To Build Open and Evolutive Applications:. an Approach based on MDA and
Generative Programming *

Carine Courbis
University College London
Computer science department
Adastral Park - Martlesham IP5 3RE - UK
Carine.Courbis@bt.com

Philippe Lahire
Laboratoire 13S (UNSA/CNRS)
2000 route des lucioles BP 121
F-06903 Sophia-Antipolis CEDEX, France
Philippe.Lahire@unice.fr

Didier Parigot
INRIA Sophia-Antipolis
2004, route des Lucioles - BP 93
F-06902 Sophia-Antipolis CEDEX, France
Didier.Parigot@sophia.inria.fr

Abstract

With the emergence of the Internet and proliferation of
new component and distributive technologies, the design
and implementation of complex applications has to take into
account standards, code distribution, deployment of compo-
nents and reuse of business know-hows. To cope with these
changes, applications need to be more open, adaptable and
evolutive.

To accommodate to these new challenges, this paper
presents a new development approach based on transfor-
mations of different business models, each of them related
to one possible concern of the application. This approach
is MDA (Model-driven Architecture) compliant and relies
on Generative Programming. It contributes to the research
works on Domain Driven Development (DDD). The main
expected results are i) to get softwares of better quality
thanks to business models and technology separation, ii) to
have a more straightforward code, iii) to allow the rapid
development and insertion of new facets and iv) to facilitate
the portability of applications towards new technologies or
platforms.

Finaly, in order to illustrate our approach, a generative
programming system, called SMARTTOOLS, is presented.
It may be compared to a software factory dedicated to ap-
plications which rely on one data model.

*This project is supported in part by the W3C consortiun with the IST-
2000-28767 QUESTION-HOW Project. We would also like to thank Pas-
CAL DEGENNE and ALEXANDRE FAU for their software development ef-
fortsin SMARTTOOLS.

1. Introduction

During this last decade, there were many changes in
computer science that have an influence upon the way an
application must be developed. To cope with these changes,
applications need to be more open, adaptable and evolutive.
Before going any further, we explain why these new con-
straints in software development have emerged.

e The first reason is that the emergence of the Internet
requires applications to be no more PC-enclosed but
rather distributed. Thus, from now, data communica-
tion between applications and users must be taken into
account during the whole application life-cycle. One
important point is to choose a well-adapted data ex-
change format.

e The second reason of these changes is the prolifera-
tion of new component technologies. It makes difficult
to choose the one which is the more adapted and the
most evolution-prone according to the context of use.
For instance it will be necessary to decide whether it is
better to take CCM (CORBA Component Model), EJB
(Entreprise Java Bean), or COM (Component Object
Model), etc.

e The third reason is the democratization (widespread)
of computer science. Users may have now different
knowledges, different needs, a wide range of visualiza-
tion devices, and specific activity domains. This aspect
should be considered when designing and developing
applications.

e The last reason is business related. Indeed, to be com-
petitive a company must quickly and cheaply adapt its
software to new user needs and technologies.

In software engineering, object-oriented programming is
not always sufficient to handle clear designs and reusable
developments of software. For example, concerns can be
cross-cut between classes and there can be a mix between
functional and non-functional code in a single class mak-
ing the code difficult to maintain and debug. This situation
explains the need to provide new programming paradigms
such as AOP (Aspect-Oriented Programming) [19], SOP
(Subject-Oriented Programming) [14] , IP (Intentional Pro-
gramming) [33], or component programming [35].

At the specification level, a strong and continuous evo-
lution is undergoing towards standards of the W3C (World
Wide Web Consortium) for documents or of the OMG (Ob-
ject Management Group) for design methodologies such as
UML (Unified Modeling Language) or the MDA (Model-
Driven Architecture) approach [13, 37].

It seems that having only one model like in UML to
tackle all the possible concerns of applications does not al-
ways provide the most comprehensive approach to specify
them. Moreover, the semantics associated to each UML en-
tities is not very well specified and is sometimes ambigu-
ous. This is a strong drawback if the model need to be exe-
cutable.

In order to better address these new challenges, we pro-
pose an approach which relies on both MDA and Generative
Programming [9]. It promotes following key-ideas:

e when the software is being designed and implemented
different concerns are addressed by the programmer.
These concerns are better handled if a dedicated
model* exists for each of them. Among the possible
concerns there are the design of the application data-
model, the management of persistence, the specifica-
tion of security, the definition of GUI (Graphical User
Interface), the handling of software components, etc.

o if the model (dedicated to one of the concerns) is inde-
pendent from the software platform on which the ap-
plication will run, then it is possible to capitalize the
know-how of the application independently from the
context of use. Then the representation of the domain-
specific knowledge is much more reusable.

e Generative Programming paradigm is a powerful ap-
proach which allows to compose all the different parts
handled by those specific models in order to build the
application according to the context of use (e.g. tech-
nologies related to software platforms).

