
D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Domain-Driven Development: the SmartTools Software Factory

Didier Parigot

INRIA Sophia-Antipolis

2004, route des Lucioles BP93

F-06902 Sophia-Antipolis cedex - France

Didier.Parigot@inria.fr

Carine Courbis

University College London

Computer science department

Adastral Park - Martlesham IP5 3RE - UK

Carine.Courbis@bt.com

Abstract

With the increasing dependency on the Internet and
the proliferation of new component and distributive
technologies, the design and implementation of complex
applications must take into account standards, code dis-
tribution, deployment of components and reuse of busi-
ness logic. To cope with these changes, applications
need to be more open, adaptable and capable of evolv-
ing.

To accommodate to these new challenges, this pa-
per presents a new development approach based on
generators associated with domain-specific languages,
each of the latter related to one possible concern useful
when building an application. It relies on Generative
Programming, Component Programming and Aspect-
Oriented Programming. A software factory, called
SmartTools, has been developed using this new ap-
proach.

The main results are i) to build software of better
quality and to enable rapid development due to Gen-
erative Programming and, ii) to facilitate insertion of
new facets and the portability of applications to new
technologies or platforms due to business logic and tech-
nology separation.

1 Introduction

During this last decade, there were many changes in
computer science that have an influence upon the way
an application must be developed. As a result, appli-
cations need to be more open, adaptable and capable
of evolving. These new constraints in software devel-
opment have emerged primarily due to the following
reasons:

• Firstly, due to the increase use of the Internet,
applications can no longer operate independently

but rather they should be distributed. There-
fore, data communication between applications
and users must be taken into account during the
whole application life-cycle. One important re-
quirement is to choose a well-known data exchange
format.

• The second reason is the proliferation of new com-
ponent technologies. This increases the difficulty
in choosing which component technology will be
the most adaptable and capable of evolving, ac-
cording to the context of use. For instance, it is
necessary to decide whether it is more appropriate
to use CCM (CORBA Component Model), EJB
(Enterprise Java Bean), or COM (Component Ob-
ject Model).

• The third reason is the democratization
(widespread) of computer science. Users have
different knowledge, different needs, a wide range
of visualization devices, and specific activity
domains. This feature should be considered when
designing and developing applications.

• The last reason is business related. To be more
competitive, a company must be able to quickly
and cheaply adapt its software in order to meet
new user needs and technology evolution.

To cope with all these changes, the way of designing
and implementing complex applications has to be re-
placed. In order to better address these new challenges
of openness, flexibility, and evolution, we propose an
approach which relies on the MDE (Model-Driven En-
gineering) approach, Component Programming, and
GP (Generative Programming) [5]. It promotes the
following key-ideas:

• When software is being designed and imple-
mented, different concerns are addressed by the

1

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

programmer. These concerns are better handled if
a dedicated meta-model1 exists for each of them.

• If each meta-model (dedicated to one of the con-
cerns) is independent from any technology, then
it is possible to capture the expertise of an ap-
plication independently from the context of use.
Therefore, the domain-specific knowledge is much
”more reusable”.

• When building an application, Generative Pro-
gramming (GP) should be used to glue (assemble)
the models together according to the context of use
(e.g. the technologies). This powerful paradigm
enables applications to evolve.

In order to validate our approach, we have devel-
oped a software factory, named SmartTools 2 [15],
based on this new way of programming, which is com-
pliant with the Domain-Driven Development (DDD)
approach [4]. The principal goal of this research proto-
type is to propose a tool which demonstrates that, with
new development methods, it is possible to produce
more quickly open and adaptable applications com-
pared with the classical development methods. The
implementation is based on the concept of a software
factory [7] and is adapted to the design and implemen-
tation of applications which rely on a data model. It
provides the ability to define domain-specific languages
(DSLs) and also to perform transformations on them
in order to generate either refinements or platform-
specific models.

