
DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

XML technologies in the SmartTools Software Factory
�

Carine Courbis
University College London
Adastral Park - Martlesham

IP5 3RE - UK

Carine.Courbis@bt.com

Didier Parigot
INRIA Sophia-Antipolis

2004, route des Dolines - BP 93
F-06902 Sophia-Antipolis Cedex - France

Didier.Parigot@sophia.inria.fr

ABSTRACT
Because of the Internet and the associated proliferation of compo-
nent and distributive technologies, the way of designing and im-
plementing complex applications has to be modified to integrate
standards and code distribution. To cope with these changes, appli-
cations need to be more open, flexible and capable of evolving.

The main goal of this paper is to describe how XML technologies
are used at different levels, in an application named SMARTTOOLS,
a software factory for DSLs. XML technologies were, not only
used for its implementation (bootstrap), but also in the generated
DSL software.

The innovative part of our work was combining together three
approaches: the MDA (Model-Driven Architecture) approach, the
Generative Programming, and the XML technologies. The main
results are i) to benefit from existing tools and their evolution for the
XML technologies, ii) to have an open application (and generated
tools) without proprietary techniques, and iii) to build software of
better quality due to business models and technology separation,
that is easy to adapt and modify.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

Keywords
Graphical User Interface, Visual Languages, Domain-Specific Lan-
guage, XML Technologies, Model-Driven Architecture, Genera-
tive Programming, Component-Based Software Engineering.

1. INTRODUCTION
During this last decade, there were many changes in computer

science that have an influence upon the way an application must be
developed. Four main reasons of these changes can be identified:

� The first one is the emergence of the Internet that implies
applications are no longer stand-alone but rather distributed
ones. Thus, now, data communication between applications
and users must be taken into account during the whole appli-
cation life-cycle. One problem was to choose a well-adapted
interoperable data exchange format. To solve this problem,

�

This project is supported in part by the W3C con-
sortiun with the QUESTION-HOW IST project (see
http://www.w3.org/2001/qh/ for more information).
We would also like to thank PASCAL DEGENNE and ALEXANDRE
FAU for their software development efforts in SMARTTOOLS.

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, NY USA.
ACM xxx.xxx.

the W3C (World Wide Web Consortium) created the XML
(Extended Markup Language) standard that is application
and platform-independent.

� The second reason is the proliferation of new technologies
that makes it difficult to choose the right and most capa-
ble of evolving one. For instance, to obtain a component-
based application, a developer must choose between, at least,
three component technologies: CCM (CORBA Component
Model), EJB (Enterprise Java Bean), or Web Services.

� The third reason is the democratization (widespread) of com-
puter science. That means that users may have, now, dif-
ferent knowledge, needs, visualization devices, and activity
domains that should be considered when developing.

� The last reason is a business reason. Indeed, to be competi-
tive, a company must quickly and cheaply adapt its software
to new user needs and technologies.

To cope with all these changes, the way of designing and imple-
menting complex applications has to be replaced. The applications
need to be more open, flexible, and capable of evolving. The goal
of this paper, in this context, is to explained how XML technologies
can play a major role, at different levels, in a new way of program-
ming from models (in our case, DSLs - Domain-Specific Language)
in collaboration with Generative Programming [3]. Our approach -
transforming (generating) from a programming-language free and
platform-independent DSL (PIM - Platform-Independent Model)
to a specific language (PSM - Platform-Specific Model) - is very
close to the MDA (Model-Driven Architecture) approach [7, 1] of
the OMG (Object Management Group).

We claim that, to develop an open and adaptable application, the
four main points to consider are the followings:

� The data model describing the application structure that should
have an application-independent format to abstract away from
technology-specific details;

� The different concerns that should be separated and modu-
larized to help maintain the code and to facilitate its reuse;

� The component description language that should be as close
to the application needs as possible to clearly show the pro-
vided and required services.

� If the application is interactive, the GUI (Graphical User In-
terface) and its views that should be device-independent.