1By construction it will fi t exactly to the needs of the concern.

Our approach relies on the concept of software factory
[9]. First we give an overview of our approach, then we
provide more details about some of the models that may be
used during the design and development process of an ap-
plication. In particular we provide details about the imple-
mentation of these models in the framework of the SMART-
TooLs software [31]. Finally we compare our approach
with the state of the art.

2. Overview of the approach

We propose an approach that we think more adapted to
the design and implementation of applications which rely
on one data-model. It conforms to ideas developped in re-
search works dealing with Domain Driven Development. It
is mainly based on the ability to define business models and
then to perform transformations on those models in order
to generate either refinements of those models or platform-
specific models.

We promote the idea that the use of this approach al-
lows to get open, adaptable, and evolutive software. More
precisely, thanks to generative programming, new program-
ming paradigms and technologies can be easily integrated
from the models into the target implementation program-
ming language, at any time.

In figure 1 we aim to show the impact of our approach
on the development of an application. Let us assume that to
define an application we need to:

o define the data model associated with the application.
It could be an information system, a programming lan-
guage, an Object-Oriented method but also any other
business model.

o specify the semantics of the model, that is to say the set
of rules that manage all instances of the model and the
properties that may be implicitly suggested by some of
the model entities.

e design the architecture of an application as a set of
software components that interact one with the others.
Then it is necessary to be able to describe those com-
ponents with their interactions.

e implement some orthogonal services such as persis-
tence management, data integrity, distribution of ob-
jects over the network, GUI, etc.

According to those needs and to the key-ideas mentioned
in section 1), we propose in figure 1 to address four models.
Each of them is dedicated to the specifications related to one
concern: the data model, the semantics, the set of compo-
nents and an additional (orhtogonal) service. Of course an
application may rely on other(s) service(s). Depending on

Orthogonal
Services
Model

Generators

Code written by
the developer

ApplicatiEl
Glue

Figure 1. Our approach applied to the devel-
opment of an application

the application needs it will be a replacement or an addition
of service(s).

Thanks to the use of domain-specific and platform inde-
pendent models (P1M), the business model is specified by
parts which are independents from the platform on which it
will be applied: persistence and security could be handled
by any database management systems (DBMS), the model
of components used may be EJB, CCM from OMG or any
other (like the Web services from W3C), the language used
to implement the model or its semantics may not be known
at design time.

The generators associated to those models will then han-
dle the generation of the application, providing the glue
which is necessary to make it working on a specific plat-
form, according to the context of use. If the platform
changes or if the technology of the platform evolves, it is not
necessary to update the models which represent the domain-
specific know-how, but the generators only. In the next sec-
tions we intend to give more details on the four models that
we consider as mandatory in the development process of an
application:

o the data model. It describes the application structure
and should have an application-independent format in
order to cut from the technology-specific details;

e the semantic model. It integrates some facilities in
order to structure and to modularize the code. This
should help to maintain it and to facilitate its reuse;

e the component model. It is as close as possible from

the application needs. In particular it allows to specify
the provided and required services.

e the GUI model. It define several views of the data
model such as a structured editor in order to create and
update more easily instances of this model; they must
be device-independent.

In order to convince the reader with the interest of sep-
arating the concerns through different models, we propose
a more detailed description of those models and additional
explanations about the handling of those models in SMART-
TooLs?. The experience of SMARTTOOL Saims to i) give a
more precise description of the approach and ii) show how
the approach favours the possible adaptations of an appli-
cation according to the future evolutions of the software
platform. In order to summarize, let us come back on the
key-aspects of our approach.

First, it follows the MDA approach (see figure 2). In par-
ticular it uses source code generation as one transformation
mechanism in order to produce one or many Platform Spe-
cific Models (PSM), from the Platform Independent Model
(PIM) such as those mentioned above. We claim also that
the development process of open and adaptable applications
should rely on several PIMs.

Semantic
Model

Pretty-printer

Parser
specifications

Default
Visitor
+AOP

Figure 2. Generative Programming and MDA
approach

Secondly our approach deals with the specification of a
generative programming system which had been compared
by Krzysztof Czarnecki and Ulrich W. Eisenecker to a fac-
tory of a particular domain [9]. It could be applied to any
application which has a underlying data model.