The design of both prototype and applications gen-
erated by it addresses five concerns (see Figure 1): the
application data model, the writing of semantics anal-
yses, its architecture, the views of the data model, and
its graphical user interface. To each of those concerns,
we have associated a meta-model3:

• The data meta-model, named AbSynt. It de-
scribes the application structure and should have
an application-independent format in order to cut
from the technology-specific details. More pre-
cisely, the AbSynt language is a meta-language
(meta-meta-model) which is used to define lan-
guages (meta-model);

• The semantics meta-model of both the data model
and the application, named ViProfile. It inte-
grates several facilities in order to structure and

1By construction, it will exactly fit to the needs of the con-

cern.
2http://www-sop.inria.fr/smartool/SmartTools/
3Sometimes one will use the language term in the place of

meta-model term when there can be confusions between meta-

model and model term

Semantic
Model

Default Visitor
+ AOP

SmartTools Generators

Data
Model

View
Model

Component
Model

Data
manipulation

API

DTD or
XML Schema
UML Model

Structured
Editor

Pretty-printer

Parser
specifications

Glue for
Components

GUI
Model

GUI
Component

Figure 1. MDE approach in SmartTools

to modularize the code. This should improve the
maintenance of the code and enable easier code
reuse;

• The view meta-model, named CoSynt. Several
views of a data model can be defined, such as
a structured editor in order to more easily cre-
ate and update instances of this model (programs
or documents). This view model must be device-
independent.

• The component meta-model, named Cdml. It is as
tightly integrated as possible with the application
requirements. In particular, it enables to specify
the provided and required services.

• The GUI meta-model, named Lml. It describes a
possible configuration of a GUI for a given appli-
cation.

The generators associated with those meta-models
handle the generation of the application, providing the
glue to enable it to work on a specific platform, ac-
cording to the context of use. If the platform or the
underlying technology evolves, it is not necessary to
update the meta-models which represent the domain-
specific expertise, but the generators only. The experi-
ence gained through developing SmartTools i) pro-
vides a more precise description of the approach and,
ii) demonstrates how the approach favors the possible
adaptations of an application according to the future
evolutions of the software platform.

The principal contribution of our approach is to
show that it is more important to propose a rich set
of generators, each specialized in one concern, than

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

to propose more generic approaches or strongly spe-
cialized ones for a given concern. The limitations of
our approach are primarily the following: i) strong de-
pendences on the Java programming language and the
Swing library; ii) our graphic tools are well adapted
for simple meta-models and the possibilities of our
graphical user interface still remain very basic; iii) our
two meta-models (AbSynt and Cdml) are minimalist
(They will be soon extended to respectively add the
inheritance and distribution notions).

This paper is divided in five parts, plus one part ded-
icated to the related work and one to the conclusion,
section 2 provides a concrete example of how Smart-

Tools can be used to develop tools. For instance, we
show the example of a graphical user interface (GUI) of
SmartTools. The four following sections describe the
main meta-models provided by SmartTools (data,
semantics, component and view meta-models) based on
the GUI application described in Section 2. For each
meta-model (from Section 3 to 6), we present the main
aspects of the model and we lay stress on the benefits
of using both MDE approach and GP as well as on the
interest of using standards.

2 Short Overview of SmartTools

SmartTools is heavily bootstrapped; that is it in-
ternally uses its technology to develop its own lan-
guages and components. Through the development
of these languages and components, our approach in
integrating the mentioned paradigms and technolo-
gies has been intensively tested and refined. One of
the goals of SmartTools is to provide facilities for
the development of new tools or programming envi-
ronments, especially for non-complex description lan-
guages. Its design takes into account the specificities of
these languages: i) they have their own data descrip-
tion language that should be accepted as input, and ii)
the designers of such languages may not have a deep
knowledge in computer science. Since then, Smart-

Tools has been used to produce tools for many di-
verse languages (about thirty languages) such as SVG,
DTD, XML schema, CSS, WSDL, and BPEL. However
the most complete application is SmartTools itself
which is composed of the generators associated at each
language (AbSynt,CoSynt,Cdml,Lml,ViProfile).
The SmartTools framework represents approxi-
mately 100 000 lines of Java source code before the
generation stage and 1 000 000 lines after. This ratio
shows the efficiency of this approach and validates this
new development approach based on GP.

In this section we present how a language, our GUI
language, can be developed using SmartTools. The

main reasons of this choice are that the GUI implemen-
tation is strongly bootstrapped and its models (data
model, component model, etc...) are easy to under-
stand. This GUI example will be used all along of this
paper, for each meta-model.

