L− γ ∗(M − 1)

L(γ ∗ + 1)
. (5.2)

Proof. Solving for the user-independent yi from (3.2), we
have

yi = (L/k)− σ 2

L+M − 1
.

Combining this result and the SIR function in (2.2), and tak-
ing the minimum SIR, γ ∗, as input, we obtain (5.2) for a sin-
gle class of users in a cell. To ensure that (5.2) is well de-
fined, we require the condition in (5.1). Based on (5.2), con-
dition (5.1) satisfies (3.4). Thus, both the necessary and suf-
ficient conditions for a unique positive Nash equilibrium are

satisfied if (5.1) holds. Then, the unique solution is strictly
positive according to theorem 3.1, and all M � M∗ users
attain the desired SIR level, γ ∗. �

We note that if M > M∗, all users fall below the desired
SIR level (γ ∗) due to the symmetry. In this case, dropping
some of the users from the system in order to decrease the
number of usersM below the threshold (M∗) would lead to a
viable solution.

Next, we consider the case where the network may provide
multiple service levels and multiple pricing schemes. For this
more general case, it is convenient to split the mobiles in a
cell into multiple groups according to their need for band-
width, or in our context, their desired SIR levels, where the
users within each group are symmetric. Using a multiple pric-
ing scheme, a solution capturing multiple user groups can be
obtained straightforwardly.

5.2. Market-based scheme

It is natural to think of each user within a cell having differ-
ent SIR requirements, which can be quantified with the user-
specific utility parameter u. The base station can implement a
natural pricing strategy by formulating the pricing parameter
directly proportional to the channel gain, λi = khi . However,
it is impossible in this case for the base station to calculate
the parameter k, as the user preferences are unknown to the
base station. Hence, after the base station sets an appropriate
value for price (k), each user dynamically updates its power
level by minimizing its cost under parallel update (PUA) or
random update (RUA) algorithms. As a result, a distributed
and market-based power control scheme is obtained.

Due to the interference in the CDMA system, each user
affects others. Hence, the ith mobile can adjust its utility
parameter, ui , dynamically according to its minimum SIR
level, γ ∗

i , given the interference at the base station. From (3.2)
and (2.2), it follows that

ui >
λi

Lhi

(
γ ∗
i + 1

)(
y−i + σ 2).

The parameter ui is bounded below by the total received
power at the base station. This can be interpreted as follows.
If a mobile is in a cell where the interference is low, the mo-
bile can achieve the desired SIR level with a low power, hence
paying a lower price. However, in a situation where many
users compete for the SIR, the mobile has to use more power,
and pay a higher price to reach the same SIR level. In the lat-
ter case, the user’s willingness to spend more can be justified
with a higher ui based on (3.2).

We note that, together with the utility function, the util-
ity parameter ui quantifies the user’s desire for the SIR. The
base station can limit aggressive requests for SIR even in the
case when a user pays for its excessive usage of power, by
setting an upper-limit, ymax, for the received power of the ith
user at the base station: yi � ymax. Hence, unresponsive users
can be punished by the base station in order to preserve net-
work resources. From (3.2), we can obtain an upper-bound
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on the value of ui . Furthermore, this bound depends only on
user-independent parameters, such as the upper limit of the
total received power at the based station, maximum number
of mobiles, Mmax, and the spreading gain, L, if proportional
pricing is used:

ui � k

L

[
σ 2 + (L+Mmax − 1)ymax

] ∀i.
When this bound is combined with a simple admission control
scheme, limiting the number of mobiles to Mmax, the base
station can provide guarantees for a minimum SIR level γmin:

γmin = Lymax

(Mmax − 1)ymax + σ 2
.

A tradeoff is observed in the choice of the design parameters
γmin versusMmax. If the network wants to provide guarantees
for a high SIR level, then it has to make a sacrifice by limit-
ing the number of users. In addition, users may implement a
distributed admission scheme according to their budget con-
straints and desired SIR levels. If the price necessary to reach
a SIR level exceeds the budget, Bi , of the user, that is

kγ ∗
i

L

(
y−i + σ 2) � Bi,

then the user may simply choose not to transmit at all.

6. Simulation studies

The proposed power control scheme has been simulated nu-
merically using MATLAB. Here, we first investigate differ-
ent pricing schemes for symmetric mobiles in the fixed-utility
case. Then, we analyze the robustness of the system under
varying parameters such as noise, the number of users, and
channel gains. Furthermore, the rate of convergence of both
update schemes, PUA and RUA, are studied both in the delay-
free and delayed cases. Finally, we investigate a system con-
sisting of users with various utility parameters. All results of
the simulations are valid for both update schemes, PUA and
RUA, where the only difference between the two is the con-
vergence rate.