2SMARTTOOLS is a research prototype whose aim is to validate our
approach for different domains in an homogeneous way.

3. Data Models

In research works on programming languages, there are
many formalisms to declare data structures (types). These
formalisms are bound to either an underlying theory, asso-
ciated systems (e.g. algebraic types for rewrite systems),
or programming languages (e.g. ML language [22]). The
most famous theory is certainly the notion of abstract syn-
tax (very often mapped to a tree structure description) that
contains the common concepts of those theories. Among
them there is the concept of meta-language that may be rep-
resented by a BNF - Backus Naur Form.

For some years, the standardization efforts of both OMG
and W3C play major roles in the data and model integra-
tion problematic. These standard formalisms continuously
evolve in order to better address the new needs of applica-
tions. For instance, to improve document data validation,
the document meta-language (DTD - Document Type Def-
inition) has been replaced by more complex and rich data
type formalisms such as XML Schema or RDFS (Resource
Description Framework Schema). Another example deals
with object-oriented modeling : the UML approach has
evolved toward a domain-specific model definition based on
the MOF (Meta-Object Facility) meta-formalism [12]. The
databases have also evolved from relational databases to-
ward object databases [5] and then toward XML databases

3.

Implementation: the experience of SMARTTOOLS.

Instead of using the formalisms mentioned above, we
have preferred to define our own abstract data meta-model
which is close to our needs and independent from any for-
malism. This meta-model aims to define the business mod-
els associated with the application. It has a leading role ac-
cording to those various formalisms (DTD, XML Schema
or MOF). For instance, we have defined translators (in both
ways) between our meta-model and the DTD or the XML
Schema meta-models. They make possible to import mod-
els in SMARTTOOLS as either a DTD, an XML Schema,
or a document compliant to our meta-model. For example,
this meta-model may be used to define the abstract syntax of
existing programming languages as well as domain-specific
languages; it is the cornerstone for all the generated tools
and components. The goals of a such meta-model are the
followings:

e to cut off from existing formalisms;

e to open SMARTTOOLS towards applications based on
XML or UML standards;

e to benefit from the development efforts (tools) made
around these standards.

From this data model, SMARTTOOLS can generate, as
shown by figure 2, following capabilities:

e an API. It helps to the manipulation of abstract syntax
trees (for instance, in order to write semantic analy-
ses);

e an equivalent DTD or XML Schema. It provides some
facilities to the designers for exporting models;

e an editor guided by the syntax. It is a basic GUI that
may be generated automatically in order to facilitate
the handling of instances of the model.

In order to avoid the design and the implementation of
another propriatory tree manipulation API, we have chosen
the DOM (Document Object Model) API standard as tree
kernel. In this way, the code which is specific to SMART-
TooLs for manipulating trees is minimal thus easy to main-
tain. Moreover our tree implementation benefits from any
new service and bug fixing when this standard and its dif-
ferent implementations evolve. Thus our tree implemen-
tation is open, evolutive and can benefit from any DOM-
compliant tool or service. For example, all the trees manip-
ulated in SMARTTOOLS can be serialized in XML (see fig-
ure 3), transformed with XSLT (Extensible Stylesheet Lan-
guage Transformation), or addressed with XPath for free as
these services are provided by the DOM API.

DTD convert into

or ———————»(Our data —d€NETate Java classes
—
XML Schema < translate into model above DOM
is 4 s
: conform instance
with of

XI\}IL —WF O'bjects/Nodes

<
Document <« can be seralized in

Figure 3. Bridge between languages and doc-
uments

One of the drawbacks about using the DOM standard
is that it does not fulfill all our needs : the manipulated
trees are not strictly-typed (a DOM tree has only homoge-
neous nodes). The main consequence is that it is difficult to
semantically analyze them with a visitor-pattern approach
(see section 4). The handling of strictly-typed trees may
be achieved thanks to the generation of a language-specific
API (Java classes) above the DOM API (type names of
the nodes and the name of accessors are provided by the
model).

4. Semantic Models

Let us coming back on the fact that one of our main goal
is that the semantics which is associated to the model should

allow the model to be executable. Starting from this re-
quirement we propose a pragmatic approach which rely on
approaches applied to the specification of semantics within
programming language and design methods. An interesting
side effect of this choice is to reduce the gap between the
design of an application and its implementation.

On the first hand, existing models like UML [28] or
MOF [12] provide features for specifying the entities of a
model as well as constraints on those entities; moreover
works on action semantics [34] propose a graphical lan-
guage for defining the body of methods but it seems that
much remain to be done to make the model executable.