2.1 GUI Language - Lml

The SmartTools GUI is only a particular graph-
ical view (windows, tabs, panels, views, menu, etc.)
of a document (based on the Lml language, Layout
Markup Language). A GUI model can be considered
as a tree of manipulated models (documents or pro-
grams) and their associated graphical views. In this
way, we can reuse all the tree manipulation methods
(insert a node, remove a node, etc.) and the features
provided by the view meta-model (See Section 6). For
instance, the GUI of Figure 2 can be serialized into an
XML file (see Figure 3). This GUI shows two graphical
views of it - one in XML on the left, and one using a
specific concrete syntax on the right - and is also itself
a view of it.

Figure 2. Three views of the GUI model of Fig-
ure 3: an XML view on the left, a textual view
on the right, and the window itself (interpre-
tation of the model)

2.2 Models of this GUI Application

To describe the Lml component, it is necessary to
define the following models:

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

<layout>
<frame title="SmartTools: lml demo"

statusBar="on" width="1000"
height="800" dynTabSwitch="off">

<set title="Lml example for this GUI">
<split orientation="1" position="68">

<view title="Layout demo.lml in XML format"
behavior=""
viewType="fr.smarttools.core.view.GdocView"
docRef="file:demos/lml/resources/lml/demo.lml"
styleSheet="resources:css/xml-styles.css"
transform="resources:xsl/genericXml.xsl" />

<view title="Layout demo.lml"
behavior=""
viewType="fr.smarttools.core.view.GdocView"
docRef="file:demos/lml/resources/lml/demo.lml"
styleSheet="resources:css/lml-styles.css"
transform="resources:xsl/lml-bml.xsl" />

</split>
</set>

</frame>
</layout>

Figure 3. GUI Model (Lml) uses to produce
the application shown in Figure 2

• The component model (see Figure 4) which spec-
ifies the services of the Lml component. With
this component model, the classical concepts for a
component are described such as the facade, the
container, the inputs and outputs, associated with
the DSL data model (formalism).

• The data-model (see Figure 5) which define the
Lml language. This language gives the logical
structure of a GUI model: a layout is composed
of a set of frames, a frame (window) is composed
of a set of sets (tabs), a set is a view or a split, etc.

• A view model which represents easy-to-read views
of Lml documents such as the one in the right part
of Figure 2 or the window/GUI itself. For the left
part of this Figure, SmartTools uses a generic
view model (the default one) to produce an XML
view, applicable to any model.

2.3 Implementation of the GUI Application

To build this GUI, a particular graphic component
was implemented, named glayout. This graphic com-
ponent is particular in the sense that is associated a
dedicated graphic object (layout, frame, split and
view) to each Lml entity. A transformation (built on
the same principle as for construction of the graphic
views, see Section 6) maps the logical entities to the
graphic objects to create the GUI. The business logic
of this application - the GUI - is only made up of these
graphic objects and this transformation.

<component name="lml" type="document"
extends="logicaldocument" >

<formalism name="lml" file="lml.absynt"
dtd="lml.dtd"/>

<containerclass name="LmlContainer"/>
<facadeclass name="LmlFacadeFacade"

userclassname="LmlFacade"/>
<parser type="xml" <extention name="lml"/>

classname="lml.parsers.LmlXMLParser">
</parser>
<lml name="DEFAULT"

file="resources:lml/lml-default.lml"/>
<behavior

file="resources:behaviors/lml-behaviors.xml"/>
<input doc="update tree"

method="update" name="update">
<attribute doc="transformation to apply"

javatype="java.lang.String"
name="transformationName"/>

<attribute doc="orientation"
javatype="java.lang.String"
name="orientation"/>

</input>
</component>

Figure 4. Component Model (Cdml) of Lml

Formalism of lml is
Root is Layout;
Operator and type definitions {
Layout = layout (FS[] fs);
FS = %Frame, %Set;
Frame = frame (Set[] set);
Set = set (VGroup view);
VGroup = split (VGroup view1, VGroup view2),view ();}
Attribute definitions {
REQUIRED title as Java.Lang.String in frame,set,view;
REQUIRED orientation as Java.Lang.String in split;
REQUIRED position as Java.Lang.String in split;
REQUIRED styleSheet as Java.Lang.String in view;
REQUIRED viewType as Java.Lang.String in view;
REQUIRED behaviour as Java.Lang.String in view;
REQUIRED docRef as Java.Lang.String in view; }

Figure 5. Data Model (AbSynt) of Lml

2.4 The GUI Application Deployment

In order to launch this application (the GUI),
SmartTools uses a deployment model (see Figure
6). It is necessary to specify the components4 which
are used (mainly the Lml component and the glay-

out component) by this application. This deployment
model will be used to create a communication chan-
nel between the component manager and the glayout

component which requires the use of a Lml document
- a GUI model - (file:resources/lml/demo.lml, see Fig-
ure 3). This model described the initial state of the
GUI application, Figure 2. For this GUI application,
the Figure 7 shows the created components and their
interconnections with this GUI model.

