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Abstract

We analyze the performance of an Additive Increase Multiplicative Decrease (AIMD)-like flow control mechanism.

The transmission rate is considered to increase linearly in time until the receipt of a congestion notification, when the

transmission rate is multiplicatively decreased. AIMD captures the steady state behavior of TCP in the absence of time-

outs and in the absence of maximum window size limitation. We introduce a general fluid model based on a multi-state

Markov chain for the moments at which the congestion is detected. With this model, we are able to account for cor-

relation and burstiness in congestion moments. Furthermore, we specify several simple versions of our general model

and then we identify their parameters from real TCP traces.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We present a framework to study the performance of Additive Increase Multiplicative Decrease (AIMD)

type flow control mechanisms. This is the kind of control used by TCP, the widely used transport protocol
of the Internet [26]. However, we anticipate that our results will also be applicable for other flow control

mechanisms (e.g., the ABR mechanism in ATM networks). We employ a fluid approach [1,2,4–6] to model

the controlled flow. Our model studies a general window-based fluid AIMD mechanism. Our model applies
1389-1286/$ - see front matter � 2004 Elsevier B.V. All rights reserved.
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to the TCP protocol when the window size is large enough so that the packet nature of TCP is effectively

diluted. The transmission rate of the source is assumed to grow linearly at a rate a. In the case of TCP where

the flow is controlled via a congestion window, the transmission rate at any instant is equal to the window

size divided by the Round Trip Time (RTT) of the connection. The growth of the transmission rate con-

tinues until the source receives a notification of congestion from the network or until the maximum window
size is reached. In the case of TCP, the congestion is inferred from the loss of packets. It is an implicit noti-

fication compared to the explicit notification used by other flow control protocols as the ABR service in

ATM or the ECN proposal in the Internet. We call the moment at which the source reduces its transmission

rate a loss event. Upon detection of a loss, the transmission rate is scaled down by a (possibly random) fac-

tor a 2 [0, 1]. The scaling factor depends on many factors. In the case of TCP, it depends on the version

used, on the number of packet losses in the congestion period and on the way by which the loss is detected

(e.g., duplicate ACKs or Timeout [26]). The Reno version of TCP divides its window by two for every

packet loss [12]. The Newreno and SACK versions do not divide their windows by more than two in a
RTT, regardless of the number of packet losses during the RTT [12].

We adopt an end-to-end approach for modeling the AIMD congestion control mechanism [8]. The end-

to-end approach considers the network as a black box whose output is the process of loss events. The phys-

ical characteristics of the network (topology, capacity, etc.) and the parameters of the traffic of other users

are all summarized by the process of loss events that we shall consider in our analysis. The opposite of the

end-to-end approach is the network specific approach [8] which considers directly the characteristics of the

network when modeling the AIMD type protocols (e.g., [3,10,21] for TCP). The advantage of the end-to-

end approach is that it can be applied to all networks resulting in the same loss process as that considered
by the model. It is clear that the more general the loss process is, the larger the number of networks the

model is able to cover.

The process of loss events can be seen as a point process, where the appearance of a point corresponds to

the appearance of a congestion signal, interpreted as a loss in the context of TCP, causing a reduction in the

transmission rate. Different models have been proposed to study the performance of an AIMD mechanism

using the end-to-end approach [6,11,23,20], but these models make in general simple assumptions on the

loss process, as periodic, Poisson, iid, etc. These assumptions may not hold on some Internet paths where

losses are clustered or when the rate of the loss process changes following some underlying Markov chain.
Our aim in this paper is to consider such paths. For example in Fig. 1, one can observe a scenario where the

moments of transmission rate reduction are clustered together. This figure corresponds to the window size

evolution of a New Reno [12] TCP connection running between two sites at the technology park Sophia

Antipolis in south of France.
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Fig. 1. TCP window evolution.
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Here we would like to explicitly mention that our model provides a framework for analyzing AIMD type

flow control mechanisms in general and in particular the AIMD behavior of TCP congestion avoidance phase.

We are not claiming to model other features of TCP protocol. In our analysis we only take the loss events

from the real TCP connection, and shall employ this real loss process to construct our AIMD mechanism

against which we compare our model.

Remark 1. Note that Fig. 1 shows, in addition to the slow oscillations in the congestion window caused by

the congestion control algorithms of TCP, some quick oscillations. These quick oscillations are caused by

the burstiness of TCP. Indeed, we measure the congestion window as the number of packets transmitted

by the source and not yet acknowledged (packets in the pipe). But, this number presents quick oscillations

due to the arrival in bursts of ACKs and consequently, the transmission in bursts of packets. These quick

oscillations can be absorbed by modifying the operating system and reading the content of the variable

describing the congestion window of TCP.

Normally in the analysis of AIMD mechanisms it is assumed that the window is divided by a constant

factor upon congestion detection (e.g., by a factor of two in the case of TCP), but we see in Fig. 1 a more

severe reduction due to multiple consecutive divisions of the congestion window by two. When a congestion
appears, the network continues dropping packets over multiple round-trip times resulting in these multiple

consecutive divisions of the congestion window. In a previous paper [1], we presented a two-state Marko-

vian model to account for such a burstiness of losses. In that paper, we considered a lossy path with two

states Good and Bad together with potential loss events. The transmission rate may be reduced upon poten-

tial losses. A potential loss can transform into a real loss with probability pG in the Good state and with

probability pB in the Bad state (pG 6 pB). The time between potential loss events is assumed to be independ-

ently and identically distributed. Our main contribution in [1] was to show that the throughput of the flow

control mechanism increases with the increase in burstiness of losses when keeping the average loss rate
unchanged. We validated the model via simulations, but did not provide any algorithm for the identifica-

tion of its parameters from real traces.