To enforce and validate our ideas, we have developed a software
factory [11, 2], named SMARTTOOLS 1 [9], based on this new way
1http://www-sop.inria.fr/oasis/SmartTools/

http://www.w3.org/2001/qh/
http://www-sop.inria.fr/oasis/SmartTools/

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

of programming. For each DSL, this factory can produce different
tools or specifications (see Figure 1):

� a DTD,
� an XML Schema,
� a default tree walker to semantically analyse documents that

is easy to extend by inheritance or by plugging additional
code (aspects - AOP Aspect-Oriented Programming),

� several parsers and associated pretty-printers (i.e. engines
to transform abstract syntax trees into a readable form) to
provide the DSL with a more readable concret syntax than
XML,

� and finally the glue to pack all these tools in a component
ready to be exported into another application.

As the factory is mainly bootstrapped (uses itself to generate tools
for its own DSLs), its generative techniques have been experimented.
This application, SMARTTOOLS, demonstrates how XML schema,
DTD, DOM API, BML, XSLT, XPath, CSS, WSDL, and their as-
sociated tools (mainly from the Apache Jakarta project2) can be
integrated (see Figure 2) and orchestrated; making the application
more open and easy to maintain.

SmartTools
Generators

View/GUI
Model Component

Model

Data
manipulation

API

DTD or
XML Schema

Structured
Editor

Pretty-printer

Parser
specifications

Glue for
Components

PIM

Data
Model

Default
Visitor
+AOP

PSM

Figure 1: Overview of how Generative Programming, with a
MDA approach, is used in SMARTTOOLS

Data

View &
GUI

Component

models

transformation

selection

DTD, XML schema

DOM API

XPath

models

transformation
representation

own XML languages, CSS

XSLT, XPath

models

deployment

BML
own XML languages, WSDL

own XML language

Figure 2: XML technologies in SMARTTOOLS

This paper is divided in three parts, one per model - data, view/GUI,
and component - describing how XML technologies, Generative
Programming, and the MDA approach can be combined together
to develop an application. Finally, to conclude, we summarize all
the advantages we found using XML technologies.
2http://jakarta.apache.org/

2. DATA MODELS
Since some years, the OMG and the W3C consortia have played

major roles in the data or model integration problems with their
standardization efforts. To fit with new needs, there are strong
evolutions of the standard formalisms. For instance, to improve
document data validity, the DTD (Document Type Definition), the
document meta-language, has been replaced by more complex and
rich data type formalisms such as XML schema or RDFS (Resource
Description Framework Schema). With these meta-formalisms, the
data (document) model is independent from any programming lan-
guage. This independence has contributed to the widespread adop-
tion of XML technologies (e.g. Web Services with SOAP - Simple
Object Access Protocol) in any domain.

But, it is important that these formalisms are not considered only
as a exchange data format. Indeed, applications built on top of these
models (e.g. the CASE - Computer Aided Software Engineering -
tools) must also be able to internally manipulated the data accord-
ing to the models. More precisely, an application must be able to
answer to an object addressing request (formulated with XPath for
an XML schema model).

The goal of SMARTTOOLS (support of our research work on
Generative (Programming) is to help develop new tools or program-
ming environments, especially for DSLs. The design of the tool has
taken into account the specificities of these languages: i) they have
their own data description language that should be accepted as in-
put of our tool, and ii) the designers of such languages may not have
a deep knowledge in computer science. It was thus a necessity to
establish a bridge between the programming language domain and
the document domain, and to provide tools that are easy to use and
built on well-known techniques.