4These components are SmartTools components.

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

<application
repository="file:stlib/" library="file:lib/">

<load_component jar="view.jar" name="glayout"/>
<load_component jar="lml.jar" name="lml"/>
<connectTo

id_src="ComponentManager"
type_dest="glayout">
<attribute name="docRef"

value="file:resources/lml/demo.lml"/>
<attribute name="xslTransform"

value="file:resources/xsl/lml2bml.xsl"/>
<attribute name="behaviors"

value="file:resources/behaviors/bootbehav.xml"/>
</connectTo>

</application>

Figure 6. Deployment model of the GUI appli-
cation

Component
Manager

Demo.lml
LmL Component

Text view
View Component

XML view
View Component

GUI
Glayout Component

Figure 7. Manipulated Components and inter-
connections with the GUI application

3 Data Model Generator

For some years, the standardization efforts of both
the OMG (Object Management Group) and the W3C
(World Wide Web Consortium) have played major
roles in resolving the data and model integration is-
sues. The standard formalisms continuously evolve in
order to better address the new needs of applications.
For instance, to improve document data validation, the
DTD (Document Type Definition) language has been
replaced by more complex and richer data type docu-
ment meta-languages such as XML Schema or RDFS
(Resource Description Framework Schema). Another
example deals with object-oriented modeling: the UML
(Unified Modeling Language) approach has evolved to-
ward a domain-specific model definition based on the
MOF (Meta-Object Facility) meta-formalism [8].

3.1 Data Meta-Model (AbSynt language)

Instead of using the formalisms mentioned above, we
have preferred to define our own abstract data meta-
model which i) enables associating a semantics using

the separation of concerns, ii) is easy to use to de-
scribe non-complex DSLs and iii) is independent from
any formalism. This meta-model aims to define mod-
els associated with an application and is called Ab-

Synt. It is simple and close to Abstract Syntax Tree
(AST) definitions as shown in Figure 5. This Figure
describes the data model of our GUI application (Lml

language, see Section 2). It is composed of type and
operator definitions, and attribute declarations (an at-
tribute is a piece of information attached to either a
type or an operator). For example, FS type represents
a type which may have two implementations: either
the frame operator or the set operator that have both
the attribute title. This meta-model can be used to de-
fine the abstract syntax of existing programming lan-
guages as well as DSLs. It is the cornerstone for all
the generated tools and components specified within
SmartTools.

3.2 Impact of the MDE and GP Approaches

The openness of a data-model to standards is as im-
portant as its expressiveness. In order to ensure that,
we rely on generators and on model transformations.
For instance, we have defined translators (in both ways)
between our meta-model and the DTD or the XML
Schema meta-models. Due to these translators, it is
possible to accept either a DTD, an XML Schema, or
an AbSynt model to describe a data model in Smart-

Tools. SmartTools also accepts UML model (in
HUTN notation, UML Human-Usable Textual Nota-
tion). From this data model representation, it is pos-
sible to generate, as shown in Figure 8, the following
capabilities:

• An API. This API provides help for the manipula-
tion of abstract syntax trees (for instance, in order
to write semantics analyses);

• An equivalent DTD, XML Schema, or UML de-
scription. With this capability, designers can eas-
ily export their data models;

• An editor guided by the syntax. It is a basic view
that may be generated automatically in order to
facilitate the handling of documents or programs
(a model).