We would like to highlight here that by burstiness of losses, we mean loss events that appear close to

each other, and not packets that are lost in bursts. It is known that TCP congestion control suffers when

packets are lost in bursts [12]. A loss event in our model can be the result of one or more packet losses. It is

an event that results in a reduction of the congestion window. The factor by which the window is reduced

can model the number of lost events due to network congestion (or due to some other phenomenon, e.g.,

noise in wireless networks).
The present work is an extension of our previous work [1] to a multi-state Markovian case. Being moti-

vated by some experimental results (e.g., Fig. 1), we allow the path of the connection to be described by

more than two states. The need for more than two states for describing the path is also motivated by mode-

ling results from [25,28] on mobile satellite channels, where it was shown that one needs typically at least

four states. In [1], the scaling factor a is a random variable equal to either 0.5 (the potential loss becomes a

real loss) or 1 (a potential loss is not transformed into a real loss). Here, we propose to study the scaling

factor with a general distribution that depends on the state of the path. We present then some applications

of our general model. These applications can be seen as different ways to infer the parameters of the general
model from a real TCP trace. In particular, we provide a method for the parameter identification of our

(two-state) model in [1]. A comparison among the different applications is provided to see which one is

the most efficient in predicting TCP performance.

In the following section, we overview related works on AIMD modeling in general and on TCP modeling

in particular. In Section 3, we present our general multi-state multi-reduction model for the AIMD mech-

anism. This general model is analyzed in Section 4. In Section 5, we provide several particular cases of the

general model as well as their application to TCP modeling. We finally conclude in Section 6.
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2. Related works

AIMD mechanism portrays the behavior of a TCP connection in its steady state and in the absence of

timeouts and limitation on the throughput caused by the receiver window. Thus, the literature on TCP

modeling overlaps with the literature on AIMD modeling. AIMD modeling approach (to which the current
paper belongs) normally assumes an exogenous packet loss process, thus neglecting the impact of a single

TCP connection on the loss process. This describes the situation of an interaction with a very large number

of other connections. One of the most important papers [23,24] makes assumption of independence between

losses of packets and obtains explicit expressions for the throughput of TCP as a function of the loss prob-

ability taking into account also time-outs, and provides an extensive validation through experimentation

(through mainly very long TCP connections). Rather than providing an exhaustive list of previous works

on TCP modeling we shall discuss works which deals with fluid models for AIMD mechanism, in the spirit

of the modeling approach followed in this paper. Interesting fluid models that can be seen as limits of the
independent packet loss process are given in [11,22]. In [4,5] and references therein, related modeling ap-

proaches have been used with the assumptions of independent times between losses, focusing however,

on non-linearities in the window growth dynamics of TCP (which is induced by queueing delays and the

receiver window size limitation). In [2] we present a general model that accounts for any stationary ergodic

process of loss events. No Markovian assumptions are made. The advantage of using Markov chains is that

it permits us to reduce the number of parameters to infer from real traces. Moreover, a Markovian model is

easy to map to some networks whose loss processes are known to possess some Markovian properties (wire-

less and satellite networks [25,28]).
A second modeling approach for AIMD consists of predicting simultaneously the loss process together

with the throughput. To do that, a precise knowledge of the network topology and the number of ongoing

connections (or their distribution) is required. The throughputs of all connections are obtained using some

fixed-point approach. This technique has been used in [21], where the authors propose a model for a net-

work of Active Queue Management routers, and further used in [3].

An abstraction of AIMD protocols, based on deterministic fluid models, especially well adapted to ECN

marking, has been introduced recently. This approach is mainly due to F. Kelly (see [15] and references there-

in). This, as well as other related models, have been extensively investigated by many researchers, see e.g.
[18,16,27], and have been related to fairness issues, to pricing and to utility optimization. Further, interested

readers can find a comprehensive survey on packet and fluid level modeling and analysis of TCP in [8].
3. The model

Let X(t) be the transmission rate at time t. X(t) is equal to the current window size divided by the Round

Trip Time of the connection. Let K = {1,2, . . .,N} be the set of possible states of the path. We allow losses
to occur in any of the N states; the probability of the occurrence of losses in each of these states may be

different. To that end, we define a series of potential losses occurring with a certain distribution of times

between potential losses. Let Tn denote the time at which the nth potential loss occurs and let Xn denote

the transmission rate of AIMD just prior to Tn. The pair {Tn,Xn} can be considered as a marked point

process [7]. Let Dn, n 2 Z be a sequence of times between potential losses: Dn = Tn+1 � Tn. Dn are assumed

to be iid with expectation d, second moment d(2) and Laplace Stieltjes Transform D*(s) = E [e�sDn]. Let Yn

be the state of the channel at the nth potential loss instant. We assume further that the sequences {Yn} and

{Dn} are independent. We assume that {Yn} is an ergodic Markov chain with the following transition
probabilities:
pij ¼ PfY nþ1 ¼ j j Y n ¼ ig; 1 6 i; j 6 N :
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Fig. 2. Window evolution of the TCP model.

E. Altman et al. / Computer Networks 47 (2005) 307–326 311
Let P ¼ fpijg
N
i;j¼1 and let p be the stationary distribution of the Markov chain associated to the path. Next

we define N random variables (discrete or continuous), fAj
n; 1 6 j 6 Ng, which describe the behavior of the

transmission rate when a potential loss occurs: is it reduced and if so by how much. These variables

fAj
n; 1 6 j 6 Ng correspond to the N possible states of the model for losses. Each random variable Aj

n,

1 6 j 6 N, takes real values in the interval [0, 1]. The choice of the interval [0,1] stems from the fact that

we are scaling down the transmission rate at the instant of losses. The set includes 1 since it corresponds

to the case when a potential loss is not transformed into a real loss and so the transmission rate is unaltered.