We have first defined our own abstract data model, close to our
needs and independent from any programming language. This model
(DSL) helps define the abstract syntax of languages (i.e. the doc-
ument structure), the cornerstone for all the generated tools. From
this data model (a PIM), SMARTTOOLS can generate, as shown by
Figure 3, the following:

� an API to help manipulate abstract syntax trees (for instance,
writing semantic analyses);

� an equivalent DTD or XML Schema to help designers create
new DSLs;

� an editor guided by the syntax to facilitate document or pro-
gram edition;

� a default tree walker based on the visitor design pattern to
ease the implementation of semantic analyses on documents.

or

Generators

Our Data
Model

DTD XML Schema

Structured
editor

DTD or
XML schema

Tree
manipulation

API

or

Default
Visitor
+AOP

Figure 3: Generated tools from the data model

To broaden the scope of SMARTTOOLS and to benefit from ex-
isting tools, a bridge between the programming language domain

http://jakarta.apache.org/

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

and the document domain (see Figure 4) needed to be established,
in both directions. In this way, the tool accepts equally, as data
model (input), our proprietary data definition language, a DTD, or
an XML Schema. It can also translate it into any equivalent data
model (DTD, XML schema, or ours). The DSL designers are not
compelled to learn our proprietary data model.

DTD
or

XML Schema
Our data

model
Java classes
above DOM

convert into generate

XML
Document

is
conform

with
Objects/Nodes

is
instance

of

can be seralized in

is represented by

translate into

Figure 4: Bridge between languages and documents

To avoid designing and implementing another propriatory tree
manipulation API, we have chosen the DOM (Document Object
Model) API standard as tree kernel. In this way, the SMARTTOOLS-
specific generic code for manipulating trees is minimal thus easy to
maintain, and benefits from any new service or bug fixes when this
standard and its different implementations evolve. Thus our tree
implementation is open, capable of evolving, and can benefit from
any DOM-compliant tool or service. For example, all the trees ma-
nipulated in SMARTTOOLS can be serialized in XML, transformed
with XSLT, or addressed with XPath for free as these services are
offered by the DOM API.

However, the DOM standard does not fulfill all our needs as the
manipulated trees are not strictly-typed (a DOM tree has only ho-
mogeneous nodes) thus difficult to semantically analyze. To ma-
nipulate strictly-typed trees, we generate a language-specific API
(Java classes) above the DOM API; the type names of the nodes
and the accessor names are provided by the data model. JAXB
(Java Architecture for XML Binding) from Sun [10] also generates
an API from a DTD or an XML Schema, and provides tools to
automate the mapping between XML documents and Java objects.
The generated APIs from JAXB or our tool are different like the
aims of these two tools; JAXB can only be used to access, update,
or validate XML documents.

To assist DSL designers writing semantic analyses (e.g. evalu-
ators), we also generate a default top-down tree walker based on
the visitor design pattern [4, 8]. This default visitor can be, either
extended by inheritance (by overriding some of the visit methods),
or by plugging aspects (additional code that will be weaved with
the visitor code) [6]. Using this feature, any XML document con-
formed to its XML schema can be semantically analysed with our
tool.

3. COMPONENTS
To cope with these new needs, many component technologies

have been proposed such as COM and DCOM for Microsoft, CCM
for the OMG, and EJB for Sun. More recently, Web-Services tech-
nology has appeared with the possibility of listing component ser-
vices in catalogs (UDDI - Universal Description, Discover and In-
tegration).

The three main challenges in component technologies are the
following:

� To extend the classical method call to take into account the
execution environment (three-tier architecture, the Internet,
the messaging service, the database access) without modify-
ing the business code;

� To extend the classical interface notion to be able to discover
the available and required services (such as introspection in
Java Bean technology) and to dynamically adapt the interface
(such as the multi-interface notion in CORBA);

� To add meta-information on a component to manage the de-
ployment, the security policy, etc.

These different mechanisms must be transparent towards the busi-
ness code of the components. That corresponds to a kind of separa-
tion of concerns that avoids mixing functional and none-functional
code. The OMG has proposed the MDA approach based on model
transformations to get a better evolution of complex software ap-
plications towards component technologies [12]. This explains the
research effort undertaken to define a new generic component lan-
guage and the link with the AOP and the model transformations.

As SMARTTOOLS generates and imports tools, it was vital to
have a component architecture for its evolution and to enable in-
terconnections with other environments or tools easier. Having a
component architecture in our case (meta-tool) is also useful to be
able to build an application with only the required components.