3.3 Reuse of Existing Technologies

The openness to standards has an interesting side-
effect: it enables the use of APIs related to the stan-
dards. For example, in order to avoid the design and

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

DTD
XML schema

UML

Structured
editor

Absynt model

DTD

Tree
manipulation

API

ABSYNT Generators

 XML schema

UML

Figure 8. Generated tools from the data meta-
models (AbSynt)

DTD
or

XML Schema

Our data
meta-model

Java classes
above DOM

convert into generate

XML
Document

is
conform

with

Objects/Nodes

is

instance

of

can be seralized in

is represented by

translate into

Figure 9. Bridge between data meta-models
and models

the implementation of another propriatory tree manip-
ulation API, we have chosen the DOM (Document Ob-
ject Model) API standard as the tree kernel. In this
way, the code dedicated to tree manipulations which is
specific to SmartTools is minimal and therefore easy
to maintain. Moreover our tree implementation bene-
fits from any new service and bug fixes when this stan-
dard and its different implementations evolve. There-
fore our tree implementation is open, capable of evolv-
ing, and can benefit from any DOM-compliant tool
or service. For example, all the trees manipulated in
SmartTools can be serialized in XML (see Figure
9), transformed with XSLT (Extensible Stylesheet Lan-
guage Transformation), or addressed with XPath for
free as these services are provided by the DOM API.

4 Semantics Generator

New programming paradigms such as AOP [12],
SOP [9] and GP [5] have appeared in the last ten years
to provide new ways of developing flexible extensible
applications. In a certain way, the ”Gang of Four”
(GOF) book [6] was already dealing with the problems
associated with designing more modular, flexible and
extensible software through the proposal of design pat-
terns. One of them is the visitor design pattern [14];
it separates the data structures (a hierarchy of classes)

from the associated treatments. These treatments are
written in a modular way (one class), making easier
any modification or extension.

4.1 Semantic Meta-Model (ViProfile language)

In SmartTools, we aim to allow the developer to
semantically analyze the data, for example to check
its validity (type checker), to retrieve some pieces of
information, or to evaluate it (interpreter). Such anal-
yses may have a specific tree traversal strategy and use
some variables for computational purposes. The lan-
guage designers (who may not have a deep knowledge
in computer science) should only focus on the informa-
tion to query within the model, not on the technical
issues. Additionally these queries should be easy to
modify and to extend, even at runtime.

To meet these requirements, we have chosen to im-
plement the visitor design pattern according to the
needs which are commonly required for the analysis
(traversal strategy and visit method signatures). Based
on these needs, we have defined the semantics model,
named ViProfile (Figure 10 gives a semantic model
of the Lml language). Both semantics and data models
are used by our generator to produce a default visitor
which visits only the nodes included into the traversal
strategy. To write a new semantics analysis involves
extending through inheritance the default visitor and
overriding some of its visit methods in order to specify
the suitable treatment. The implementation of our gen-
erators (in particular the AbSynt and CoSynt gen-
erators) strongly use this visitor technique, as well as
our data meta-model transformations (in Figure 9).

XProfile lml;
Formalism lml;
import lml.SymTab;
Profiles
java.lang.Object visit(%Layout, lml.SymTab symTab);
java.lang.Object visit(%FS, lml.SymTab symTab);
java.lang.Object visit(%Frame, lml.SymTab symTab);
java.lang.Object visit(%Set, lml.SymTab symTab);
java.lang.Object visit(%Vgroup, lml.SymTab symTab);
Strategy TOPDOWN;

Figure 10. A semantic model (ViProfile) of
Lml

The ability to be able to extend a semantics analysis
dynamically (at runtime) is possible due to a dynamic
AOP technique dedicated to our semantics model. For
its implementation, instead of using static source code
transformations or reflexive mechanisms, we have cho-
sen to generate hooks at the join points. The inte-
gration of this capability into our semantics analyses

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

is performed through an extension of the visitor gen-
erator. Due to this extension, the semantics analyses
attached to one data model can be extended, not only
by inheritance, but also (dynamically) with aspects.
The main advantage of such an approach is to provide
AOP facilities which are i) close to the needs of the
DSL designer, ii) easy to us as the resulting description
of the operational semantics is simple to understand,
and iii) straightforward to implement so that it may
quickly integrate new needs or potential evolutions. In
[3], we5 strongly use our AOP approach to develop an
extensible and adaptable BPEL engine.

5 Component Generator

Many component technologies have been proposed
such as COM and DCOM by Microsoft, CCM by the
OMG, and EJB by Sun. More recently, the Web-
Services technology has appeared with the possibility
to list the component services in catalogs (UDDI - Uni-
versal Description, Discover and Integration). Accord-
ing to [17], three of the main challenges in component
technologies are the followings:

• To extend the classical method-call. In this way,
the runtime environment (in a three-tier architec-
ture, the Internet, a message service, or a database
access) can be taken into account without any
modification to the business logic.