Simulation parameters are chosen as follows, unless other-
wise stated. The spreading gain L = 128 is chosen in accor-
dance with IS-95 standard [9]. Noise factor is σ 2 = 1 whereas
the stopping criterion or distance to equilibrium is given by
ε = 10−5. The users are assumed to be located randomly in
the cell where the distance of the ith user to the base station,
di , is uniformly distributed between d0 = 10 and dmax = 100.
The channel gains of users are determined by a simple large-
scale path loss formula hi = (d0/di)

2 where the path loss
exponent is chosen as 2 corresponding to open air path loss.
Under the fixed-utility case, users have the same utility pa-
rameter, ui = 1 ∀i. The initial condition for simulations is
pi = 1 ∀i, an estimated value for establishing initial com-
munication between the mobile and the base station. In the
simulations, a discrete time scale is used. The delay-free case
is characterized by a time span that is long enough for perfect

Figure 2. Comparison of power and SIR final values of the mobiles for the
fixed and proportional pricing schemes.

information flow to users. Subsequently, delay is introduced
to the system to make the setting more realistic.

6.1. Effect of the pricing parameters

In the first simulation, proportional and fixed pricing schemes
are compared. For simplicity, we first choose the users being
symmetric under both fixed pricing, λi = λ, and proportional
pricing, λi = khi . For illustrative purposes the number of
users is chosen small, M = 20.

In figure 2, the equilibrium power and the SIR values of
each user can be seen under both pricing schemes. In the top
graph, power values of the users with different channel gains
are almost the same under fixed pricing. Hence, the users with
lower channel gains achieve lower SIR values. In contrast, all
users meet a minimum SIR level under proportional pricing,
regardless of their channel gain. An intuitive explanation is
that under proportional pricing the distant users are allowed
to use more power to attain the necessary SIR level. We also
note that proportional pricing is “fair” in the sense that the
users are not affected by their distance to the base station.

Convergence of users’ power levels to their equilibrium
values is demonstrated in figure 3(a) under PUA, and fig-
ure 3(b) under RUA with update probability being 0.6. In
both cases there are 10 users and L = 20.

The effect of pricing is investigated in the next simulation
for a single class of users by varying the pricing parameter, k,
under proportional pricing. Equivalently, this simulation can
be interpreted as varying the utility parameter, u. Both para-
meters play a crucial role in the system by affecting the over-
all power and SIR levels. From (3.2), the effect of ui on the
system is inversely proportional to ki . In figure 4 it can be ob-
served that a gradual increase in k from 1 to 4, i.e., an increase
in price, affects the system in a such a way that both power
and SIR values decrease. Since, with an increase in the price,
the users decrease their powers to the same extent leading to
lower SIR values given a constant noise level. Equivalently,
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(a) (b)

Figure 3. Convergence of users’ individual power levels to the equilibrium values versus number of iterations under (a) PUA and (b) RUA with π = 0.6.

Figure 4. Effect of the pricing parameter k (utility parameter 1/u) on the SIR
and the power levels of users.

a decrease in u, the users’ level of request for SIR, gives the
same result. Furthermore, the observations match theoretical
calculations for the single class case in accordance with (5.2).

6.2. Convergence rate and robustness of algorithms

6.2.1. Simulations without delay
The convergence rate of the two update schemes is of great
importance, as it has a direct effect on the robustness of the
system. We have simulated PUA and RUA for different num-
bers of symmetric users under a single pricing scheme. In
figure 5, the number of iterations to the equilibrium point is
shown for different probability values of RUA and also for
PUA (which corresponds to RUA with the update probability
equal to one). As the number of users increase the optimal up-
date probability decreases. This result is in accordance with

Figure 5. Convergence rate for different update probabilities and increasing
numbers of users. L = 800.

the one in [6] where it is shown that in a quadratic system
without delay, an approximate value for the optimal update
probability is 2/3, as the number of users goes to infinity. On
the other hand, if the number of users is much smaller than
the spreading gain,M � L, then PUA is superior to RUA.

Next, we investigate the robustness of the system in
the delay-free case. First, we analyze it under increasing
noise, σ 2. The background noise is increased step by step
up to 100% of its initial value. Accordingly, the base station
allows users to increase their powers by decreasing the prices
by the same percentage in the fixed-utility case. The simula-
tion is repeated with N = 20 users under a proportional pric-
ing scheme. We observe in figure 6(a) that the power values
increase in response to the increasing noise to keep the initial
SIR constant. Similarly, we increase the number of mobiles
in the system threefold in figure 6(b). It has the same effect
as increasing the noise due to the nature of CDMA. Again by
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(a) (b)

Figure 6. Power and SIR final values for increasing noise (a) and numbers of users (b).

adjusting the prices accordingly, all users keep their SIR lev-
els. Same results are obtained equivalently under the market-
based pricing scheme, where users adjust their utility parame-
ter, u, dynamically while the pricing parameter determined by
the base station is kept constant. As a conclusion, these obser-
vations confirm the robustness of the proposed power control
scheme.

