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Keywords: Tracking algorithm, tracking features, Adaboostn online evaluation process. To do that, the system corspute
trajectory goodness score based on clusters of typicalctiaj
Abstract ries. Therefore, this method can be only applied for theassen
where mobile objects move on well defined paths. In [10], the
We propose in this paper a tracking algorithm which is able ithors have presented a tracking framework which is able to
adapt itself to different scene contexts. A feature pookisdl control a set of different trackers to get the best possible p
to compute the matching score between two detected objegdgmance. The approach is interesting but the authors do not
This feature pool includes 2D, 3D displacement distancBs, gescribe how to evaluate online the tracking quality and:the
sizes, color histogram, histogram of oriented gradient@JO ecution of three trackers in parallel is very expensive imge
color covariance and dominant color. An offline learning-prg)f processing time.
cess is proposed to search for useful features and to estimat | order to overcome these limitations, we propose a track-
their weights for each context. In the online tracking pas;e ing algorithm that is able to adapt itself to different corse
a temporal window is defined to establish the links betwegihe notion of context mentioned in this paper includes atet o
the detected objects. This enables to find the object t@jest gcene properties: density of mobile objects, frequencecef o
even if the objects are misdetected in some frames. A ta@jectcjysion occurrences, illumination intensity, contraseleand
filter is proposed to remove noisy trajectories. Experiragoh he depth of the scene. These properties have a strong effect
on different contexts is shown. The proposed tracker has bege tracking quality. In order to be able to track object move
tested in videos belonging to three public datasets andeto fients in different contexts, we define firstly a feature pool i
Caretaker European project. The experimental resultsepryhich each weighted feature combination can help the system
the effect of the proposed feature weight learning, anddhe kg outperform its performance in each context. However, the
bustness of the proposed tracker compared to some methgglémeter configuration of these features (i.e. deteriomaf
in the state of the art. The contributions of our approach oM@ature weight values) is a hard task because the user has to
the state of the art trackers are: (i) a robust tracking #lyor quantify correctly the importance of each feature in the-con
based on a feature pool, (i) a supervised learning schemesjgered context. To facilitate this task, we propose annefli
learn feature weights for each context, (iii) a new method {@arning algorithm based on Adaboost [5] to compute feature
quantify the reliability of HOG descriptor, (iv) a combii@t  yeight values for each context. In this work, we have two as-
of color covariance and dominant color features with spatigmptions. First, each video has a stable context. Second, f
pyramid distance to manage the case of object occlusion. gach context, there exists a training video set.
) The paper is organized as follows: The next section
1 Introduction presents the feature pool and explains how to use it to com-

é)cl,{te link similarity between the detected objects. Seide-

Many approaches have been proposed to tracl_< mobile ij <tribes the offline learning process to tune the featurehtgig
in a scene [3]. The problem is to have tracking algorlthn}

which perform well in different scene conditions (e.g. €iff . .
. . . L oS stages of the tracking process. The results of the expetamnen
ent people density levels, differentillumination conalits) and . - : . .
) . tion and validation can be found in section 5. A conclusion as
to be able to tune their parameters. The ideas of an automai]

control for adapting an algorithm to the context variatibase Wil as future work are givenin the last section.
already been studied [13, 7, 10]. In [13], the authors haee pr, . .
sented a framework which integrates knowledge and uses itto Feature pool and link similarity

control image processing programs. However, the cona’mmctz_l Feature pool

of a knowledge base requires a lot of time and data. Theiystud

is restricted to static image processing (no video). Infii¢ The principle of the proposed tracking algorithm is based on
author has presented an architecture for a self-adaptieepe the coherence of mobile object features throughout time. In
tual system in which the "auto-criticism*“ stage plays thieraf  this paper, we define a set of 8 different features to compute

Sr each scene context. Section 4 shows in detail the differe



a link similarity between two mobile objectsandm within a between two objects is defined as a value proportional to the

temporal window (see figure 1). number of pairs of tracked points belonging to both objdcts.
[9], the authors propose a method to track FAST points based
2.1.1 2D and 3D displacement distance similarity on their HOG descriptors. However the authors do not com-

pute the reliability level of the obtained point trajecewi In

Depending on the object type (e.g. car, bicycle, walke®, thhis work, we define a method to quantify the reliability oéth
object speed cannot exceed a fixed threshold Lgt, be the trajectory of each interest point by considering the cohes®f
possible maximal 3D displacement of a mobile object for onge Frame-to-Frame (F2F) distance, the direction and th& HO
frame in a video and be the 3D distance of two considere@im”arity of the points belonging to a same trajectory. \We a
objects, we define a similarit§5, between these two objectssyme that the variation of these features follows a Gaussian
using the 3D displacement distance feature as follows: distribution.