On the second hand, one of the approach which is ap-
plied to the implementation of the semantics of program-
ming language within compilers is based on the description
of pieces of code. They are written in the language which is
used for the implementation of the compiler.

According to this background our approach wants to take
the benefits from programming languages and OO design
methods. First it includes a way to define the semantics of
entities of the data model through a set of routines specified
with one programming language which acts on the model
entities (they are named: actions). The expressiveness of
such approach is straightforward but it is quite crude. A
more declarative and structured approach would help the
designer of the model to describe the semantics.

Later in this section we propose an overview of our pro-
posal for the definition of the semantics related to the data
model. It takes into account some capabilities allowing to:

e split and compose the description of the semantics ac-
cording to the different concerns related to the model
and its instances,

e factorize the common semantics of the model entities
by the use of meta-information and meta-assertion [8],

e specify better the different actions associated to model
entities

A clear distinction should be made between people who
describes the model®, and people who uses it and create in-
stances of the model.

Which ASoC approach? According to what is men-
tioned above, the behavior of the model entities may deals
with several distinct concerns. It may be interesting to
rely on paradigms which handle the separation of concerns
(ASoC). In the following, we propose a quick overview on
the possible ASoC approaches that may be use to specify
the semantics of a model.

New programming paradigms appear such as AOP [19],
SOP [14] or Generative Programming [9]. In a certain way,

3They are experts of the domain and have to specify the know-how
which is associated to it.

the GOF book on design patterns [11] is dealing with this
problematic and proposes patterns to design applications
wmore generic and flexible. One of the most famous de-
sign patterns is the visitor; it separates the data structures (a
hierarchy of classes) and the associated treatments. Thanks
to visitors, treatments are written in a modular way (one
class) so that modifications and extension are easier to do.

The adaptable programming [23, 30] has extended the
design pattern visitor. It provides a better flexibility to-
wards changes related to the data model. More precisely,
a traversal description language (a kind of extended pattern
matching model) makes possible to cut off from the under-
lying data structure of the application.

The design pattern visitor has been the basis of many
other research works [29]. It is close from the concept of
multi-methods [4, 25] or of generic functions for functional
programming. There are also other approaches which in-
troduce genericity within programming languages. We may
mention C++ templates, generic libraries [26], generic Java
types [36] and programming by mixins [10]. All of them
[27] need either, source code transformations, reflexivity,
meta-programming, or higher order techniques, to work out.

All the mechanisms mentioned above are not sufficient
and AOP [19] represents one of the most interesting answer.
The main objective of this new paradigm, like the visitor de-
sign pattern, is to split up the application code into entities
(class, module) associated with a concern in order to ensure
a better application modularity.

To factorize and better capture semantics. According
to what has been suggested above our approach provides a
way to define the semantics of each entity through the use
of a set of visitors that encapsulate all the concerns related
to it. In next paragraph we describe how this approach is
integrated in SMARTTOOLS but let us provide some details
about new improvements that are undergoing specification:

o the use of declarative languages should be used in or-
der to provide a support for the generation of the body
of actions. As a first approach this is OCL (Object
Constraint Language) that will be used and a classi-
fication of assertions will be made in order to better
organize the specification of the semantics and to en-
capsulate additional information.

o the specification of actions should be improved in or-
der to provide to the generator more information about
the different concerns and the role of the actions; this
should have an impact on the part of code of an action
that can be automatically generated. The underlying
know-how that we plan to use comes from the attribute
grammar approaches [7, 18].

e we propose to include several sets of meta-information
which will address some key-points of the semantics of

the most interesting entities of the model. Let us take
the example of one business model whose aim is to
describe the operational semantics of object-oriented
languages [8]. Instead of trying to define by hand the
semantics of all kinds of classifiers* of all languages,
we prefer to extract a set of properties which allow
to characterize each kind of classifiers and to write
generic actions which depend mainly on the value of
those properties.

Thanks to these new capabilities we intend to improve
the expressiveness of the meta-model in order to reduce the
amount of code which has to be written when a model is de-
scribed and to increase the impact of Generative Program-
ming according to the specification of the semantics of a
model.

Implementation: the experience of SMARTTOOLS.

In SMARTTOOLS, we have created a generator that in-
struments business models through the intensive use of
the visitor design pattern. Thanks to the data model and
pieces of meta-information about the semantic analysis
(visit method signatures and traversal strategies), the gen-
erator can produce a visitor by default that visits only the
nodes included into the traversal strategies. When the model
designer wants to associate a semantic analysis to a model,
he only has to extend by inheritance the visitor defined by
default and override some of the visit methods in order to
specify the accurate treatment.