Aj
n, 1 6 j 6 N has a distribution function F j(a) for all n 2 Z. That is, we take the distribution of Aj

n to be

time homogeneous. Denote
ai :¼
Z 1

0

adF iðaÞ; 1 6 i 6 N :
We assume that there is at least one i for which ai < 1. The dynamics of the system can be given by the

following stochastic recurrent equation:
Xnþ1 ¼
XN
j¼1

Aj
nX n1fY n ¼ jg þ aDn; ð1Þ
where in the case of TCP a = 1/RTT2 (or a = 1/2 RTT2 if the delayed acknowledgment mechanism is ena-
bled). An example of a typical window size evolution described by (1) is shown in Fig. 2.
4. Performance analysis

First we observe that Eq. (1) is a particular case of stochastic linear difference equations of type

Xn+1 = bnXn + cn, where {bn,cn} is a stationary and ergodic processes (one can consider the Markov chain

{Yn} in the stationary regime). It follows from [9,14] that such equations have a stationary solution X 

n

given by
X 

n ¼

X1
k¼0

Yn�1
i¼n�k

bi

 !
cn�k�1:
Moreover, for our problem, the stationary regime exists under the assumption that there is at least one i

for which ai < 1. Moreover, for any arbitrary starting point X0, the sequence {Xn} will converge almost

surely to this stationary regime, that is
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lim
n!1

jXn � X 

nj ¼ 0; P-a:s:
Therefore, we can assume without loss of generality that the process {Xn} is in the stationary regime in

order to compute the limit distribution. Next we compute the moments of Xn in this regime. Let us denote
xi ¼ E½Xn1fY n ¼ ig�; 1 6 i 6 N :
Obviously, the expectation of Xn is given by
E½Xn� ¼
XN
i¼1

xi:
To compute xi, 1 6 i 6 N, we use the Laplace Stieltjes Transform approach. Namely, define the follow-
ing Laplace–Stieltjes Transforms:
W ðs; iÞ ¼ E½e�sX n1fY n ¼ ig�; 1 6 i 6 N ;
where we assume that Xn is in the stationary regime.

Theorem 1. The Laplace–Stieltjes Transforms W(s, j), 1 6 j 6 N, are solutions of the following implicit

equations:
W ðs; jÞ ¼ D
ðasÞ
XN
i¼1

pij

Z 1

0

W ðas; iÞdF iðaÞ
" #

; 1 6 j 6 N : ð2Þ
Proof. We write for any j, 1 6 j 6 N,
E e�sX nþ11fY nþ1 ¼ jg
� 	

¼
XN
i¼1

E e�sX nþ11fY nþ1 ¼ jg j Y n ¼ i
� 	

P ðY n ¼ iÞ

¼
XN
i¼1

E½e�sX nþ1 j Y n ¼ i�E 1fY nþ1 ¼ jg j Y n ¼ i½ �P ðY n ¼ iÞ

¼
XN
i¼1

E e�sðAi
nX nþaDnÞ j Y n ¼ i

h i
pijPðY n ¼ iÞ

¼ D
ðasÞ
XN
i¼1

Z 1

0

E e�saX n j Y n ¼ i
� 	

dF iðaÞpijP ðY n ¼ iÞ

¼ D
ðasÞ
XN
i¼1

pij

Z 1

0

E e�saX n1fY n ¼ ig
� 	

dF iðaÞ:
This results in the implicit equations (2). h

Although the Laplace–Stieltjes Transforms in Theorem 1 are only given as solutions of implicit equa-

tions, all moments of Xn1{Yn = i} for 1 6 i 6 N (in the stationary regime) can be obtained explicitly. Note

that
E Xk
n1fY n ¼ ig

� 	
¼ ð�1Þk d

kW ðs; iÞ
dsk

����
s¼0

:

We shall now proceed to the calculation of expressions for the first and second moments of Xn1{Yn = i}

for 1 6 i 6 N from the implicit expressions of the Laplace Stieltjes transforms. Upon differentiating the im-

plicit expressions (2) and using the following relations:
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W ð0; iÞ ¼ pi; 1 6 i 6 N ; D
ð0Þ ¼ 1;
dD
ðasÞ

ds

����
s¼0

¼ �ad;
we get N linear equations in N unknowns:
xj ¼
XN
i¼1

pijaixi þ adpj; 1 6 j 6 N : ð3Þ
Remark 2. Observe that in the stationary case, by multiplying both sides of (1) by 1{Yn+1 = j} and taking

expectations we can obtain (3).

We shall now write the above N equations in matrix notation. Let
x ¼ ½x1; x2; . . . ; xN � and A ¼

a1 0 � � � 0

0 a2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � aN

2
66664

3
77775:
Then, Eqs. (3) take the form
x ¼ xAP þ adp: ð4Þ

Recall that 0 6 ai 6 1 for all i. Furthermore, we assume that there is at least one i for which ai < 1. The

latter guarantees that the matrix AP is sub-stochastic (there is an i for which
PN

j¼1pijai <
PN

j¼1pij ¼ 1). Re-

call that moduli of all eigenvalues of a sub-stochastic matrix are strictly less than one. Therefore, matrix

I � AP has no zero eigenvalue, and consequently, Eq. (4) has a unique solution. Thus, we can state the fol-

lowing result:

Theorem 2. Let Xn be in the stationary regime. Then E[Xn] is given by
E½Xn� ¼ xe ¼ adpðI � AP Þ�1e;
where e is a column vector of ones.

