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Abstract

Many mathematical models exist for describing the behavior of TCP/IP (TCP: transmission control protocol) under an
exogenous loss process that does not depend on the window size. The goal of this paper is to present a mathematical analysis
of two asymmetric competing TCP connections where loss probabilities are directly related to their instantaneous window
size, and occur when the sum of throughputs attains a given level. We obtain bounds for the stationary throughput of each
connection, as well as an exact expression for symmetric connections. This allows us to further study the fairness as a function
of the different round trip times. We avoid the simplifying artificial synchronization assumption that has frequently been used
in the past to study similar problems, according to which whenever one connection looses a packet, the other one looses a
packet as well.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The mathematical analysis of the performance of transmission control protocol (TCP) has been a
major research area in networking. Different types of approaches have been suggested and validated.
On one hand, there have been models focusing on a single connection that is subject to some ex-
ogenous loss process (which does not depend on that connection), see e.g.[2–4,13]. This approach
is appealing when there is a large amount of traffic, so that we can neglect the effect of the single
connection on events that cause losses. An alternative approach is necessary when the window in-
crease of a connection is itself a central cause for losses. This occurs typically when a small num-
ber of connections compete for bandwidth, say, at a bottleneck link. A main mathematical approach
for studying this situation has been to study several connections sharing a bottleneck, and then make
the simplifying assumption that all connections reduce their windows simultaneously upon congestion
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[1,9,12]. With this approach, it has been shown[12] that the throughput achieved by a TCP connec-
tion is inversely proportional to RTTα with 1 < α < 2, where RTT is the two-way propagation
delay of the connection. However, it turns out that in practice this assumption does not hold, except
for drop tail buffers and connections with similar round trip times (RTTs)[15]. Indeed, traces in[1]
(e.g. Fig. 5) show that the synchronization assumption is invalid for asymmetric connections using
a drop tail buffer. In preparing[5], the authors have also observed through simulations (using the
ns-simulator) that there is no synchronization between losses when the RED (random early detection
[11]) buffer is used. (The RED buffer management scheme has been shown to have better performance
than the drop tail scheme in a TCP environment, partly because RED prevents synchronization between
losses.)

In two recent papers,[5,8], a Markovian model with continuous state space has been proposed to study
the performance of TCP when flows are not synchronized. Instead of synchronization, it is assumed that
the connections reduce their windows upon congestion with a probability that equals to their share of the
bandwidth upon the congestion. Exact formulas for TCP throughput in a similar setting are obtained in
[7], assuming that when congestion occurs, the probability that a given connection suffers from it does not
depend on the window sizes. However, simulation studies[5] indicate that this probability does depend
on the connection’s bandwidth share. The performance measures of TCP were obtained in[5,8], by
discretizing this Markov chain and computing numerically the steady state distribution of the discretized
model. It was then concluded in[5] (and validated through simulations) that in that scenario, TCP is
more fair than predicted by models that assume synchronization of losses: the throughput share of each
connection was observed to be approximately proportional to RTT−0.85. This as opposed to RTT−α with
α > 1 in the synchronized case.

The first goal of the current paper is to go one step further than the numerical results in[5] and provide
analytical expressions and provable bounds on the throughput of competing TCP connections. Our second
objective is to substantiate the qualitative conclusions that were obtained in[5] through numerical studies
and simulations on the bandwidth sharing between the connections, and prove their validity beyond the
parameter values chosen there. Indeed, we show that TCP is more fair than predicted in the synchronized
setting, a connection’s share being inversely proportional to its RTT when the latter tends to infinity.
Note that this matches the prediction of TCPs throughput by models for a single connection[2,13].
For moderate RTTs we provide an approximation that matches the numerical results for the discretized
Markov chain in[5] (and explains the observed approximate proportionality between the throughput and
RTT−0.85).

The remainder of the paper is organized as follows. InSection 2we describe the mathematical model
for the throughput of two concurring TCP connections. A recursive expression for the moments of the
throughput at loss instants is derived inSection 3. When both connections have the same RTT, this
allows to compute all moments of the throughput, but in the asymmetric case the mean (from which all
higher moments can be determined) remains unknown.Section 4shows how the recursion leads to an
implicit equation for thedistribution of the throughput at loss instants. Determining bounds for the mean
throughput at loss instants (when the RTTs are different) is the subject ofSection 5. This leads to bounds
for the time average throughput when the RTTs are unequal inSection 6(in the symmetric case the
time average throughput of both connections can be determined exactly). InSection 7we show that the
obtained bounds match the exact order of magnitude of the throughput when the ratio of the RTTs tends
to infinity. A surprisingly accurate approximation is derived inSection 8. Finally,Section 9summarizes
the paper.
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Fig. 1. Two TCP connections on a path of bandwidthµ.