Let (p1,pe, ..., pi) be the trajectory of a point. Poipt is
1) on the current tracked object and pojt ; is on an object
(Previously detected. We define a coherence s8¢t of F2F
distance of poinp; as follows:

LS1 =mazx(0, 1 —d/(Dmag * 1))

wheren is the temporal difference (frame unity) of the tw
considered objects.

Similarly, we also define a similaritf.S, between two ob- it 1 _ (d—ny)?
jects using displacement distance feature in the 2D image co St = ?6 2 (5)
7T0'i

ordinate system.
whered; is the 2D distance between andp;_1, u; ando;
2.1.2 2D shape ratio and area similarity are respectively the mean and standard deviation of the F2F

) ] . distance distribution formed by the set of poifs, p2, -.., p;)-
Let W, and #1; be the width and height of the 2D bounding |, the same way, we compute the direction coherence score

box of obje_ctl. Thg 2D shape ratio and area of this.obje@gn and the similarity coherence scaésc of each interest
are respectively defined &,/ H; andW; H,. If no occlusions nnint Finally for each interest poipt on the tracked objedt

occur and mobile objects are well detected, shape ratio@ad gy gefine a coherence scatkas the mean value of these three
of a mobile object within a temporal window does not varysnerence scores.

much even if the lighting and contrast conditions are notyoo | et p pe the set of interest point pairs which trajectories
A similarity L.S3 between two 2D shape ratios of objettnd pass through two considered objeeisand o,,,; S (ST re-

m is defined as follows: spectively) be the coherence score of pailtj respectively)
o i on object! (m respectively) belonging to sét. We define the

LSy = min(Wi/ Hi, W [ Hy) [maz(Wi/Hi, Wm/Hm()z) similarity of HOG between these two objects as follows:
Similarly, we also define the similarit}.S, between two Z\(Pl sl Zli\l gm
2D areas of objectsandm as follows: LSs = min( 71\:/-;1 L, J]\} ) (6)

LSy = min(W,H;, W, Hp,)/max(W;H;, W, Hp,) (3) whereM; andM,, are the total number of interest points de-
tected on objectsandm.

2.1.3 Color histogram similarity

. . ) L . 2.1.5 Color covariance similarity
In this work, the color histogram of a mobile object is defined

as a normalized RGB color histogram of moving pixels insideolor covariance is a very useful feature to characterize th
its bounding box. We define a link similarifyS; between two appearance model of an image region. In particular, the

objectsl andm for color histogram feature as follows: color covariance matrix enables to compare regions of dif-
sk ferent sizes_ and is invariant to identical shifting of color
IS — > ey min(H(k), Hpy(k)) @) values. This becomes an advantageous property when ob-
° 3 jects are tracked under varying illumination conditionsa |

11], for a pointi in a given image regiom?, the authors

fine a covariance matrig’; corresponding to 11 descrip-
tors: {z,y, Ruy, Guy, Bay, ME,OF  MS OF ,ME, 05}
where (, y) is pixel location, R, G4y, and B, are RGB
o channel values, and/, O correspond to gradient magnitude
2.1.4 HOG similarity and orientation in each channel at positjany).

We use the distance defined by [4] to compare two covari-

whereK is a parameter representing the number of histogr
bins for each color channek( = 1..256), H;(k) and H,, (k)
are respectively the histogram values of objeet at bink.

In case of occlusion, the system may fail to detect the full ap X
pearance of mobile objects. The above features are thefi-und'ce Matrices:
able. In order to address this issue, we propose to use the HOG F
descriptor to track locally interest points on mobile obgeand p(Ci, Cy) = Z In2\(Ci, Cy) @)
to compute the trajectory of these points. The HOG similarit 1




whereF is the number of considered image descriptdfs£ wherew;, is the feature weight (corresponding to its effective-
11 in this case) . (C;, C;) is the generalized eigenvalue®@f ness), at least one weight is not null.
andCj.