To compute the second moment of Xn, we first define
xð2Þi ¼ E½X 2
n1fY n ¼ ig�; 1 6 i 6 N :
Clearly,
E½X 2
n� ¼

XN
i¼1

xð2Þi :
Also let
ð2Þ2 3
xð2Þ ¼ xð2Þ1 ; xð2Þ2 ; . . . ; xð2ÞN

h i
and Að2Þ ¼

a1 0 � � � 0

0 að2Þ2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � að2ÞN

666664
777775;



314 E. Altman et al. / Computer Networks 47 (2005) 307–326
where
að2Þi ¼
Z 1

0

a2 dF iðaÞ; 1 6 i 6 N :
Then, in the next theorem we give an explicit expression for E½X 2
n�.

Theorem 3. Let {Xn} be in the stationary regime and there is at least one i for which ai < 1. Then, E½X 2
n� is

given by
E½X 2
n� ¼ xð2Þe ¼ ð2adðxAP Þ þ a2dð2ÞpÞðI � Að2ÞP Þ�1e:
Proof. Differentiating twice the implicit expressions (2), we obtain
d2W ðs; jÞ
ds2

¼ D
ðasÞ
XN
i¼1

pij

Z 1

0

d2W ðas; iÞ
ds2

dF iðaÞ
" #

þ d2D
ðasÞ
ds2

XN
i¼1

pij

Z 1

0

W ðas; iÞdF iðaÞ
" #

þ 2
dD
ðasÞ

ds

XN
i¼1

pij

Z 1

0

dW ðas; iÞ
ds

dF iðaÞ
" #

:

Now evaluating the above derivatives at s = 0, we get
xð2Þj ¼
XN
i¼1

pija
ð2Þ
i xð2Þi þ 2ad

XN
i¼1

pijaixi þ a2dð2Þpj:
Next, we rewrite the equations in matrix notation
xð2Þ ¼ xð2ÞAð2ÞP þ 2adðxAP Þ þ a2dð2Þp:
Solving for x(2), we get
xð2Þ ¼ 2adðxAP Þ þ a2dð2Þp
� �

ðI � Að2ÞP Þ�1:
The existence of (I � A(2)P)�1 is guaranteed, because A(2)P is again sub-stochastic as the sum of the ele-

ments of the ith row of A(2)P is
PN

j¼1pija
ð2Þ
j <

PN
j¼1pij ¼ 1. h

Observe that we computed the expectation of the transmission rate with respect to loss instants. This

expectation is also referred to as Palm expectation in the context of marked point processes [7]. Of

course, the most interesting is the calculation of the expectation of the transmission rate at an arbitrary

time moment. For ergodic processes, the latter expectation coincides with the following time average

P-a.s.,
�x ¼ lim
T!1

1

T

Z T

0

X ðtÞdt:
This is no other than the throughput of the TCP transfer. It is the total volume of transmitted data over

the transfer time. We proceed to evaluate this throughput by employing the concept of Palm probability.

Theorem 4. The throughput, or the time-average transmission rate, is given by
�x ¼ E½X ðtÞ� ¼
XN
i¼1

aixi þ 1
2
a
dð2Þ

d
¼ axT þ 1

2
a
dð2Þ

d
; ð5Þ
where a = [a1,a2, . . ., aN], and x is given in Theorem 2.
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Proof. To compute E[X(t)], one can use the following inversion formula (see e.g., [7, Ch. 1, Sec. 4]),
E½X ðtÞ� ¼ 1

d
E0

Z T 1

0

X ðtÞdt
� �

; ð6Þ
where E0[Æ] is an expectation associated with Palm distribution. Thus, we can write
E½X ðtÞ� ¼ 1

d
E0

Z T 1

0

XN
i¼1

Ai
0X 01fY 0 ¼ ig þ at

 !
dt

" #
:

Because of the independence of Xn and {Dk,k P n} and also because of the independence of {Dn} and

{Yn} we can write
E½X ðtÞ� ¼ 1

d

XN
i¼1

E0½Ai
0�E0½X 01fY 0 ¼ ig�

� �
E0½D0�

" #
þ a
2d

E0½D2
0� ¼

XN
i¼1

aixi þ 1
2
a
dð2Þ

d
¼ axT þ 1

2
a
dð2Þ

d
: �
In the next theorem we evaluate the second moment of the transmission rate at an arbitrary time instant.

This second moment describes how much the transmission rate varies. It could be used by TCP-friendly

real-time applications (e.g., audio or video transmissions) [13]. These applications may choose to change
their parameters for increasing the window and decreasing it so as to minimize the oscillation of the trans-

mission rate while keeping the same throughput as in the case of TCP. A smoother transmission is a

requirement for a better quality of service in case of such delay-sensitive applications. The latter require-

ment on the throughput stems from fairness arguments.
Theorem 5. Let d (3) be the third moment of the time between potential losses. The second moment of the input

rate over a long time interval is equal to
�xð2Þ ¼ lim
t!1

1

t

Z t

0

X 2ðtÞdt ¼ 1
3
a2

dð3Þ

d
þ 1

d
adð2ÞaxT þ að2Þxð2Þ

T
;

where að2Þ ¼ ½að2Þ1 ; að2Þ2 ; . . . ; að2ÞN � and x(2) are given in Theorem 3.