2. The mathematical model

Suppose that two TCP sources (1 and 2) share a path of bandwidthµ as depicted inFig. 1. The two
sources are assumed to have the same packet length. Denote the RTTs of these connections byT1 and
T2. Denote also byW1(t) andW2(t) the window sizes of the two connections at timet . The rate of a
connection at an instantt can be written as

Xk(t) = Wk(t)/Tk with k = 1,2.

We assume that the two sources run a TCP version able to recover from losses without resorting to
timeout and slow start. A SACK version or a New-Reno version can be used[10]. Upon detection of
congestion, the TCP source divides its window by two, recovers from losses, and then resumes increasing
its window. We assume that the transfers are permanent, i.e., the sources always have packets to send.
We further assume that the queueing delay is small with respect to the propagation delay so that the RTT
is approximately constant. This is reasonable with active buffers where the queue length is maintained
at small values[11]. We consider the case when the window of TCP increases by one packet every RTT
(i.e., delay ACK mechanism[14] is disabled; the analysis of the case of delay ACKs can be handled in
exactly the same way our analysis below). The window and the rate of each source grow then linearly as
a function of time as shown in[12] where a fluid model for the window evolution is used. We write for
k = 1,2

dWk(t)

dt
= dWk(t)

dackk

dackk
dt

= 1

Wk(t)

Wk(t)

Tk
= 1

Tk
.

This linear growth continues until a congestion occurs. Due to our assumption that queueing time is
small, it is possible to consider that congestion occurs when the sum of the rates of the two connections
reach a threshold bandwidthµ (which could correspond to the capacity of a bottleneck). We assume that
a congestion event causes losses to one connection and only this connection divides its window by two.
The window growth of the other connection is not affected. Given the probabilistic drop of packets at
the onset of congestion, the probability that a specific connection is affected can be approximated by its
share of the bottleneck bandwidth upon congestion.
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Definition 1. Denote bytn the instant at which thenth congestion event occurs. LetW1(tn) (resp.W2(tn))
be the window size of source 1 (resp. 2) just prior to this event. We assume that instantstn are
given by:

X1(tn)+X2(tn) = W1(tn)

T1
+ W2(tn)

T2
= µ. (1)

The probability that a sourcek (k = 1,2) reduces its window at instanttn is equal to:

pk = Xk(tn)

µ
= Wk(tn)

(µTk)
.

Our aim is to determine how fair the two connections share the bottleneck bandwidthµ, how well they
utilize this bandwidth, and how much the network parameters affect the overall performance.

The preceding description gives rise to the Markovian model from[5] which we describe now. Given that
the two processesW1(tn) andW2(tn) are related to each other byEq. (1), we can transform the problem
from a two-dimensional problem to a one-dimensional one. The study of one of the two processes is
sufficient to describe the other. In the sequel we focus on the study of connection 1. We start by calculating
the relationship betweenW1(tn) andW1(tn+1) as well as the time (tn+1 − tn) between two consecutive
congestion events. The window variation as a function of time and the sum of the rates at instantstn and
tn+1 are used. First we state the main results.

To simplify the expressions, we introduce some further notation. Let

a := (T1)
2, b := (T2)

2, c := (a−1 + b−1)−1, and r := b

a
.

Let Sn+1 := tn+1 − tn. We define the instantaneous throughput of connection 1 byXn = W1(tn)/T1 =
X1(tn). The instantaneous throughput of connection 2 attn is then equal toµ − Xn. The processXn

evolves as follows (see[5, Theorem 1])

Theorem 1. If connection 1 is hurt by congestion at instant tn, the next congestion will occur after time

Sn+1 = 1
2cXn,

and the instantaneous throughput of connection 1 prior to that event will be equal to

Xn+1 = 1 + 2r

2(1 + r)
Xn. (2)

If connection 2 is hurt by the congestion, connection 1 continues to increase its window without reduction
until the next congestion event which occurs after a time

Sn+1 = c(µ−Xn)

2
.