Finally, we simulate the system in a realistic setting under
a single pricing scheme. The number of users, N = 10 taken
as initial value, is modeled as a Markov chain. Arrival of new
mobiles is chosen to be Poisson with an average of 2 new
users per time interval. Call durations are exponentially dis-
tributed with an average of 20 time intervals. We observe the
average percentage difference between the theoretical equi-
librium and the current operating point of the system in terms
of power values of users for some period of time. In the sim-
ulation, PUA is chosen as the update algorithm. The initial
condition is the equilibrium point for users. The simulated
system operates within 1% range of the equilibrium points,
and the results are very similar to those of in figure 7.

Heretofore, robustness of the system was investigated for
static mobiles. The movements of the users within the cell
result in varying channel gains. In the next simulation, the
locations, hence, channel gains of users are varied randomly.
The movement of ith user is modelled after a random walk
where a random value is added to the distance of the user to
the base station di at each time instant. Hence, we obtain
di(n+ 1) = di(n)+ x(n) where x(n) ∈ [−1, 1] is uniformly
distributed. Furthermore, the setting used in this simulation
is the same as previous one. From figure 7, the system again
operates within 1% distance to equilibrium.

6.2.2. Simulations with delay
We introduce the delay factor into the system in the follow-
ing way: users are divided into d equal size groups, and each
group has an increasing number of units of delay. First, the
convergence rates of the two update schemes are compared

Figure 7. Average percentage distance to the equilibrium point versus time.
Channel gains, hi , are varied based on random movements of users.

and contrasted under delay-free and delayed conditions. The
update probability of RUA is chosen as 0.66 which corre-
sponds to the optimal update probability for a large number
of users. In the delay-free case RUA outperforms PUA as the
number of users increases. In the delayed case, however, PUA
is always superior to RUA.

Then, the simulation investigating the convergence rate of
RUA for various update probabilities is repeated in the de-
layed case. The result shown in figure 8 is different from the
previous one in figure 5. Here, PUA converges faster than
RUA for any number of users verifying previous results.

Finally, a market-based pricing scheme with proportional
pricing at the base station, k = 1, is investigated. There are
two groups of users, which are symmetric within themselves.
Users in each group have different utility parameters, u. The
group with higher u is labeled as the “priority” user group,
while the other one is called the “regular” user group. In or-
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Figure 8. Convergence rate for different update probabilities and increasing
numbers of users (with delay). L = 800.

Figure 9. SIR and power levels at the base station (or prices) of two selected
users from priority and regular user groups versus time.

der to observe the effect of varying number of users on the
SIR levels, we let a sample user from each group make a
long enough call. At the same time, the number of users in
each group and channel gains of the users are varied similar
to those in previous robustness simulations to create realis-
tic disturbances in the system. For simplicity, the values of
the utility parameters are kept constant throughout the simu-
lation. In figure 9, it is observed that a priority user always
obtains a higher SIR than a regular user. Another observation
is that priority users use a higher power level, and therefore
pay more than regular users, as expected. The fluctuation in
the power levels is due to the varying number of users, and
varying total demand for SIR in the system.

7. Conclusion

In this paper, we have developed a mathematical model within
the framework of noncooperative game theory, and have ob-

tained distributed, asynchronous control mechanisms for the
uplink power control problem in a single cell CDMA wireless
network. Existence of a unique Nash equilibrium has been
proven, and convergence properties of parallel and random
update schemes have been investigated analytically and nu-
merically. Moreover, conditions for the stability of the unique
equilibrium point under the update algorithms have been ob-
tained and analyzed accordingly.

We have shown that the unique Nash equilibrium has the
property that, depending on the parameter values, only a sub-
set of the total number of mobiles are active. Some of the
users are dropped from the system as a result of the power
optimization. By defining a utility function and a utility para-
meter, user requests for SIR were modeled dynamically. Fur-
thermore, the relationship between the SIR level of the users
and the pricing has been investigated for two different pric-
ing schemes for the fixed and varying utility cases. It has
been shown both analytically and through simulations that
choosing an appropriate pricing strategy guarantees meeting
the minimum desired SIR levels for the active users in the
fixed-utility case. In addition, the principles for an admis-
sion scheme have been investigated under the market-based
scheme.

The results obtained indicate that the proposed framework
provides a satisfactory decentralized and market-based so-
lution. The algorithms in this model are practically imple-
mentable, as the only information a user requires to update
its power other than own preferences and fixed parameters is
the total received power level from the base station. This in-
formation may be conveyed incrementally to reduce the over-
head in the case of frequent updates.

Although a specific cost structure is chosen in this paper,
most of the results may be extended to more general cost func-
tions. Another possible extension to this work is to a multiple
cells model, where the effect of neighboring cells are taken
into account. A further topic of interest is the development
of the counterparts of the results in the case of multiple base
stations, which brings up the challenging issue of handoff.
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