Proof. Again by the inversion formula from Palm probability,
E½X 2ðtÞ� ¼ 1

d
E0

Z T 1

0

X 2ðtÞdt
� �

¼ 1

d
E0

Z T 1

0

XN
i¼1

Ai
0X 01fY 0 ¼ ig þ at

 !2

dt

2
4

3
5

¼ 1

d
E0 a2D3

0

3
þ aD2

0

XN
i¼1

Ai
0X 01fY 0 ¼ ig þ

XN
i¼1

ðAi
0Þ

2X 2
01fY 0 ¼ igD0

" #

¼ 1
3
a2

dð3Þ

d
þ 1

d
adð2Þ

XN
i¼1

aixi þ
XN
i¼1

að2Þi x2i ¼ 1
3
a2

dð3Þ

d
þ 1

d
adð2ÞaxT þ að2Þxð2Þ

T
: �
Having obtained the expressions for the general case of N states, we shall now focus on some particular

cases in the following sections. We will show how the parameters of our model can be inferred from a real

trace of a TCP connection. Different possible applications of the model to the same trace are presented and

the results are then compared to show which method is the most efficient.
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5. Specifications of the general model

In this section, we present different ways for the application of our general model to predict the perform-

ance of a TCP-like flow control mechanism. We chose to work with real loss processes. From the trace of a

TCP connection, we determine the moments of window reduction. We reconstruct then the evolution of
TCP congestion window over time under the assumption that the window increases linearly between two

consecutive losses. We call this reconstructed window evolution the Exact Fluid Model and we use it below

as a reference. We then try to derive simple closed form expressions for the throughput of the exact fluid

model, and therefore for the throughput of TCP, using simple versions of our general model.

We ran long-lived TCP connections between INRIA and different machines over the Internet. Our total

results, which are summarized in [2], have shown that the process of loss events is indeed bursty in metro-

politan networks. Fig. 1 is a proof of this burstiness. In wide area networks however, the process of loss

events is close to Poisson and a simple model can then be used to predict the performance of TCP. Hence,
to validate our present model that accounts for correlation and burstiness of loss events, we only consider

the results obtained in a metropolitan network. These results are collected from a TCP connection running

between machines in Sophia Antipolis Park, 1km apart from each other.

The reason for which we chose to use the Exact FluidModel as a reference and not TCP itself, is that on the

connection we considered, the evolution of the congestion window has been found to be strongly sub-linear.

Sub-linearity in TCP dynamics, which is very hard to model (see [5] for a modeling of this sub-linearity in the

case of a Poisson process of loss events), appears when the round-trip time of the TCP connection increases

with the congestion window. It seems to be impossible to get explicit expressions for TCP throughput in pres-
ence of such sub-linearity. Given that our main objective is to well model the process of loss events, we

decided to eliminate such sub-linearity in TCP dynamics by using the Exact Fluid Model. As it is explained

in [5,8], keeping this sub-linearity can make a wrong model for loss events gives better results than a right

model. The introduction of sub-linearity into our present model will be the topic of our future research.

Our experimentation consists then of a long-lived New-Reno TCP connection running between

clope.inria.fr at INRIA and nessie.essi.fr at ESSI, both located in the technology park So-

phia Antipolis in the south of France. The two machines are connected to the same metropolitan network.

The TCP connection is run eleven times for approximately 20min each at the most busy periods (between
10 a.m. and 2 p.m.). The choice of 20min as a duration of every run of the TCP connection is only made by

our will to ensure around 500 loss events per run, which allows a low estimation error for moments and

transition probabilities. The trace of the connection is captured at the source using the tcpdump tool

[17] and a program is developed to analyze the traces in order to find the moments at which the congestion

window is divided by two. We noticed that most of the time, the loss of packets is detected with the Fast

Retransmit algorithm (3 Duplicate ACKs) [26]. We also noticed that the maximum window advertised by

the receiver is rarely reached due to working at busy periods.

5.1. The basic model

We consider here the very simple case where the path has a single state and where the transmission rate is

divided once by two at every potential loss event. We assume that the times between losses are iid. This

gives the following expression for the throughput:
E½X ðtÞ� ¼ adþ 1
2
a
dð2Þ

d
: ð7Þ
Obviously, if times between losses are really iid, this model must give a very close throughput to that

given by the exact fluid model. And indeed, in our experiments, we did not find a significant correlation

among inter-loss times. Fig. 3 confirms this conclusion. The throughput given by formula (7) follows closely
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the one given by the exact fluid model. However, to use formula (7) for the throughput calculation, one

must know the second moment of inter-loss times. In Fig. 3, we compute this second moment from our

measurements. Usually, this quantity is difficult to find since it requires the knowledge of all inter-loss times

for the modeled connection. Note that, by contrast, d can be easily calculated by dividing the total time of

the connection by the number of loss events. The number of losses in turn can be calculated using the

packet loss probability. One way to eliminate d (2) is to express it as a function of d. For example, one

can assume that inter-loss times form a Poisson process and hence take d (2) = 2d 2. The problem with this

solution is that it hides the impact of burstiness and expresses the throughput only as a function of the aver-
age loss rate. Indeed, in Fig. 3, the throughput calculated according to the Poisson assumption does not

match well the throughput of the exact fluid model. The reason for this mismatch is clearly explained by

Fig. 4 where we plot the histogram of inter-loss times. This figure shows the deviation of the inter-loss time

distribution from the exponential shape. This deviation is caused by the appearance of bursts of losses,

which causes the pulse of probability around the origin. Indeed, we noticed from the real traces of a

TCP connection that the congestion window is divided multiple times by two when a congestion occurs

and this due to the loss of packets in multiple consecutive Round Trips (see also Fig. 1). However, the

important notice we made from Fig. 4 is that the time between bursts can still be well approximated by
the exponential distribution. Fig. 5 shows the distribution of times between losses after the elimination
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of the pulse around the origin. In the next two sections, we will present two methods to account for this

bursty behavior of losses.