In order to take into account the spatial coherence of t8 Learning feature weights
color covariance distance and also to manage occlusios,case
we propose to use the spatial pyramid distance defined in [g]s_lch feature described above is effective for some paaticul
The main idea is to divide the image region of a consideré@ntext conditions. However, how can the user quantify cor-
object by a set of sub-regions. For each leiél > 0), the rectly the feature significance for a given context? In otder
considered region is divided by a set 2ifx 2 sub-regions. address this issue, we propose in this paper an offline super-
Then we compute the local color covariance distance for eai§ed learning process using the Adaboost algorithm [SstFi
pair of corresponding sub-regions. The computation of ea@pveak classifier is defined per feature. Then a strong classifi
sub-region pair helps to evaluate the spatial structureresice which combines these eight weak classifiers (corresporiding
between two considered objects. In the case of occlusibas, e eight features) with their weights is learnt.
color covariance distance between two regions correspgndi  FOr €ach context, we select a learning video sequence rep-
to occluded parts is very high. Therefore, we take only adfalf resentative of this context. First, for each object gait o)
the lowest color covariance distances (i.e. highest siitidga) (called a training sample) in two consecutive frames, dehot
for each level to compute the final color covariance distanceopi (i = 1..N), we classify it into two classe$+1, -1}:

The similarity of this feature is defined as a function of thig = 1 if the pair belongs to the same tracked object and
spatial pyramid distance: y; = —1 otherwise. For each featuke(k = 1..8), we define a
classification mechanism for a pajs; as follows:
LS7 = max(O, 1-— dcm)/Dcm)_nL(L.’E) (8)
+1 if LSi(or, om) > Thy
whered.., is the spatial pyramid distance of the color co- hi(opi) = { —1 otherwise (11)
variance between two considered objects, BRg, ... IS the
maximum distance for two color covariance matrices to be conhereL S, (o;, o.,) is the similarity score of feature (defined

sidered as similar. in section 2.1) between two objecisando,,, Th; is a pre-
defined threshold representing the minimum feature siityilar
2.1.6 Dominant color similarity considered as similar.

) ) The loss function for Adaboost algorithm at iteratiofor
Dominant color descriptor (DCD) has been proposed Rch featuré is defined as:

MPEG-7 and is extensively used for image retrieval [8]. This

is a reliable color feature because it takes into account onl N )

important colors of the considered image region. DCD of an € = ZDz(Z)maw(O’ —yihi(opi)) (12)

image region is defined a8 = {{c;,pi}, i = 1..A} where =1

Ais the total number of dominant colors in the considered ifynerep, (4) is the weight of the training sample; at iteration

age regiong; Is a ED RGB color vectorp; is its occurrence At each iteratior, the goal is to find: whose loss function
percentage, wity ;" p; = 1. €5, is minimum. h;, ande;, (corresponding to valukefound) are

Let F; andF; be the DCDs of two image regions of considgenotedh, ande.. The weight of this weak classifier denoted
ered objects. The dominant color distance between these Wais computed as follows:

regions is defined using the similarity measure propose8lin [

Also, similar to the color covariance feature, in order tketa o — llnl — € (13)
into account the spatial coherence and occlusion casesowne p =2 €,
pose to use the spatial pyramid distance for the dominaatcol \ye then update the weight of samples:
feature. The similarity of this feature is defined in the fumc
of the spatial pyramid distance as follows: 1/N, if z=0
D,1(2) = 14
LSy =1-dpc (9) +10) D:(Weap(-asyiha(op))  prherpise -
wheredpc is the spatial pyramid distance of dominant colors
between two considered objects. whereA, is a normalization factor so th§t:f.V D.i1(d) = 1.
At the end of the Adaboost algorithm, the feature weights
2.2 Link similarity are determined for the learning context and allow to compute

the link similarity defined in formula 10.

Using the eight features we have described above, a link simi
larity LS (o, om) is defined as a weighted combination of fea4 The proposed tracking algorithm
ture similaritiesLS; between objects; ando,,,:

. The proposed tracking algorithm needs a list of detected ob-

D1 Wi LSk jects in a temporal window as input. The size of this tempo-
LS(oy, o) = =2—— (10) . X
S h_ W ral window (denoted’y) is a parameter. The proposed tracker



is composed of three stages. First, the system computesltdrg term similarity can take into account the latest variad
link similarity between any two detected objects appeaning of theo,, trajectory.

a given temporal window to establish possible links. Second For the left features (2D, 3D displacement distance and
the trajectories that include a set of consecutive linksltiegg HOG), the long term similarity are set to the same values of
from the previous stage, are then computed as the system ¢jpkssimilarity.

the highest possible total of global similarities (seeisact.3).