Our first step was to define an abstract component model i.e. in-
dependent from any component technology. The advantage of hav-
ing our own component model is to clearly identify the needs of
SMARTTOOLS; without this model, its needs would have been hid-
den under a none-application-specific component format (such as
IDL). From this component model, a generator can automatically
produce none-functional code, i.e. the container that hides all the
communication and interconnection mechanisms. For example, the
broadcast mechanism used by a logical component to update its as-
sociated view components is totally transparent to the programmer.
Additionally, it is very easy to adapt the architecture to introduce a
new communication mechanism.

Figure 5 gives an example of component description (graph com-
ponent) and Figure 6 its associated visual representation (showing
the connections).

<?xml version="1.0" encoding="ISO-8859-1"?>
<component name="graph" type="graph"

extends="abstractContainer">
<containerclass name="GraphContainer"/>
<facadeclass name="GraphFacade"/>
<dependance name="koala-graphics"

jar="koala-graphics.jar"/>
<attribute name="nodeType"

javatype="java.lang.String"/>
<input name="addComponent" method="addNode">

<parameter name="nodeName"
javatype="java.lang.String"/>

<parameter name="nodeColor"
javatype="java.lang.String"/>

</input>
<input name="addEdge" method="addEdge">

<parameter name="srcNodeName"
javatype="java.lang.String"/>

<parameter name="destNodeName"
javatype="java.lang.String"/>

</input>
</component>

Figure 5: Graph component description

Indeed, our connection process is much more flexible and dy-
namic than those offered by these technologies mainly dedicated to
client/server architectures or Web applications. In SMARTTOOLS,
component interconnections are dynamically created when requested
and use a kind of pattern-matching on the names of services pro-
vided or required by the components to bind the connectors.

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

 GraphContainer

Classes

GraphApp

exit
connectTo

initData

requestInitData

quit
addNode
addEdge
removeNode
removeEdge

Figure 6: Graph component

Despite this approach, it is possible to exchange complex infor-
mation between two components such as sub-trees or path infor-
mation (XPath) for the views and the associated logical document.
This rich communication is possible due to our data model and the
use of XML technologies (the serialized form of the documents).
All components which conform with the same data model can ex-
change rich information between their business code. In fact, our
communication protocol is very close to SOAP, except the data part.
The implementation of our model was made easier due to the use
of XML technologies.

Moreover, our component and deployment languages (see Figure
7 for an example) are described in XML format. Our component
manager uses these two neutral formats (XML) to instantiate com-
ponents and to establish connections between them. Figure 8 sum-
marizes the operations of our component manager with the various
XML files that are used.

<?xml version="1.0" encoding="ISO-8859-1"?>
<application repository="file:stlib/" library="file:lib/">

<load_component jar="view.jar" name="glayout"/>
<load_component jar="lml.jar" name="lml"/>
<load_component jar="tiny.jar"

url="file:extralib/tiny.jar" name="tiny"/>
<connectTo id_src="ComponentManager" type_dest="glayout">

<attribute name="docRef"
value="file:resources/lml/boot.lml"/>

<attribute name="xslTransform"
value="file:resources/xsl/lml2bml.xsl"/>

<attribute name="behaviors"
value="file:resources/behaviors/bootbehav.xml"/>

</connectTo>
</application>

Figure 7: Example of deployment description

Generated
Container

C2 component

Container

 Component manager

Facade

C1 component

Classes Classes

Facade

connectTo

Generated
Container

Facade

Application
deployment
description

(XML)

C1 component
description

(XML)

C2 component
description

(XML)

Component
manager

description
(XML)

Additional
 behavior

description
(XML)

Figure 8: Functional diagram of component manager

The second step was to define a set of transformations (projec-
tions) from our model towards well-known component technolo-
gies such as Web Services, CCM, or EJB (see Figure 9) to make
the exportation of the produced tools easier.