In this case, the instantaneous throughput of connection 1 prior to the next congestion event will be equal
to

Xn+1 = µr

2(1 + r)
+ 2 + r

2(1 + r)
Xn. (3)
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The distribution ofXn+1, which can be viewed as the state of connection 1 at instanttn+1 is only a func-
tion of the state at timetn. Thus, the stochastic processXn forms a Markov chain. ByTheorem 1we have

Xn+1 =




1 + 2r

2(1 + r)
Xn, w.p.

Xn

µ
,

µ− 2 + r

2(1 + r)
(µ−Xn), w.p. 1 − Xn

µ
.

(4)

In the sequel, we shall study this Markov chain assuming it has reached stationarity.

3. Recursion for the moments of the throughput at loss instants

In this section we derive recursive equations for the moments of the throughput of both connections.
These will be the basis for the subsequent analysis, when we obtain implicit equations for the probability
distribution and its Laplace–Stieltjes transform (LST), as well as analytic bounds for the mean in case of
different RTTs and an exact expression for the symmetrical case.

Assuming the processXn is in steady state (in which case we may omit the subscriptn), we obtain

E[Xk] =E[E[(Xn+1)
k|Xn]] − E

[
Xn

µ

[
1 + 2r

1 + r
· Xn

2

]k
+ µ−Xn

µ

[
µr + (2 + r)Xn

2(1 + r)

]k]

− Z1(k)+ Z2(k), (5)

where

Z1(k) = 2(1 + r)

µ(1 + 2r)

(
1 + 2r

2(1 + r)

)k+1

E[Xk+1],

Z2(k) = −E

[
2(1 + r)

µ(2 + r)

(
(2 + r)(Xn − µ)

2(1 + r)

) (
µr +Xn(2 + r)

2(1 + r)

)k
]

= 2(1 + r)

2 + r
E

[(
µr + (2 + r)Xn

2(1 + r)

)k
]

− 2(1 + r)

µ(2 + r)
E

[(
µr + (2 + r)Xn

2(1 + r)

)k+1
]
.

Note that(5)enables us to compute recursively all moments of the distribution ofX, once we knowE[X].
In particular,Eq. (5)with k = 1,2 and 3 gives

(1 − r)E[X2] = µr(µ− 2E[X]), (6)

(1 − r)E[X3] = µr(µ2r + µ(4 + r)E[X] − (8 + 5r)E[X2])

3(1 + r)
, (7)

(1 − r)E[X4] = µr

7r2 + 13r + 7
(−2(5r2 + 15r + 12r)E[X3] + 6µ(2 + r)E[X2]

+ 2µ2r(3 + r)E[X] + µ3r2). (8)

If r = 1 (the symmetric case) then the coefficient ofE[Xk+1] in (5) vanishes. In particular, we directly
getE[X] = µ/2 from(6), E[X2] = 7µ2/26 from(7) andE[X3] = 2µ3/13 from(8).
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4. Throughput distribution at loss instants

Before focusing on the mean throughput in the remainder of the paper, we first employ(5) to find an
implicit expression for the distribution function ofX. Define

β := 1 + 2r

2(1 + r)
, u := µr

2(1 + r)
, v := 2 + r

2(1 + r)
.

Then we can rewrite

Z1(k) = E[(βX)k+1]

βµ
, Z2(k) = 1

v
(E[(u+ vX)k] − µ−1E[(u+ vX)k+1]).

Define the LST

F(s) := E[exp(−sX)] =
∞∑
k=0

(−s)kE[Xk]

k!
.

Note that sinceX is bounded,F(s) is well defined for alls. Then substituting(5), we obtain:

F(s)= 1

βµ

∞∑
k=0

(k + 1)(−s)kE[(βX)k+1]

(k + 1)!
+ 1

v

∞∑
k=0

(−s)kE[(u+ vX)k]

k!

− 1

vµ

∞∑
k=0

(k + 1)(−s)kE[(u+ vX)k+1]

(k + 1)!

= − 1

µ
F ′(βs)+ 1

v
exp(−us)F (vs)+ 1

µ
exp(−us)F ′(vs)− u

vµ
e−usF(vs).

To invert the above transforms, we use the relations between a probability distribution densityf (x) and
its LSTF(s) = ∫ ∞

0 exp(−sx)f (x)dx:

L−1F
( s
α

)
= αf (αx), L−1(exp(−sr)F (s)) = f (x − r), L−1F(αs)′ = − x

α2
f

(x
α

)
.