• To extend the notion of interface. The provided
and required services can be described and discov-
ered (for example, with the introspection available
within Java Beans), and the interface can dynam-
ically be adapted.

• To add meta-information to a component. This is
a generic approach to record information dealing
with several concerns such as deployment manage-
ment or security policies.

As SmartTools generates and imports compo-
nents, it was vital to include a component architecture
for its evolution and to simplify the interconnections
with external tools. Including a component architec-
ture for a factory tool is also useful to be able to build
applications with only the required components.

5.1 Abstract Component Meta-Model (Cdml lan-
guage)

Instead of using an existing component technology,
we decided to define an abstract component meta-
model (see Figure 4) i.e. one that is independent from

5The work of Carine Courbis at UCL.

any component technology to clearly express the needs
of SmartTools. Without this meta-model, these
needs would have been hidden by the use of a com-
ponent format (for example, IDL - Interface Definition
Language) which is not dedicated to our application.

When building the component meta-model it was
necessary to take into account the aims of Smart-

Tools which are to define a new data model, to query
it and to import existing model representations. One of
the consequences of this is that very often components
are related to one data-model even if this is not manda-
tory. Therefore, the SmartTools component meta-
model is strongly linked with the data meta-model.
This means that the components may be built know-
ing the data-model representation. This influences the
way components may interact with each other. From
a component model (see Figure 4), a generator can au-
tomatically produce the non-functional code, that is to
say the container that hides all the communication and
interconnection mechanisms. For example, the broad-
cast mechanism used to propagate any modification
made on a logical document to its associated views (see
Section 6) is totally transparent to the designer of an
application.

5.2 Reuse of Existing Technologies

We explain in Section 6 that components may inter-
act with each other by exchanging data. Due to the use
of the DOM API (see Section 3.3), all the XML facili-
ties are available. For example, any document can be
serialized into an XML form. In particular, it enables
components to exchange complex information such as
sub-trees or path information using XPath. One of the
main advantages is that all the components which con-
form with the same data model can exchange complex
pieces of information between their business logic.

5.3 Flexibility of the Component Configuration

Our connection process is much more flexible and
dynamic than those offered by the technologies men-
tioned earlier and which are mainly dedicated to
client/server architectures or Web applications. In
SmartTools, component interconnections are dy-
namically created when requested and use a kind of
pattern-matching on the names of services provided
or required by the components to bind the connectors
(ports). Our component manager uses our component
and deployment models (see an example in Figure 6) -
two XML formats - to instantiate components and to
establish connections between them. Figure 11 sum-
marizes the operations performed by our component

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

manager and also the various XML files (models) that
are used.

Generated
Container

C2 component

Container

 Component manager

Facade

C1 component

Classes Classes

Facade

connectTo

Generated
Container

Facade

Application
deployment
description

(XML)

C1 component
description

(XML)

C2 component
description

(XML)

Component
manager

description
(XML)

Additional
 behavior

description
(XML)

Figure 11. Functional diagram of the compo-
nent manager

5.4 Impact of MDA and GP Approaches

As mentionned earlier, there are many advantages
in creating an abstract component meta-model which
fits with the application requirements rather than us-
ing a non-specific model. With the integration of a
MDA approach (based on GP), we are able to produce
from our abstract component meta-model the imple-
mentations (Platform Specific Models) towards well-
known component technologies such as Web-Services,
CCM, or EJB (see Figure 12). The experience gained
by building those projections makes us believe that
none of the component technologies mentioned above
(Web-Services, CCM, EJB) would have fitted with our
needs. From our point of view, they are suitable for
distributed applications but not for applications with
a generic (thus configurable) GUI.

With such an approach, the exportation of the pro-
duced components is easier and our DSLs can evolve
and be much better adapted. Moreover, the architec-
ture of produced applications is i) minimal (only the
essential components may be deployed), ii) much more
flexible, and iii) dynamic as new components can be
very quickly developed and plugged in at any time.