5.2. The aggregate loss method

As was noticed in Fig. 4, the inter-loss time distribution is a mixture of two distributions, one around the

origin represents the time between losses within bursts and another away from the origin represents the time

between bursts. This prompts us to aggregate the losses inside a burst into a single loss and to divide the

transmission rate upon an aggregate loss occurrence (or a burst occurrence) by two powers the number

of aggregated losses inside the burst. The aggregate loss process can be considered now as a Poisson process.

Upon the arrival of an aggregate loss, the transmission rate is divided by a random factor that can be greater

than two. The question that one may ask here is how to characterize a burst, in other words how to decide
that two consecutive losses are within the same burst or within two different bursts. In this section, we use the

following empirical method: we look at the distribution of inter-loss times and try to find a point, which

clearly separates the two distributions. We zoom in Fig. 6, the distribution of inter-loss times (Fig. 4) around

the origin. It is clear that two bursts are separated by approximately d = 0.4s. We use this d for the identi-
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fication of bursts. In the following, we present two different ways to describe the behavior of the random

reduction factor. The first way is to assume that it is iid. The second way is to model it with a Markov chain.

First, let us consider the case of iid. reduction factor. The evolution of the transmission rate in this case is

given by
Xnþ1 ¼ AnX n þ aDn;
where the reduction factor An has a distribution function F(a). Dn is the time between bursts which can be

approximated by a Poisson process. Of course, this can be viewed as a particular case of our general model

where the path of the connection has only one state. The general results of Section 2 can be specified for the

present case as follows:
E½Xn� ¼
ad

1� �a
;

�x ¼ E½X ðtÞ� ¼ ad�a
1� �a

þ 1
2
a
dð2Þ

d
; ð8Þ
where �a ¼
R 1
0
adF ðaÞ. Here, the reduction factor An is a discrete random variable which takes the values

multiple of 1/2. Thus, we calculated �a as
�a ¼
Xm
i¼1

1

2i
pi; i;
where the probabilities pi are estimated from the TCP connection trace. Let n be the total number of aggre-

gate losses in the trace. We can write
pi ¼
Xn
k¼1

1fak ¼ 1=2ig=n:
Note here that the main gain from aggregation, is that the second moment of Dn can now be taken as 2d2

(exponential random variable). Furthermore, from Fig. 5, one can see that the distribution of Dn is a shifted

exponential distribution given that the time between two aggregate losses is always larger than d. Thus, a
more correct estimation for the second moment is given by
dð2Þ ¼ d2 � 2dd þ 2d2:
Next we consider the case where the reduction factor is modeled using a Markov chain. We associate a
multi-state Markov chain to the path. The transitions of the chain occur upon aggregate loss arrivals. The

state of the chain when an aggregate loss arrives is equal to the number of losses within the burst. The Mar-

kov chain determines then how many times the transmission rate is divided by two. Fig. 7 explains how the

transmission rate and the Markov chain change together. Observe that, dividing the y-axis values in Fig. 7

by 1000 we get the values for the y-scale corresponding to the Markov chain. A interval of 0.4s is used to

identify the losses belonging to the same burst. The evolution of the transmission rate in this case can be

described as follows:
Xnþ1 ¼
XN
j¼1

aj1fY n ¼ jgXn þ aDn; ð9Þ
where aj is constant equal to 1/2j and where Yn is the state of the Markov chain. Dn again represents the

time between bursts which can be approximated by a Poisson process. As a corollary of Theorem 3, the

throughput can be written as
�x ¼ E½X ðtÞ� ¼
XN
j¼1

ajxj þ
adð2Þ

2d
: ð10Þ
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The estimations of transition probabilities pij, i, j = 1, . . .,N, of the Markov chain {Yk} are identified from

the trace of the TCP connection as follows:
pij ¼
Xn�1
k¼1

1fY kþ1 ¼ j; Y k ¼ ig
,Xn�1

k¼1
1fY k ¼ ig;
where the Markov chain state Yk corresponds to the number of transmission rate reduction at the event of

the kth aggregate loss and n is the total number of aggregate loss events. If the number of transmission rate

reductions at the aggregate loss moment is greater than N, we assume that the Markov chain is in the state

N. Since N is chosen so that it is unlikely to have the rate reduced more than N times during a burst, this
assumption should not cause any problem. In the following we take N = 4.

Using the maximum distance of 0.4 s between losses within a burst (Fig. 6), we aggregate in bursts the

moments at which the transmission is divided by two. As before, we assume that the resulting aggregate loss

process is Poisson. We approximate the throughput of the exact fluid model using Eqs. (8) and (10). Fig. 8

shows the results. The iid. batch model denotes the first case where the number of losses in a burst is
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described by an iid. random variable. The Markovian batch model denotes the second case where this num-

ber is described by a Markov chain. We notice that the two methods give approximately the same result,

which means that the number of losses within a burst is really iid. distributed. The result is closer to that

of the exact fluid model than the throughput calculated for the Poisson model. However, it is not as good

as we expected. The main reason is that we are ignoring the length of a burst, which is here comparable
to the time between bursts. Possibly, for other connections where losses are more clustered together, this

batch method will have a better performance. One may expect that the Markov version of the batch model

will perform better than the iid. version on connections where strong correlation exists among burst sizes. In

the next subsection, we will present a model that accounts for the time the connection spends during a burst.
5.3. The two-state model

Consider a particular case of our general model where the path switches between two different states.
Namely, let N = 2 and let the state 1 corresponds to the Good state of the path and the state 2 to the

Bad state. We also denote the transition probabilities of the Markov chain as follows: p11 = g,

p12 ¼ �g ¼ 1� g, p21 ¼ �b ¼ 1� b and p22 = b. The stationary distribution of this chain are equal to,
p1 ¼
�b

�bþ �g
; p2 ¼

�g
�bþ �g

:

The following results can be easily obtained as straightforward corollaries of the theorems for the gen-

eral N state model.