We get the following relation for the probability density functionf (x) of X:

f (x) = 1

β2µ
xf

(
x

β

)
+ 1

v2
f

(
x − u

v

)
− 1

µv2
(x − u)f

(
x − u

v

)
− u

v2µ
f

(
x − u

v

)
.

5. Mean throughput at loss instants

We already observed inSection 3that if r = 1 then all moments ofX, i.e., the rate of connection 1 at
instants of losses, can be obtained, starting with the meanE[X] = µ/2. We now derive bounds onE[X]
whenr 	= 1. Eq. (6)may be alternatively written as

E[X2] = rE[(µ−X)2]. (9)
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If r ≤ 1, i.e., connection 1 is the one with the largest RTT, then

E[X]2 = (1 − r)E[X]2 + rE[X]2 ≤ (1 − r)E[X2] + rE[X]2 = rE[(µ−X)2 −X2] + rE[X]2

= r(µ− E[X])2.

Therefore, we have the following bound on the ratio of the expected throughputs of the connections just
before loss instants, whenr ≤ 1:

E[X]

µ− E[X]
≤ √

r = RTT2

RTT1
.

By symmetry we may write whenr ≥ 1

µ− E[X]

E[X]
≤ 1√

r
.

Together this gives a direct bound on the expected throughput of a connection just before a loss instant

E[X]




≤ µ
√
r

1 + √
r

if r ≤ 1,

≥ µ
√
r

1 + √
r

if r ≥ 1.

(10)

(Note that indeedE[X] = µ− E[X] = µ/2 whenr = 1.)
We also obtain complementary bounds forE[X], i.e., a lower bound whenr ≤ 1 and an upper bound

whenr ≥ 1. UsingE[X2] < µ2 we have from(9)

µ/2 − E[X]

1 − r
= E[X2]

2µr
≤ µ

2r
.

We may write this as∣∣∣µ
2

− E[X]
∣∣∣ ≤ |1 − r| µ

2r
.

Combining this with(10)gives forr < 1

µ

2(1 + √
r)2

<
µ/2 − E[X]

1 − r
≤ µ

2r
,

and the symmetric expression forr > 1.

6. Time average throughput

We denote the mean rate of connectionk = 1,2, at arbitrary time instants bȳXk. We shall now employ
(10) to derive bounds for̄Xk and forX̄1/X̄2, as well as exact expressions forX̄k for the symmetric case
r = 1. This ratio is a measure for the fairness of bandwidth sharing between the two connections. By
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Theorem 1we have, using the inversion formula[6, Chapter 1, Section 4]̄X1 = E[
∫ tn
tn−1

X1(t)dt ]/E[Sn]

X̄1 = E[cX2/2µ(X/2 + cX/4a)+ c(µ−X)2/2µ(X + c(µ−X)/4a)]

E[cX2/2µ+ c(µ−X)2/2µ]

= E[cX2(X/2 + cX/4a)+ (µ−X)2(X + c(µ−X)/4a)]

E[X2 + (µ−X)2]

= E[3/2X3 − µ(2 + 3r/4(1 + r))X2 + µ2(1 + 3r/4(1 + r))X + µ3(r/4(1 + r))]

E[2X2 − 2µX + µ2]
. (11)

SubstitutingE[X] = µ/2,E[X2] = 7µ/26 andE[X3] = 2µ/13 into(11)we obtain forr = 1

X̄1 = X̄2 = 3
7µ,

implying a utilization of 86% in the symmetric case. We note that this gives an excellent correspondence
with previously obtained numerical results: the difference between our computed throughput and the one
obtained numerically in[5, Fig. 2] is 0.4%.

For r 	= 1, we can write

X̄1 = µh1(E[X]), (12)

with

h1(x) := (1 + r)(4 + 9r)x − µr(7 + 6r)

4(1 − r)(1 + r)(µ− 2x)
.

Note that ifr 	= 1 thenh1(x) is increasing inx for all values ofx except at the pointx = 1/2µ where
h1(x) switches from+∞ to −∞. Substituting(10) into (12)gives

X̄1




≤ µ
√
r

4 − 3
√
r + 3r − 3r

√
r

4(1 − r)(1 + r)
if r < 1,

≥ µ
√
r

4 − 3
√
r + 3r − 3r

√
r

4(1 − r)(1 + r)
if r > 1.