6 Graphical View Generator

The graphical interfaces that make applications in-
teractive must also be able to evolve themselves ac-
cording to the application changes. Two main chal-
lenges, when designing a graphical interface, should be
kept in mind: the interface might be executed on differ-
ent visualization devices and also through a Web inter-
face. The proliferation of new domain-specific models

Remote and
Home

interfaces

Component
Model

CDML Generators

SmartTools Web-services

CCMEJB

IDL file
+ CORBA

server class

Container
+ Facade
sub-class

WSDL file
+ SOAP

corresponding
class

Figure 12. Component model transformations

requires the ability to quickly design and implement
interfaces (or pretty-printers) which are specific to one
model or domain. In this context, visual programming
can be very useful when building programming environ-
ments dedicated to non-complex domain-specific mod-
els.

6.1 View Meta-Model (CoSynt language)

For this purpose, we have defined a specific lan-
guage, named CoSynt, which enables the designers to
define a concrete syntax to their DSL. With CoSynt,
tree transformations can be specified based on the data
model. These different outputs are obtained through a
sequence of model transformations or refinements (see
Figure 13).

AST
+

sugars
+

boxes

AST
+

sugarsAST

AST
+

sugars
+

boxes
+

styles

AST Concrete
syntax

tree

Tree of
graphical
objects

Tree of
graphical
objects

with styles

Figure 13. Successive model transformations
performed to obtain a graphical view

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Antlr parser
text -> tree

View Model

COSYNT Generator

Xslt produce
textual format
tree -> text

Data Model

Xslt produce
Graphic view
tree -> view

Figure 14. CoSynt generator

6.2 Reuse of Existing Technologies

More precisely, due to the tree abstract transfor-
mations (independent from any technology) described
with CoSynt, the CoSynt generator produces i) a
ANTLR parser and ii), for the reverse operation - the
pretty-printing - two XSLT stylesheets which produce
respectively a textual form and graphical view (based
on Java Beans) of the document (see Figure 14).

6.3 Impact of MDE and GP Approaches

This CoSynt generator is a typical example of a
MDE component. It takes as input a data-model and
the description of the transformations to be performed
on it, using a dedicated transformation language. It
produces (outputs) various implementations (XSLT
file, user-defined language parser) of these transforma-
tions. To provide such components is particularly suit-
able for software development because i) it enables the
designer to define a DSL which is independent from a
particular technology and dedicated to the data-model,
and ii) it automatically produces symmetrical and in-
cremental transformations based on standards.

7 Related Work

Both our approach and SmartTools are on the
edge of different software engineering domains and
many related research works. For those reasons, we
have preferred drawing up the main advantages of the
approach instead of trying to compare both of them
directly with their respective related work. We have
focused on the advantages of this approach according
to the openness and ability to evolve of produced appli-
cations more than one the skills of SmartTools itself.
There is no doubt that on each concern, the proposed

techniques or solutions are certainly less powerful com-
pared to equivalent research work or specific tools. For
example, our AOP approach is very specific to our se-
mantics analyses and cannot be compared directly with
general approaches or tools such as AspectJ [16]. It is
necessary to keep in mind that the core of our approach
is to apply at different levels an MDE approach using
GP. The main benefits of this approach are the follow-
ings:

• To handle different concerns homogeneously and
simultaneously. On the contrary, the component
technologies mentioned earlier are mainly inter-
ested in the distribution concern.

• To remain on the implementation level. The UML
modelling approaches [10] suffer from the gap be-
tween the specification and implementation levels.

• To produce generator-free source code, very close
to hand-written programs. Very often, tools such
as [2, 11, 13], introduce a strong dependence be-
tween the generator and the produced code.

• To be capable of evolving and open due to the use
of standard technologies (e.g. XSLT for program
transformation). For example, there are many
other tools available for program transformations
[13] but they use proprietary input formats and in-
terpretor engines that require additional effort to
plug them in and use them.

• To treat the GUI or other environment facilities as
separated entities (components) that may or not,
be integrated in the resulting application. This
feature does not usually exist in IDEs (Integrated
Development Environments) [1] that forces pro-
duced applications to be integrated into the IDE
framework itself.

Finally, our approach is based on the general con-
cepts (abstraction, granularity, specificity) of Software
Factory which are described in [7].

8 Conclusion

Through the continuous development of Smart-

Tools, we are validating a new approach in software
development mainly based on transformations and gen-
erations of models. We promote the idea that each
concern should be described by a DSL (meta-model) in
order to better fit the application requirements. More-
over, these meta-models should be independent from
the context of use, that is from any existing technology.