From our projection experience, we can say that these three com-
ponent technologies (Web Services, CCM, EJB) would have not

Remote and
Home

interfaces

Component
Model

Generators

SmartTools Web-services

CCMEJB

Eclipse
plug-in

IDL file
+ CORBA

server class

Container
+ Facade
sub-class

WSDL file
+ SOAP

corresponding
class

?

Figure 9: Component model transformations

fitted in with our needs of connections and component model.
Our experience shows that there are many advantages in creating

an abstract component model that fits in with the application needs,
rather than using a none-specific model. With this MDA approach
(based on Generative Programming), we were able to obtain im-
plementations in different technologies. In this way, our tools are
adaptative and capable of evolving.

4. GRAPHICAL USER INTERFACES
The graphical user interfaces that enable interactive applications,

must also be adaptable to these evolutions. Two main challenges,
when designing a graphical interface, should be kept in mind: the
interface might be executed on different visualization devices (ubiq-
uitous computing) and be accessible through a Web interface. By
taking into account different device variations and Web interfaces,
the better an application user interface.

Furthermore, as the number of DSLs increases, a flexible and
quick approach is needed to easily design and implement interfaces
(or pretty-printers) specific to one model or domain. In this context,
visual programming can be very useful in realizing dedicated pro-
gramming environments as many DSL designers do not have a deep
knowledge in computer science.

With our tool and with a few effort, a programming environ-
ment dedicated to a DSL can be quickly implemented, having one
or more specific-business displays of the documents. These differ-
ent displays, more user-friendly and readable than the XML format
(tags embedded), are obtained through a sequence of model trans-
formations or refinements (see Figure 10). Our approach (outlined
in Figure 11) intensively uses standard tools or specifications such
as

� XSLT (Extensible Stylesheet Language Transformation) for
document transformation,

� CSS (Cascading Style Sheets) for style information,

� the Swing API for the graphical layout,

� and BML (Bean Markup Language) for the serialization of
the graphical views.

In this way, the implementation of the graphic part of our tool was
quick as mainly based on existing tools dedicated to these stan-
dards, and benefits from any bug-fix or evolution of these tools.

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

By default, there are also generic displays (none domain-specific)
available to show any tree regardless of its language membership.

AST
+

sugars
+

boxes

AST
+

sugarsAST

AST
+

sugars
+

boxes
+

styles

AST Concrete
syntax

tree

Tree of
graphical

objects

Tree of
graphical

objects
with styles

Figure 10: Specialization/refinement by successive model
transformations to obtain a graphical view

Tree of
graphical

objects with
styles

Tree of
Swing

Objects

XSLT
stylesheet

Generator

XSLT
engine

View
Model

BML
file

BML
interpretor

AST

CSS

ANTLR
compilator

ANTLR
specification

LL(k) parser
in Java

Generator

Specific CSS
interpretor

Data
Model

PIM

PSM

and and

Figure 11: Implementation chain to obtain a graphical view or
a parser

As our view model (DSL) is based on a sequence of model trans-
formations, it is possible to generate, not only the graphical view,
but also the associated parser (for none-complex concrete syntax).
This feature is appealing to DSL designers who want to give a more
readable and editable syntax to their DSLs.

To be able to export our graphical views on the network, we have
chosen the BML format [5] that describes all the graphical objects

contained in a view to be created. The second advantage of this
format is the effective object creation (Swing objects) that takes
place on the view components (clients) and not on the logical doc-
ument component (server). The logical document component only
provides the serialization file of graphical objects to the view com-
ponent. This latter only needs to incorporate a BML interpretor to
create the graphical objects of the view. With this approach, it is
easy to export SMARTTOOLS views into a Web browser. The log-
ical document component and the associated view components are
linked together. Therefore, any change on the document is auto-
matically broadcasted to the views.