(13)

By symmetry, replacingE[X] andr in (12)with µ− E[X] and 1/r, respectively, we also have

X̄2 = µ
(1 + r)(4r + 9)(µ− E[X])− µ(7r + 6)

4(1 − r)(1 + r)(µ− 2E[X])
. (14)

We note that the above bounds do not perform well forr in the neighborhood of 1.
From(13)we have that, whenr → 0, thenX̄1/(µ

√
r) ≤ 1. In Section 7we show that the order of this

upper bound is exact, i.e.,X̄1 tends to zero as
√
r (and not faster) whenr → 0. Also note that̄X2 → 3/4µ

whenr → 0, which indeed corresponds to the throughput of a single connection.
For r 	= 1, (12) and (14)give

X̄1

X̄2
= h(E[X]), (15)

where

h(x) := (1 + r)(4 + 9r)x − µr(7 + 6r)

(1 + r)(4r + 9)(µ− x)− µ(7r + 6)
.
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If r 	= 1, thenh is increasing inx for all values ofx except at

x = µ
3 + 6r + 4r2

(1 + r)(4r + 9)
,

at which pointh(x) switches from+∞ to −∞. Substituting(10) into (15)gives

X̄1

X̄2




≤ √
r

(
4 − 3

√
r + 3r − 3r

√
r

3 − 3
√
r + 3r − 4r

√
r

)
if r < r0,

≥ √
r

(
4 − 3

√
r + 3r − 3r

√
r

3 − 3
√
r + 3r − 4r

√
r

)
if r > 1/r0,

(16)

wherex = r0 ≈ 0.32 is the unique root in(0,1) of −3+ 7
√
x − 6x + 7x

√
x − 3x2. We shall show that

these bounds give the right order of magnitude whenr → 0 (or, by symmetry, whenr → ∞). More
specifically, we show that

lim inf
r→0

1√
r

· X̄1

X̄2
≥ 2

3
. (17)

Note that from(16)we also have

lim sup
r→0

1√
r

· X̄1

X̄2
≤ 4

3
. (18)

This proves that the bounds have the correct order of magnitude in the regimer → 0: X̄1 ∼ √
r =

RTT2/RTT1. We shall prove(17) by showing the equivalent asymptotic behavior forE[X] (the mean
rate of connection 1 at loss instants). This is done inSection 7. Note that(16) is only informative for
r < r0 < 1 andr > 1/r0 > 1. However, inSection 8we derive an approximation for̄X1/X̄2 which
performs well for all values ofr (and also has the right asymptotics for small and large values ofr).

7. Asymptotic bound at loss instants

From(4) it is straightforward to see that ifXn = x then the drift is positive ifx < x0, negative ifx > x0

and zero ifx = x0, wherex0 := µ
√
r/(1+ √

r). This feeds the intuition that the processXn “tends to be
in the neighborhood ofx0”. Note that forr → 0 we havex0 ∼ µ

√
r. We shall now construct a processYn

that mimics this behavior ofXn, but is easier to analyze. More specifically, the Markov chainYn evolves
according to

Yn+1 =




(1 + 2r)Yn
2(1 + r)

, w.p.




t

µ
if Yn ≤ t,

1 if Yn > t,

(2 + r)Yn + rµ

2(1 + r)
, w.p.



µ− t

µ
if Yn ≤ t,

0 if Yn > t,

(19)
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wheret ∈ (0, µ) is an arbitrary threshold. (We shall later chooset = 2µ
√
r to obtain the sharpest bound

possible using this construction.) By a simple coupling argument it can be shown that ifP(X0 ≤ x) ≤
P(Y0 ≤ x) for all 0 ≤ x ≤ µ, then alsoP(Xn ≤ x) ≤ P(Yn ≤ x) for all 0 ≤ x ≤ µ andn ≥ 1.
ThereforeE[X] ≥ E[Y ] whereY has the stationary distribution of the processYn.