Finally, a filter is applied to remove noisy trajectories. 4.3 Trajectory determination

The goal of this stage is to determine the trajectories of the
mobile objects. For each detected objectat instantt, we

For each detected object pair in a given temporal window oénsider all its matched objeats, (i.e. objects with temporal
sizeT5, the system computes the link similarity (i.e. instantastablished links) in previous frames that do not have et of
neous similarity) defined in formula 10. A temporal link is escial links (i.e. trajectories) to any objects detectet] &or such
tablished between these two objects when their link siiitylar an object paifo;, o.,), we define a global sco@S(o;, o)

is greater or equal t6'h; (presented in equation 11). At the endhs follows:
of this stage, we obtain a weighted graph whose verticehare t

4.1 Establishment of object links

B S wpGSk (01, 0m)

detected objects in the considered temporal window and &vhos GS(or, om) = 3 (16)
edges are the temporally established links associatedtkgth > k=1 Wk
object similarities (see figure 1). wherewy, is the weight of featuré: (resulting from learning

phase, see section 3}.S;(o;, o) is the global score of fea-
turek betweery; ando,,,, defined as a function of link similar-

®- ity and long term similarity of featurg:
GSk(ol, Om) = (1 — ﬁ)LSk,(Ol, Om) =+ ﬁLTk(Ol, Om) (17)
@<: whereLSk(o;, 0,,) is the link similarity of feature: between
. the two object®; ando,,, LTk (o;, o) is their long term sim-
ilarity defined in section 4.23 is the weight of long term sim-
®- ilarity and is defined as follows:
e t t T
t-T,| t-1 t 8= min(é, Thy) (18)
Figure 1. The graph representing the established linkseof thereT’, @ are presented in section 4.2, afié, is the maxi-
detected objects in a temporal window of sizeframes. mum expected weight for the long term similarity.

The objecto,,, having the highest global similarity is con-
sidered as a temporal father of objegt After considering all
objects at instant, if more than one object get,, as a father,
the pair(o;, o) which GS(o;, o) value is the highest will
In this section, we study similarity score between an objeloé kept and the link between this pair is official (i.e. become
o, detected at and the trajectory o0b,, detected previously, officially a trajectory segment). An object is no longer ked
called long term similarity (to distinguish with the linkmsilar-  if it cannot establish any official links i, consecutive frames.
ity score between two objects). By assuming that the vanati
of the 2D area, shape ratio, color histogram, color covagam.4 Trajectory filtering
and dominant color features of a mobile object follow a Gaus- ) ) »
sian distribution, we can use the Gaussian probability iendV0ise usually appears when wrong detection or misclassifica
function (PDF) to compute this score. Also, longer the ajetion (€-9. due to low image quality) occurs. Hence a static
tory of o,, is, more reliable this similarity is. Therefore, for°Piect (€.g. a chair, a machine) or some image regions (e.g.
each featuré in these features, we define a long term similatvindow shadow, merged objects) can be detected as a mobile

4.2 Long term similarity

ity score between objeet and trajectory ob,, as follows: object. However, suc_:h noise usually only appears in fewé_am_
or have no real motion. We thus use temporal and spatial fil-
1 _lwn)® ters to remove potential noises. A trajectory is considered
LTx(or, om) = oL’ 2om mm(@a 1) (15) noise if one of the two following conditions is satisfied:
m
wheres; is the value of featuré for object!, u,, ando,, are Z; < Ths
max < Th6

respectively mean and standard deviation values of featafe

last Q-objects belonging to the trajectory of, (Q is a prede- whereT is time length of the considered trajectod;, .. is
fined parameter)[" is time length (number of frames) of, the maximum spatial length of this trajectof¥fhs, The are
trajectory. Thanks to the selection of the l&gtobjects, the predefined thresholds.