Corollary 1. The Laplace–Stieltjes Transforms W(s, i), i = 1,2, are the solutions of the following implicit
equations:
W ðs; 1Þ ¼ D
ðasÞ g
Z 1

0

W ðas; 1ÞdF 1ðaÞ
� �

þ D
ðasÞ �b
Z 1

0

W ðas; 2ÞdF 2ðaÞ
� �

;

W ðs; 2Þ ¼ D
ðasÞ �g
Z 1

0

W ðas; 1ÞdF 1ðaÞ
� �

þ D
ðasÞ b
Z 1

0

W ðas; 2ÞdF 2ðaÞ
� �

:

We shall now proceed to obtain explicit expressions for the first and second moments of the transmission
rate at potential loss instants.

Corollary 2. The first moment of the transmission rate at a potential loss event is given by
E½Xn� ¼ x1 þ x2;
where
x1 ¼ ad
a2ðp2 � bÞ þ p1

1� a2b� a1g þ a1a2ðg þ b� 1Þ ; ð11Þ

x2 ¼ ad
a1ðp1 � gÞ þ p2

1� a2b� a1g þ a1a2ðg þ b� 1Þ : ð12Þ
Corollary 3. The second moment of the transmission rate at a potential loss event is given by
E½Xn� ¼ xð2Þ1 þ xð2Þ1 ;
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where
xð2Þ1 ¼
2ada1a

ð2Þ
2 x1ð1� g � bÞ þ 2adða2x2�g þ a1x1gÞ þ a2dð2Þ að2Þ2 p2 þ p1 � bað2Þ2

� �
1� gað2Þ1 � bað2Þ2 � að2Þ1 að2Þ2 ð1� g � bÞ
� � ; ð13Þ

xð2Þ2 ¼
2adað2Þ1 a2x2ð1� g � bÞ þ 2adða1x1�g þ a2x2bÞ þ a2dð2Þ að2Þ1 p1 þ p2 � gað2Þ1

� �
1� gað2Þ1 � bað2Þ2 � að2Þ1 að2Þ2 ð1� g � bÞ
� � : ð14Þ
Corollary 4. The throughput, or the time-average of the transmission rate, is given by
E½X ðtÞ� ¼ a1x1 þ a2x2 þ 1
2
a
dð2Þ

d
;

where x1 and x2 are given in Eqs. (11) and (12).

Corollary 5. The second moment of the transmission rate at an arbitrary time instant is given by
E½X 2ðtÞ� ¼ að2Þ1 xð2Þ1 þ að2Þ2 xð2Þ2 þ adð2Þða1x1 þ a2x2Þ
d

þ 1
3
a2

dð3Þ

d
;

where x1 and x2 are given in Eqs. (11) and (12) and xð2Þ1 and xð2Þ2 in Eqs. (13) and (14), respectively.

Next we specialize the model further by taking Aj
n, for j 2 {1,2} and "n P 0, to be discrete random var-

iables with values in {0.5,1}. Note that Aj
n ¼ 0:5 represents the case when a potential loss is transformed into

a real loss, namely when it causes a reduction in the transmission rate, whereas Aj
n ¼ 1 represents the case

when the transmission rate is not reduced at the potential loss event. We get here the same model as that

described in [1]. Note that in [1] we validate via simulation a particular case of this two-state model that cor-

responds to pG = 0, pB = 1. In the present work, we show how to set the different parameters of the two-state
model in its general case. {Dn} is the sequence of the times between potential losses. We also denote

pG :¼ PfA1
n ¼ 0:5g ¼ 1� PfA1

n ¼ 1g, as the probability of the event when a potential loss is transformed into
a real loss in the Good state. Analogously, we define the probability of a potential loss becoming a real loss in

the Bad state as pB :¼ PfA2
n ¼ 0:5g ¼ 1� PfA2

n ¼ 1g. We assume that pG 6 pB. Clearly,
a1 ¼ 1� 1
2
pG and a2 ¼ 1� 1

2
pB:
Next we demonstrate how the above introduced parameters as well as d and the transition matrix P can

be determined from the data in real TCP traces. First, we obtain an estimation of the transition matrix for

the Markov chain {Yn}. Recall that this is the Markov chain obtained when looking at the state of the

channel at potential loss events. Let {Sn} be a sequence of inter-loss times measured from a TCP trace.

We need to determine when the path is in the ‘‘Good’’ state and when it is in the ‘‘Bad’’ state. We use

the following simple method. Choose some time interval s. We will explain later how to make this choice.

If the inter-loss time Sn is less than s then the path is in the Bad state, otherwise the path is considered to be
in the Good state. If two or more inter-loss times correspond to the same state, we will merge these intervals
together and call the new interval LGk or LBk depending on the state. Note that these new intervals represent

the time during which the path of the connection is either in the Good or in the Bad state. Denote nG (resp.

nB) the number of the time intervals S
G
k (resp. SBk ) during the time interval that we use for measurement.