In SMARTTOOLS, we have chosen to introduce AOP
techniques which are designed especially for the meta-
model which is dedicated to the description of semantic
analyses (e.g. a type-checker or an evaluator). For its im-
plementation, instead of using static source code transfor-
mations or reflexive mechanisms, we choose to produce the
code to be inserted. The integration of this capability into
our semantic analyses is performed through an extension of
the generator which has to produce also the specific aspect-
plugging code. It is embedded into the visitor defined by
default. Thanks to this extension the semantics analysis at-
tached to one data model can be extended, not only by inher-
itance, but also (dynamically) with aspects. Main advantage
of such an approach is to provide AOP facilities which are
i) close to the needs of the model designer, ii) easy to use:
the resulting description of operational semantics is simple
to understand, and iii) straightforward to implement so that
potential evolutions of the needs of business models can be
quickly integrated.

Let us now summarize and pay a particular attention on
the implementation strong modularity. The handling of the
semantics of business models is splitted into three distinct
parts: the data model representation, the management of

4In UML this is the name used to address the concept of datatype

its recursive traversal and the semantic actions (the treat-
ment) to be attached. Our choice to introduce a separa-
tion of concerns even at the level of implementation favours
easy model transformations and has an interesting impact
on the ability of SMARTTOOLS to support applications of
the MDA approach.

5. Component Models

The evolution of programming languages has also deeply
changed the notion of modularity. Let us take some ex-
amples such as ADA or Java packages, generic libraries
in imperative programming, multi-inheritance and contract
approach in Eiffel [24] or the “module” in functional pro-
gramming [22]. These different approaches provide inter-
esting mechanisms in order to achieve more generic com-
ponents but they are rather complex to use and they are not
perfectly suitable for the needs of distributed applications.
Many component technologies have been proposed in or-
der to cope with these new needs: COM and DCOM for
Microsoft, CCM for the OMG, and EJB for Sun. More re-
cently, the Web-Services technology appeared with the pos-
sibility to list the component services in catalogs (UDDI -
Universal Description, Discover and Integration).

According to the state of the art, three of the main chal-
lenges in component technologies are the followings:

e to extend the classical method-call. It allows to take
into account the runtime environment (a three-tier ar-
chitecture : the Internet, a message service, a database
access) without any modification of the business code;

e to extend the notion of interface. It provides a way to
describe/discover the provided and required services
(e.g. the introspection in Java Beans) and to dynam-
ically adapt the interface (e.g. the multi-interface no-
tion in CORBA);

e to add meta-information to a component. This is a
generic approach to record information dealing with
several concerns such as the deployment management,
the security policy, etc.

These different mechanisms must be transparent towards
the business code of the components. It corresponds to a
kind of separation of concerns to avoid mixing the func-
tional and the non-functional code. The OMG has proposed
the MDA approach based on model transformations. It
makes possible to get a better evolution of complex software
applications towards component technologies [37]. This
benefit explains the research efforts dealing with the def-
inition of new generic component language and the links
with both AOP and model transformations.

Implementation: the experience of SMARTTOOLS.

The aim of SMARTTOOLS is to define new data model
and to import existing model representations. In order to
achieve this objective it is mandatory to have a component
architecture which guarantees an easy evolution of the set
of models handled by SMARTToOLS °. Moreover, having
a component architecture (more precisely a meta-tool in the
context of SMARTTooOLS) allows to build also an applica-
tion with only the required components.

The first step were to define an abstract component
model i.e. independent from any component technology.
The issue is to be able to clearly identify the needs of
SMARTTOOLS. Without this model, these needs would
have been hidden by the use of a component format which
is non model-specific (e.g. IDL - Interface Definition Lan-
guage). Thanks to this component model, a generator can
automatically produce the non-functional code, i.e. the con-
tainer that hides all the communication and inter-connection
mechanisms. For example let us take the broadcast mecha-
nism which is used by a logical document and which aims to
update the graphical views associated with it. This problem
is totally transparent for the designer of application. Addi-
tionally, it is very easy to adapt the architecture in order to
introduce a new communication mechanism.

The second step were to define a set of model transfor-
mations (projections) from our abstract component model
towards well-known component technologies such as web-
services, CCM, or EJB (see figure 4). It makes easier the
exportation of the produced components.