From(19)we get

E[Y ] = (1 − t/µ)(rµ− (1 − r)E[Y1(Y > t)])

r + (1 − r)t/µ
, (20)

where1(·) is the indicator function. Note that

E[Y1(Y > t)] ≤
(
(r + 2)t

2(r + 1)
+ rµ

2(r + 1)

)
P(Y > t) =

(
t + r(µ− t)

2(r + 1)

)
P(Y > t). (21)

Next, we shall bound the probabilityP(Y > t) from above. To this end we first writeP(Y > t) =
1/(1 + τt ), whereτt is the return time to the setY > t . This is justified because ifYn > t then
Yn+1 < t . Of course, such a return time could start from different points abovet , but when the starting
point makes a difference we shall take the “worst case” so as to obtain a lower bound forτt and, hence,
an upper bound forP(Y > t). We shall prove (for later explanation these formulas have not been
compressed)

τt ≥ τ̂t := K + t

µ

K∑
k=1

ak, K := (t − (2r + 1)/2(r + 1))(t + r(µ− t)/2(r + 1))

rµ/2(r + 1)
,

ak :=
(

2r + 1

2(r + 1)

(
t + r(µ− t)

2(r + 1)

)
+ krµ

2(r + 1)

)
× (2r + 1)/(2(r + 1))

rµ/2(r + 1)
. (22)

K is the minimum number of steps for the processYn to get back above levelt after it has dropped
below. To see this, note that after dropping belowt the process is surely below level((2r + 1)/2(r + 1))
(t + (r(µ− t)/2(r + 1))). Since

E[Yn+1 − Yn] ≤ rµ

2(r + 1)
,

it takes at leastK steps to be above levelt again.
At each of theseK steps a new reduction can take place with probabilityt/µ. If a reduction takes place

at thekth step, it takes at leastak additional steps to “recover” from this reduction (more if there are new
intermediate reductions, but we shall neglect those). The expression forak is constructed in the same way
as that forK.

SinceE[X] ≥ E[Y ] we have from(20)–(22), for any choice oft

E[X] ≥ r(µ− t)

rµ+ (1 − r)t

(
µ− rµ+ (1 − r)(t + r(µ− t)/2(r + 1))

r(1 + τ̂t )

)
.

Now chooset = t (r) = c
√
r for some constantc > 0 independent ofr. Note that

lim
r→0

rτ̂t (r)

t (r)
= 1

µ

(
1 + c2

4µ2

)
,
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and, hence,

lim inf
r→0

1√
r
E[X] ≥ cµ2

4µ2 + c2
= 1

2µ,

where we setc = 2µ, for which the bound is the sharpest. Together with(12) this proves(17).

8. Approximation

We can derive a surprisingly accurate approximation forX̄1/X̄2 if we approximateX̄1 andX̄2 by the
average throughputs in between two consecutive losses:

X̄1 ≈ 1

2
E[X] + 1

2

(
E[X] − 1

2µ
E[X2]

)
= 2 − r

2(1 − r)
E[X] − rµ

4(1 − r)
,

and the symmetrical expression forX̄2. This gives

X̄1

X̄2
≈ (2 − r)E[X] − 1

2µr

(2r − 1)E[X] + 1
2µ(3 − 4r)

. (23)

Using(10)as an approximation forE[X] gives

X̄1

X̄2
≈

√
r(4 + 3

√
r)

3 + 4
√
r

. (24)

Comparing this with the numerical results from[5] shows that it provides a good approximation of the
true ratio (the error being in the order of a few percent). This approximation being close to the true
ratio, it also “explains” the observation in[5] that the ratio of the throughputs is well approximated by
(RTT2/RTT1)

0.85 = (
√
r)0.85: for moderate values ofr this function is close to the approximation (for

r = 0.1,0.5,0.8 the relative error is 8, 2 and 0.6%, respectively). Moreover, the approximation matches
the correct order of magnitude whenr → 0 (or whenr → ∞).

9. Conclusions

We have studied the throughput of two TCP connections that share a bandwidthµ without assuming
that losses occur simultaneously to both connections. The transmission rates at loss instants were modeled
as a Markov chain. By deriving a recursion on the moments of the transmission rates, we showed that
all moments and, hence, the distribution can be determined once the means are known. For the mean
transmission rates and their ratio we obtained bounds that proved to be very close to the numerical
computations in[5]. Regarding fairness in bandwidth sharing we obtained the approximation(24), where√
r = R := RTT2/RTT1 is the ratio of the RTTs. We proved that forR → 0 this approximation has the

right order of magnitude, i.e.,̄X1/X̄2 is of the orderR whenr → 0; this is formalized in(17) and (18).
This contradicts the orderRα with 1 < α ≤ 2 predicted by models assuming synchronized losses. The
same order, however, is predicted by models for many competing TCP connections where the loss process
for one connection is independent of its transmission rate. This suggests that the order of magnitudeR is
valid throughout the whole spectrum: for many and for few competing connections. However, it remains
to verify this assertion for few, but more than two, connections.
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