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

The main advantage of this approach is that the meta-
models are resilient to any evolution in the underlying
technologies except when a new concern needs to be
added. This evolution is performed only through mod-
ifications of the generators associated with each meta-
model. These generators contain the design method-
ologies (they represent altogether the software tool fac-
tory). They are customized due to input models, and
they produce new intermediate models (which may rep-
resent refinements) or the final models adapted to the
software platform.

References

[1] Eclipse. http://www.eclipse.org/.
[2] P. Borras, D. Clément, T. Despeyroux, J. Incerpi,

G. Kahn, B. Lang, and V. Pascual. Centaur: the
System. SIGSOFT Software Eng. Notes, 13(5):14–24,
November 1988.

[3] C. Courbis and A. Finkelstein. Towards an Aspect
Weaving BPEL Engine. In Y. Coady and D. H.
Lorenz, editors, Proceedings of the Third AOSD Work-
shop on Aspects, Components, and Patterns for Infras-
tucture Software (ACP4IS), number NU-CCIS-04-04,
Lancaster, UK, March 2004. College of Computer and
Information Science Northeastern University.

[4] R. Crocker and G. L. S. Jr., editors. Companion of the
18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA 2003, October 26-30, 2003, Ana-
heim, CA, USA. ACM, 2003. Special track, Krzysztof
Czarnecki and John Vlissides.

[5] K. Czarnecki and U. W. Eisenecker. Generative Pro-
gramming: Methods, Techniques, and Applications.
Addison-Wesley, June 2000. ISBN 0201309777 chapter
Aspect-Oriented Decomposition and Composition.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, Reading, MA, 1995.
ISBN 0-201-63361-2-(3).

[7] J. Greenfield and K. Short. Software factories: as-
sembling applications with patterns, models, frame-
works and tools. In Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages
16–27. ACM Press, 2003.

[8] O. M. Group. Meta Object Facility (MOF) specifica-
tion (version 1.3). Technical report, Object Manage-
ment Group, Mar. 2000.

[9] W. Harrison and H. Ossher. Subject-oriented pro-
gramming (A critique of pure objects). In A. Paepcke,
editor, Proceedings ACM Conference on Object-
Oriented Programming Systems, Languages, and Ap-
plications, pages 411–428. ACM Press, Oct. 1993.

[10] J.-M. Jézéquel, H. Hußmann, and S. Cook, editors.
UML 2002 - The Unified Modeling Language, 5th In-
ternational Conference, Dresden, Germany, Septem-
ber 30 - October 4, 2002, Proceedings, volume 2460 of
Lecture Notes in Computer Science. Springer, 2002.

[11] M. Jourdan, D. Parigot, C. Julié, O. Durin, and C. Le
Bellec. Design, Implementation and Evaluation of
the FNC-2 Attribute Grammar System. In Conf. on
Programming Languages Design and Implementation,
pages 209–222, White Plains, NY, June 1990.

[12] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
Oriented Programming. In M. Akşit and S. Matsuoka,
editors, ECOOP ’97 — Object-Oriented Programming
11th European Conference, Jyväskylä, Finland, vol-
ume 1241 of Lecture Notes in Computer Science, pages
220–242. Springer-Verlag, New York, NY, June 1997.

[13] P. Klint. A Meta-Environment for Generating Pro-
gramming Environments. ACM Transactions on Soft-
ware Engineering Methodology, 2(2):176–201, 1993.

[14] J. Palsberg and C. B. Jay. The Essence of the Vis-
itor Pattern. In COMPSAC’98, 22nd IEEE Inter-
national Computer Software and Applications Confer-
ence, pages 9–15, Vienna, Austria, Auguste 1998.

[15] D. Parigot, C. Courbis, P. Degenne, A. Fau,
C. Pasquier, J. Fillon, C. Help, and I. Attali. As-
pect and XML-oriented Semantic Framework Gener-
ator: SmartTools. In ETAPS’2002, LDTA workshop,
Grenoble, France, April 2002. Electronic Notes in The-
oretical Computer Science (ENTCS).

[16] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
JAC: A flexible solution for aspect-oriented program-
ming in Java. Lecture Notes in Computer Science,
2192:1–24, 2001.

[17] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. ACM Press and Addison-
Wesley, New York, NY, 1998.