Component
Model

Generators

Web-services
WSDL file

SmartTools

Container

+ Facade + SOAP.
sub-class corresponding
class

IDL file

Remote and

Home : + CORBA
interfaces f server class
Eclipse
plug-in

Figure 4. Component model transformations

Thanks to the experience gained by building projections,
we do not believe that any of the three component technolo-
gies mentioned above (Web-Services, CCM, EJB) would fit

5For exampleit will be crucial to handle the possible inter-connections
between models.

with our needs according to the component model itself and
the specifications of connections between models. They are
well appropriate for distributed applications but very poorly
for applications with a generic (thus configurable) GUI.
Moreover, the connection process proposed in SMART-
TooLs is much more flexible and dynamic than those of-
fered by these technologies which are mainly dedicated
to client/server architectures or Web servers. In SMART-
TooLs, component inter-connections are performed dy-
namically when it is required. It also applies a pattern-
matching on techniques on the names of services which are
provided or required by the components in order to bind the
connectors.

Another important aspect of our component model is that
it is strongly linked with the meta-model which describes
data models. This means that the components may be built
knowing the data-model representation. The main conse-
guence is the ability to exchange complex information be-
tween two components such as sub-trees or path informa-
tion (XPath) for the views and the associated logical docu-
ment. The implementation of our model was rather easy.

We showed above that there are many advantages
to create an abstract component model which fits with
the SMARTTOOLS requirements rather than using a non-
specific model. With the integration of an MDA approach
(based on generative programming), we are able to produce
implementations in different technologies (Platform Spe-
cific Models). In this way, our models and the generated
ones can evolve and be much better adapted. The immedi-
ate result of this approach was to clearly identify the kernel®
of our tool.

Following our approach, the architecture of the produced
applications are i) minimal (only the essential components
may be deployed), ii) much more flexible, and iii) dynamic
as new components can very quickly and at any time be
plugged in.

6. Graphical User Interfaces

The graphical interfaces that make applications interac-
tive must also be adaptable to their evolutions. Two main
challenges, when designing a graphical interface, should
be kept in mind: the interface might be executed on dif-
ferent visualization devices and also be accessible through
a Web interface. Moreover, the proliferation of new busi-
ness models requires the ability to quickly design and im-
plement interfaces (or pretty-printers) which are specific to
one model or domain. In this context, visual programming
can be very useful to build programming environments ded-
icated to non-complex business models.

60nly 0.5 Mbytes.

Implementation: the experience of SMARTTOOLS.

One of the goal of SMARTTOOLS, is to provide facilities
for the development of new tools or programming environ-
ments, especially for non-complex description languages.
Its design takes into account the specificities of these lan-
guages: i) they have their own data description language
that should be accepted as input, and ii) the designers of
such languages may not have a deep knowledge in com-
puter science. Thus it was mandatory to establish a bridge
with the Web semantics research topics, and to provide
tools which are easy to use and which are built on well-
known techniques. According to this context, it is possible
to quickly implement an environment dedicated to a busi-
ness model which may have one or more specific views
of the documents. These different displays, more user-
friendly and more readable than the XML format are ob-
tained through a sequence of model transformations or re-
finements (see figure 5).

A
+
A sugars
—> + —> + >

@\ sugars boxes

AST Concrete Treeof Treeof
syntax graphical graphical
tree objects objects
with styles

Figure 5. Graphical view obtained by succes-
sive model transformations

A GUI can be considered as a tree of graphical objects
(windows, tabs, panels, views, menu, etc.). According to
this remark, the approach based on visitors mentioned in
section 4 can be reused in order to generate graphical views.
In the same way, all the abstract syntax tree manipulation
methods (insert a node, remove a node, etc.) but also the
implementation to obtain a view can be reused. For exam-
ple figure 6 shows three different views of the same GUI de-
scription document: the generic XML display on the right,
the generic hierarchical tree display on the left, and the main
window of application. We have defined a simple GUI-
specific model useful to configure the GUI according to the
applications.

7. Related Works

Both our approach and SMARTTOOLS are on the edge
of different software engineering domains and many related
research works. For those reasons we have preferred draw-

ing up the main advantages of the approach instead of try-
ing to compare both of them directly with their respective
related works. We show the advantages of this approach ac-
cording to the openness and evolutivity of the produced ap-
plications more than to the qualities of SMARTTOOL S itself.
There is no doubt that on each concern of SMARTTOOLS,
the proposed techniques or solutions are certainly less pow-
erful compared to equivalent research works or tools. For
example our AOP approach is very specific to the models
that are addressed by SMARTTOOLS and cannot be com-
pared directly with general approaches or tools such as As-
pectd [1, 32]. In the same way, it exists other research works
on the design pattern visitor which presents different vari-
ants of this design pattern [21, 15, 30] .