This model transformation, kind of "design pattern", to obtain
graphical views was reused for the GUI. Indeed, a GUI can be con-
sidered as a tree of graphical objects (windows, tabs, panels, views,
menu, etc.). Using this innovative approach, we can reuse all the
tree manipulation methods (insert a node, remove a node, etc.) and
implementations to obtain a view of the GUI. In this way, the GUI
is only a particular view of this tree and can be serialized. For ex-
ample, Figure 12 shows two views of the GUI description given
Figure 13: a textual view at left, and a graphic one the GUI itself.
To represent the GUI description, we have defined a simple GUI-
specific language (LML) useful to configure the GUI according to
the applications.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE layout SYSTEM "file:resources/lml.dtd">
<layout>

<frame title="Smarttools V4.Alpha" statusBar="on" width="680"
height="580" dynTabSwitch="off">

<set title="Basic example">
<split orientation="1" position="68">
<view title="Layout in XML format"

behavior=""
viewType="fr.smarttools.core.view.GdocView"
docRef="resources:lml/boot.lml"
styleSheet="resources:css/xml-styles.css"
transform="resources:xsl/genericXml.xsl" />

<view title="samples/tiny/ex1.tiny"
behavior=""
viewType="fr.smarttools.core.view.GdocView"
docRef="file:samples/tiny/ex1.tiny"
styleSheet="resources:css/tiny-styles3.css"
transform="resources:xsl/tiny-bml.xsl" />

</split>
</set>

</frame>
</layout>

Figure 13: Example of a GUI description (the corresponding
screenshot shown in Figure 12)

In conclusion, the design of all our graphical tools uses the same
"design pattern" (model transformations) that provides, on the one
hand, an independence from visualization devices and, on the other
hand, the ability to reconfigure the interfaces by modifying either
the BML interpretor or the transformation files (the XSLT stylesheets).

5. CONCLUSION
With the development of our tool (SMARTTOOLS), we have val-

idated a new approach for software development mainly based on
transformation or generation from programming-language-independent
and domain-specific models. Thanks to Generative Programming,
we can integrate, very easily, new programming paradigms and
technologies from the models into the target implementation pro-
gramming language by only updating the generators associated with
each model (data model, component model, visualization model,
GUI model); making the application easy to adapt and evolve - the
main advantage of this design approach. These different generators

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Figure 12: This picture shows two views of the GUI description given Figure 13: a textual view at left, and a graphic one the GUI
itself.

provide the design methodologies that are parameterized through
those models strictly restricted to the domain.

The approach to follow when developing an application should,
according to our experience, be to design DSLs specific to your
concerns (e.g. data, GUI, component) and implement the gen-
erators that would produce the platform-dependant glue from the
DSL documents (instantiated models) with the possibility to inte-
grate specific business code (e.g. semantics analysis). An applica-
tion is, thus, composed by a set of DSL documents, the generated
application-specific glue, and the business code (see Figure 14).
The interest of our research prototype, SMARTTOOLS, is to val-
idate this new programming approach for different domains in a
homogeneous way. Thanks to SMARTTOOLS, we can anticipate
what will be the future evolutions in programming languages and
validate the interest of separating the concerns through different
models.

With our experience, we can say that XML technologies are
very helpful in the process of implementing an application and also
make it more open than when non-propriatory format and tools are

used. Indeed, this standard interoperable format has existing tools
to validate, parse, and manipulate (e.g. transform) the content. An
application that uses XML technologies benefits from their tools,
and when these standards and their associated tools evolve, it also
evolves and for free. We also showed that XML technologies can
be extremely useful for the design and the implementation of ap-
plications. These technologies should not be restricted to the field
of the document treatment and, in the future, will be more used in
software development.

We are starting to investigate the relationships between UML
profile, RDFS (Resource Description Language Framework Schema)
for the Web Semantic, semi-structured databases, and our own data
model. Our aims are to broaden the scope of our tool by being
more open and able to translate a data model between different do-
mains (language, document, modeling, knowledge, database), and
also to benefit from their tools (as we have done with the document
domain).

On the architecture, we want to pursue our efforts on Web Ser-
vices in order to generate a process that orchestrates the Web Ser-

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Generators

Separation
of ConcernsData Model GUI Component

Application
Glue

Code written by
the developer

Models instantiated by the developer

Figure 14: Model instances + generated application glue + busi-
ness code = an application

vices involved in an application (from a deployment document, the
component descriptions, and the additional extension service de-
scriptions) as the aim of our tool is to help designing applications
for DSLs.