5 Experimentation and Validation noted ETI-VS1-BE-18-C4. It contains 1108 frames and frame

L i . . rate is 25fps. In this sequence, there is only one person mov-
The objective of this experimentation is to prove the effefct ing (see image 5¢). We have learnt feature weights on a se-

feature weight learning, also to compare the performant®of o ,once of 950 frames. The learning algorithm has selected
proposed tracker with other trackers in the state of theTart. e 3p gisplacement distance feature as the unique feature f
this end, in the first part, we test the proposed tracker With t .5 ing in this context. The result of the learning phaseds
complex videos (many moving people, high occlusion occWlz \anje since there is only one moving person.

rence frequency) which are respectively provided by theeCar The second tested ETISEO video shows an underground
taker_European proje]gand the TRECVi_d dataset [1]_' Thesestation denoted ETI-VS1-MO-7-C1 with occlusions. The dif-
two wdc_eos are te_sted in both cases: W'th.OUt a_md with the f_efﬁ:'ulty of this sequence consists in the low contrast and bad
re welght_ learning. In the second part, five V|deo_s bel”’gg'iIIumination. The scene depth is quite important (see image
to two public datasets ETISE@nd Caviat are experimented, 5d). This video sequence contains 2282 frames and frame rate

ar,“:] the trackrllng result (V\ath t_he :]eature Ie?rrrlung) is corapa is 25 fps. We have learnt feature weights on a sequence of 500
with some other approaches in the state of the art. rames. The color covariance feature is selected as theieniq

n orde'r to evalua_te the trgckmg perf'ormance, We US€ Meture for tracking in this context. Itis a good solutiorchese
three tracking evaluation metrics defined in the ETISEO@ID] 1« qominant color and HOG feature do not seem to be effec-

[2]. The first tracking evaluation metrief; measures the PE"ive due to bad illumination. Also, the size and displacetmen

centage of time during which a reference object (grounmtru&istance features are not reliable because their measaoteme

data) is correctly tracked. The secopd methig computes do not seem to be discriminative for far away moving people
throughout time how many tracked objects are associatéd W m the camera

one reference Obje(?t' The third metié; CO”.‘F’“tes the num . In these two experiments, tracker results from seven dif-
ber of reference object IDs per tracked object. These nsetric ;

: rent teams (denoted by numbers) in ETISEO have been pre-
must be used together to obtain a complete performance-eva

u .
ation. Therefore, we also define a tracking medddaking the sented: 1,8, 11, 12, 17, 22, 23. Because names of these teams
average value of these three tracking metrics. The fourine

are hidden, we cannot determine their tracking approadizes.
values are defined in the interval [0, 1. The higher the met:%g.le 2 presents performance results of the considered tscke
value is, the better the tracking algorithm performancs.get he tracking evaluation metrics of the proposed tracketiget
In this experimentation, we use the people detection algo-

highest values in most cases compared to other teams.
rithm based on the HOG descriptor of the OpenCV library. So The last three tested videos belong to the Caviar dataset

. : . See image 5e). In this dataset, we have selected the same se-
we focus the experimentation on the sequences containog (9 . :
P d g uences experimented in [12] to be able to compare each other

le movements. However the principle of the proposed track-
ipng algorithm is not dependentpon thg tracked gbjgct type. neStopEnter2cor, OneStopMoveNoEnterlcor and OneStop-

. . . @loveNoEntechor. In these three sequences, there are 9 per-
learning feature weights, we use video sequences thatfare di

ferent from the tested videos but which have a similar cante)?Ons walking in a corridor. The proposeq apprpach .car! track
F}I of them. However there are three noisy trajectories & th

The first tested video (provided by the Caretaker proje(ﬁ st sequence because of wrong detection occurred in a lon
depicts people moving in a subway station. The frame rate q g 9

of this sequence is fps (frames/second) and the length is period. Table 3 presents the result summary for these videos
5 min (see image 5a). We have learnt feature weights or;ng (True Positive) refers to the number of correct trackad tr

sequence of 2000 frames. The learning algorithm selects f;t?;gzé';'\ééiﬂzf rgeggglﬁt)s'?ggiﬂ;nggfg?algisst t;f;?:;o
0.5 (color histogram feature) ands = 0.5 (HOG feature). P ytra

The second tested sequence (belonging to the TREC\gf?mpared to [12], our proposed tracker have better values in

dataset) depicts the movements of people in an airportiisee | ofthese three indexes.
age 5b). It contains 5000 frames and lasts 3 min 20 sec. We ]
have learnt feature weights on a sequence of 5000 frames. $he Conclusion and Future work

learning algorithm selects; = 0.24 (3D distance displace- . ) )
ment),ws — 1 (2D area) andus — 0.76 (color histogram). We have presented in this paper an approach which combines a

Table 1 presents the tracking results in two cases: withdgf9€ Set of appearance features and learn tracking pagesnet
and with feature weight learning. We can find that with th‘ghe quantification of HOG descriptor reliability and the dam

proposed learning scheme, the tracker performance ireseas
in both tested videos. Also, the processing time of the &acl
also decreases significantly because many features arsetbt |