It is necessary to keep in mind that the core of our ap-
proach is to apply to different levels an MDA approach us-
ing generative programming. The main benefits of this ap-
proach are the followings:

e to handle different concerns homogeneously and si-
multaneously. On the contrary, the usual component
technologies mentioned earlier are mainly interested
in the distribution concern.

e to remain on the implementation level. The UML
modeling approaches [17, 12, 16] suffers from the gap
between the specification and implementation levels.

e to produce generator-free source code, very close to
hand-written programs. \ery often, tools such as
[6, 20, 18], introduce a strong dependence between the
generator and the produced code.

e to be evolutive and open thanks to the use of stan-
dard mechanisms (e.g. XSLT for program transforma-
tion). For example according to program transforma-
tion, there are many other tools available [20] but with
proprietary input formats and interpretor engines that
require additional work to plug in and use them.

o to treat the GUI or other environment facilities as sep-
arated entities (components) that may or not, be inte-
grated in the resulting application. This feature does
not usually exist in the IDEs [2] that force the produced
applications to be integrated into the IDE frameworks.

Finally, to make an exhaustive comparison with related
works is almost impossible and is quite in opposition with
the main objective of this paper. Indeed, as our approach
gathers different domains, it exists, for each domain, many
tools and research works related to our work that we should
refer. We do not look for the best techniques for each con-
cern but instead we want to show how different techniques
can be integrated in a factory in order to obtain open and
evolutive application.

[E| L T

i-u- Carasms Loon Cawm
| iy

e
fAT
LA grwmay
[-31] e
T iy
1) i
7] vy
[T e
£ taim
1T} el
I gt

w
<spliTe
o/ splite
/g8
aet title="GU1"s

oriew behmdiors

<wiiw bahayigrs""

<fsplit>
o35

ofiew bahmdar=""

=pliT orientatiaons"L"
posiTign="25"

>

L

VIEN T YpE= T Snartroa 15 - Care VTeEn. LIGEUT en /> -

docRefs"resaurces: lnl/demoCE-5T. Tal"

sty lafheet="rapources:cesfxn]-siyles . cos’

el ea Lapoue”

transfarm="raspurcas fasl /gener chowes sl "
vienTypes"Trosmarttoals_core viem ..Edm:'l.l'1 [T s N

docRef="resources: Tnl dengCL-BT. o] "
styleShests" resourees toss Sunl-nty les _cas”
title="Layout"

transforme" redoarces i xs] Sgenericknl, =s1"
viepTypes"fr snerreoolz.core. viem, Glochien" /=

<ot title="imartTonls Architectura’s

dachef="f larcor prefdenpliCi-8T. xnl"
stvleShont="resources: css/xnl-s5vles. css” =

Figure 6. An example of SMARTToOOLS GUI.

8. Conclusion

Trough the continuous development of SMARTTOOLS,
we are validating a new approach of software development
mainly based on transformation and generation of models.
We promote the idea that each concern of a model should
be described by business models in order to better fit to the
requirements. Moreover these models should be indepen-
dent from the context of use, that is to say from existing
technologies. Main benefit is that these technologies should
be able to evolve independently from the business model
and vice-versa. New models based on new paradigms and
new technologies are built thanks to generative program-
ming. They represent either a refinement of the input model
(another PIM) or its implementation on a dedicated soft-
ware platform (a PSM).

The main advantage of this approach is to make the evo-
lution of models easy according to the software platform
evolution or to the creation of new concerns. This evolution
is performed only through modifications of the generator as-
sociated with each models (data model, model of one spe-
cific service, component model, GUI model, etc.). These
generators contain the design methodologies (they repre-
sent the software tool factory), they are customized thanks
to input models, and they produce new intermediate models
(they represent refinements) or the final models adapted to
the software platform.

References

[1]

(2]
(3]

[4]

[5]

(6]

[7]

(8]

(9]

Aspect) - Aspect-Oriented Programming (AOP) for Java.
http://ww. eclipse.org/aspectj/.

Eclipse. http://www. eclipse.org/.

S. S. Abiteboul, P. Buneman, and D. Suciu. Data on the web:
from relations to semistructured data and XML. Morgan
Kaufmann Publishers, Los Altos, CA 94022, USA, 1999.
R. Agrawal, L. G. DeMichiel, and B. G. Lindsay. Static
Type Checking of Multi-Methods. In Proceedings of the
OOPSLA 91 Conference on Object-oriented Programming
Systems, Languages and Applications, pages 113-128, Nov.
1991. Published as ACM SIGPLAN Notices, volume 26,
number 11.