6. REFERENCES
[1] J. Bézivin. From Object Composition to Model

Transformation with MDA. In
TOOLS USA, Santa-Barbara, August 2001. IEEE TOOLS-39.
http://www.sciences.univ-nantes.fr/info/lrsg/Recherche/mda/TOOLS.USA.pdf.

[2] S. Cook and S. Kent. The Tool Factory. In OOPSLA’2003,
workshop on Generative Techniques in the context of MDA,
Anaheim - USA, October 2003.
http://www.softmetaware.com/oopsla2003/cook.pdf.

[3] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Techniques, and Applications.
Addison-Wesley, June 2000. ISBN 0201309777 chapter
Aspect-Oriented Decomposition and Composition
http://www-ia.tu-ilmenau.de/~czarn/aop/.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison Wesley, Reading, MA, 1995. ISBN
0-201-63361-2-(3).

[5] IBM. Bean Markup Language.
http://www.alphaworks.ibm.com/formula/bml.

[6] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In M. Akşit and S. Matsuoka, editors,
ECOOP ’97 — Object-Oriented Programming 11th
European Conference, Jyväskylä, Finland, volume 1241 of
Lecture Notes in Computer Science, pages 220–242.
Springer-Verlag, New York, NY, June 1997.
http://aspectj.org/documentation/papersAndSlides/ECOOP1997-AOP.pdf.

[7] OMG. MDA - Model-Driven Architecture.
http://www.omg.org/mda.

[8] J. Palsberg and C. B. Jay. The Essence of the Visitor Pattern.
In COMPSAC’98, 22nd IEEE International Computer
Software and Applications Conference, pages 9–15, Vienna,
Austria, Auguste 1998.

http://www.cs.purdue.edu/homes/palsberg/paper/compsac98.ps.gz.
[9] D. Parigot, C. Courbis, P. Degenne, A. Fau, C. Pasquier,

J. Fillon, C. Help, and I. Attali. Aspect and XML-oriented
Semantic Framework Generator: SmartTools. In
ETAPS’2002, LDTA workshop, Grenoble, France, April
2002. Electronic Notes in Theoretical Computer Science
(ENTCS).
ftp://ftp-sop.inria.fr/oasis/personnel/Carine.Courbis/smartldta02.pdf.

[10] Sun. The Java Architecture for XML Binding (JAXB),
January 2003. http://java.sun.com/xml/jaxb/.

[11] A. van Deursen and P. Klint. Little languages: Little
maintenance ? Journal of Software Maintenance, 1998.
http://www.cwi.nl/~arie/papers/domain.pdf.

[12] T. Ziadi, B. Traverson, and J.-M. Jézéquel. From a UML
Platform Independent Component Model to Platform
Specific Component Models. In International workshop in
Software Model Engineering (WiSME02) at UML2002,
Dresden (Germany), Sept. 2002.
http://www.metamodel.com/wisme-2002/papers/ziadi.pdf.

http://www.sciences.univ-nantes.fr/info/lrsg/Recherche/mda/TOOLS.USA.pdf
http://www.softmetaware.com/oopsla2003/cook.pdf
http://www-ia.tu-ilmenau.de/~czarn/aop/
http://www.alphaworks.ibm.com/formula/bml
http://aspectj.org/documentation/papersAndSlides/ECOOP1997-AOP.pdf
http://www.omg.org/mda
http://www.cs.purdue.edu/homes/palsberg/paper/compsac98.ps.gz
ftp://ftp-sop.inria.fr/oasis/personnel/Carine.Courbis/smartldta02.pdf
http://java.sun.com/xml/jaxb/
http://www.cwi.nl/~arie/papers/domain.pdf
http://www.metamodel.com/wisme-2002/papers/ziadi.pdf

	Introduction
	Data Models
	Components
	Graphical User Interfaces
	Conclusion
	REFERENCES -9pt