Without learning With learning
Ml M2 Mg M M1 MQ M3 M
.Caretaker video| 0.62 0.16 0.99 0.59 0.47 0.83 0.80 0.7¢
;;'T_RECVidvideo 0.60 0.82 0.90 0.77 0.70 0.93 0.84 0.82

The two following tested videos belong to ETISEO datas
The first tested ETISEO video shows a building entrance, ¢

http://cordis.europa.eulist/kct/caretaleynopsis.htm . . .
thtg://www-sop.in?ia.fr/orion/ETlSEO/ P Table 1. Summary of tracking results in both cases: without

3nttp://homepages.inf.ed.ac.uk/rbf/CAVIARDATAL/ and with feature weight learning.



Figure 2. lllustration of five tested videos: a. CaretakeFrecvid c. ETI-VS1-BE-8-C4 d. ETI-VS1-MO-7-C1 e. Caviar

Our tracker Team 1 Team 8 Team 11
BE MO | BE MO | BE MO | BE MO
M, | 0.50[ 0.79] 0.48] 0.77] 0.49] 0.58| 0.56| 0.75
M, | 1.00| 1.00| 0.80| 0.78| 0.80| 0.39| 0.71| 0.61
Ms | 1.00| 1.00| 0.83| 1.00| 0.77| 1.00| 0.77| 0.75
M 0.83| 0.93| 0.70| 0.85| 0.69| 0.66| 0.68| 0.70
Team 12 Team 17 Team 22 Team 23
BE MO | BE MO | BE MO | BE MO
M, | 0.19] 0.58] 0.17] 0.80| 0.26| 0.78] 0.05| 0.05
M, | 1.00| 0.39| 0.61| 0.57| 0.35| 0.36| 0.46| 0.61
Ms | 0.33| 1.00| 0.80| 0.57| 0.33| 0.54| 0.39| 0.42

M | 051| 091| 053] 0.65| 0.31| 0.56| 0.30| 0.36

Table 2. Summary of tracking results for two ETISEO videos.
BE denotes ETI-VS1-BE-18-C4 sequence, MO denotes ETI-

[2] A.T.Nghiem, F.Bremond, M.Thonnat, and V.Valentin.

Etiseo, performance evaluation for video surveillance
systems. IPAVSS, London (UK), 2007.

[3] A.Yilmaz, O.Javed, and M.Shah. Object tracking: A sur-

vey. J. ACM Computing Surveys (CSUR), 2006.

[4] W. Forstner and B. Moonen. A metric for covariance

matrices. InQuo vadis geodesia...?, Festschrift for Erik
W.Grafarend on the occasion of his 60th birthday, TR
Dept. of Geodesy and Geoinformatics, Stuttgart Univer-
sity (Germany), 1999.

VS1-MO-7-C1 sequence. The highest values are printed bold5] Y. Freund and R.E. Schapire. A decision-theoretic gen-

#trajectories] TP [ FN | FP
Proposed tracke 9 9 0 3
Approach of [12] 9 8 1 7

Table 3. Summary of tracking results for three Caviar videos

nation of color covariance, dominant color with spatialgoyid

distance help to increase the robustness of the trackerdar m
aging occlusion cases. The learning of feature significeince

for different video contexts also helps the tracking altion to

adapt itself to the context variation problem. The expenme

tation proves the effect of the feature weight learning #ife

eralization of online learning and an application to boost-
ing. J. of Computer and System Sciences, 1997.

K. Grauman and T. Darrel. The pyramid match kernel:
Discriminative classification with sets of image features.
In ICCV, Beijing (China), 2005.

D. Hall. Automatic parameter regulation of perceptual
systems.J. of Image and Vision Computing, 2006.

] N.C.Yang, W.H.Chang, C.M.Kuo, and T.H.Li. A fast

mpeg-7 dominant color extraction with new similarity
measure for image retrievalJ. Visual Communication
and Image Representation, 2008.

P.Bilinski, F.Bremond, and M.Kaaniche. Multiple ob-

robustness of the proposed tracker compared to some other ap ject tracking with occlusions using HOG descriptors and

proaches in the state of the art. We propose in future work an

automatic context detection to increase the auto-condimhc-

ity of the system and to remove the two assumptions given

this paper (presented in section 1).
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