Then, the evolution of the path of the TCP connection can be described by a two-state continuous time

Markov process with the following infinitesimal generator matrix:
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Q ¼
�rG rG

rB �rB

� �
; ð15Þ
where the rates rG and rB are calculated as follows:
rG ¼ 1

E½SGk �
’ nGPnG

k¼1S
G
k

; rB ¼ 1

E½SBk �
’ nBPnB

k¼1S
B
k

:

Note that on some paths, say a wireless link, this Markov chain is apriori known and can be directly used

without the need to look at the trace of the TCP connection. In case it is not known, we need to define it

using the parameter s as described above. We present now two approaches for the determination of s. The
first one is more empirical. We look at the histogram of the inter-loss times (Fig. 4) and we choose s as the
time separating the two distributions it encloses (0.4 s in the figure). The second method is less empirical and
was used in the context of Markov-modulated Poisson processes [19]. In this second approach, we define

parameter s as the expectation of the inter-loss times, that is
s ¼ E½Sk� ’
1

n

Xn
k¼1

Sk;
where n is the total number of inter-loss intervals we get from the trace. Given the continuous time Markov

chain associated to the channel, we can now extract the parameters of the discrete time Markov chain
embedded at the potential loss events. We use for this purpose the uniformization technique [29]. Let us

choose the potential loss process {Dn} as a Poisson process with intensity 1/d higher than both rG and

rB. For example, a reasonable choice of d is the estimation of the average Round Trip Time of the connec-

tion. According to the uniformization technique [29], the state of the path described by the Markov process

(15) and sampled at the moments of potential losses can be equivalently given by a discrete time Markov

chain with the following transition matrix:
P ¼
1� drG drG

drB 1� drB

� �
:

Having chosen d and calculated rG and rB from the trace, we can easily deduce the parameters b and g of

the loss model. Namely, �g ¼ drG and �b ¼ drB. Now we determine pG and pB. Let xG
k (xB

k ) be the number of

real losses in the time interval SGk (resp. in SBk ). Then the probabilities pG and pB are given by
pG ¼
PnG

k¼1x
G
kPnG

k¼1S
G
k =d

¼ d
PnG

k¼1x
G
kPnG

k¼1S
G
k

¼ dkG; pB ¼
PnB

k¼1x
B
kPnB

k¼1S
B
k =d

¼ d
PnB

k¼1x
B
kPnB

k¼1S
B
k

¼ dkB:
1/kG and 1/kB represent the average time between window reductions in the Good and in the Bad state

respectively. For the same eleven traces obtained in our experiments, we calculated the parameters of

the model. We use s = d = 0.4s to separate the Bad state from the Good state. In Fig. 8, we compare

the result with that of the exact fluid model. A close match is noticed. In addition to the good results

and the closed form expression it provides, this model has the advantage of having simple parameters.

All what we need to approximate the throughput of TCP are the parameters of the two-state Markov chain

associated to the path and the intensity of losses in both states. Concerning the parameter d, it is enough

to choose in a way that the intensity of potential losses 1/d is higher than the intensity of losses in the Bad
state kB.

The maximum receiver window in the 11 runs of our TCP connection is equal to 64Kbytes (which gives

approximately 44 packets of 1460bytes). Our connections show an average round-trip time equal to 100 ms,

which is relatively large due to queuing delays in intermediate routers.
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6. Concluding remarks

We considered in this paper a multi-state Markov model to describe the loss process experienced by a

flow control mechanism that has a linear window increase between losses, and a multiplicative window de-

crease upon a loss event. The modeling of some channels using a Markov chain with more than two states
have long been advocated, see e.g. [25,28].

Using an approach based on Laplace–Stieltjes Transform, we derived explicit expressions for the two

first moments of the transmission rate of the mechanism just prior to losses, as well as the two first moments

of the transmission rate at arbitrary time. The first moment of the transmission rate of the flow-control

mechanism at an arbitrary time is often the measure of its throughput. We note that the expression for

the second moment of the transmission rate at arbitrary time (call it the second moment of the throughput)

could be useful in designing TCP friendly protocols for real time applications [13]. In these applications,

other parameters of the linear increase and multiplicative decrease are chosen so as to maintain the same
throughput (as a function of the loss process and of the round-trip time) as the original TCP protocol. (The

latter requirement on the throughput stems from fairness arguments.) Such applications (e.g., interactive

voice or video transmissions) typically require a smaller variance of the transmission rate than the one

of the original TCP in order to ensure a reasonable quality of service.

In [2] we have succeeded in analyzing non Markovian models for loss events [2], and obtained similar

performance measures using a completely different approach (that relies on some covariance functions

of the inter-loss times). The approach proposed here, in contrast, leads to formulae that involve only a finite

and small number of easily computable parameters. In addition, we proposed here methods for the iden-
tification of such parameters.
Acknowledgments

The authors thank anonymous referees for helpful comments on the earlier version of this paper which

are, in particular, helpful in better focusing the contributions of this work.
References

[1] E. Altman, K.E. Avrachenkov, C. Barakat, TCP in presence of bursty losses, Performance Evaluation 42 (2–3) (2000) 129–147.

[2] E. Altman, K.E. Avrachenkov, C. Barakat, A stochastic model of TCP-IP with stationary ergodic random losses, in: ACM

SIGCOMM, August 28–September 1, Stockholm, Sweden, 2000.

[3] E. Altman, K.E. Avrachenkov, C. Barakat, TCP network calculus: The case of large delay-bandwidth product, in: Proceedings of

IEEE INFOCOM, NY, USA, June 2002.
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