M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier,
and S. Zdonik. The object-oriented database system mani-
festo. In Proceedings of the First International Conference
on Deductive and Object-Oriented Databases, pages 223—
240, Kyoto, Japan, Dec. 1989.

P. Borras, D. Clément, T. Despeyroux, J. Incerpi, G. Kahn,
B. Lang, and V. Pascual. CENTAUR: the System. SIGSOFT
Software Eng. Notes, 13(5):14-24, November 1988.

L. Correnson, E. Duris, D. Parigot, and G. Roussel. Declar-
ative program transformation: a deforestation case-study.
In G. Nadathur, editor, Principles and Practice of Declar-
ative Programming PPDP’99, volume 1702 of Lect. Notes
in Comp. Sci., pages 353-369, Paris, France, Oct. 1999.

P. Crescenzo and P. Lahire. Customisation of inheritance.
In ECOOP’2002 (The Inheritance Workshop), pages 23-29.
University of Jyva“skyla", Finland and Workshop abstract to
appear in LNCS, June 2002.

K. Czarnecki and U. W. Eisenecker. Generative Program-
ming: Methods, Techniques, and Applications. Addison-
Wesley, June 2000.

http://www.eclipse.org/aspectj/
http://www.eclipse.org/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and
mixins. In ACM, editor, Conference record of POPL ’98:
the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages: papers presented at the Sym-
posium, San Diego, California, 19-21 January 1998, pages
171-183, New York, NY, USA, 1998. ACM Press.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison Wesley, Reading, MA, 1995. ISBN 0-
201-63361-2-(3).

O. M. Group. Meta Object Facility (MOF) specification
(version 1.3). Technical report, Object Management Group,
Mar. 2000.

0. S. S. Group and R. Soley. Model-Driven Architecture.
Technical report, OMG, November 2000.

W. Harrison and H. Ossher. Subject-oriented programming
(A critique of pure objects). In A. Paepcke, editor, Pro-
ceedings ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 411-
428. ACM Press, Oct. 1993.

G. Hedin and E. Magnusson. JastAdd—a Java-based sys-
tem for implementing front ends. In M. van den Brand and
D. Parigot, editors, Electronic Notes in Theoretical Com-
puter Science, LDTA’01 First Workshop on Language De-
scriptions, Tools and Application, ETAPS’2001, volume 44,
Genova, Italy, April 2001. Elsevier Science Publishers.
J.-M. Jézéquel, W.-M. Ho, A. L. Guennec, and F. Pen-
naneac’h. UMLAUT: an extendible UML transformation
framework. In R. J. Hall and E. Tyugu, editors, Proc. of the
14th IEEE International Conference on Automated Software
Engineering, ASE’99. IEEE, 1999.

J.-M. Jézéquel, H. HuBmann, and S. Cook, editors. UML
2002 - The Unified Modeling Language, 5th International
Conference, Dresden, Germany, September 30 - October 4,
2002, Proceedings, volume 2460 of Lecture Notes in Com-
puter Science. Springer, 2002.

M. Jourdan, D. Parigot, C. Julié, O. Durin, and C. Le Bel-
lec. Design, Implementation and Evaluation of the FNC-2
Attribute Grammar System. In Conf. on Programming Lan-
guages Design and Implementation, pages 209-222, White
Plains, NY, June 1990. Published as ACM SIGPLAN No-
tices, 25(6).

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In M. Aksit and S. Matsuoka, editors,
ECOOP ’97 — Object-Oriented Programming 11th Euro-
pean Conference, Jyvaskyld, Finland, volume 1241 of Lec-
ture Notes in Computer Science, pages 220-242. Springer-
Verlag, New York, NY, June 1997.

P. Klint. A Meta-Environment for Generating Programming
Environments. ACM Transactions on Software Engineering
Methodology, 2(2):176-201, 1993.

T. Kuipers and J. Visser. Object-Oriented Tree Traversal
with JJForester. In M. van den Brand and D. Parigot, edi-
tors, Electronic Notes in Theoretical Computer Science, vol-
ume 44. Elsevier Science Publishers, 2001.

X. Leroy. Manifest types, modules, and separate compila-
tion. In POPL’94, 1994.

10

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

K. J. Lieberherr and D. Orleans. Preventive Program Main-
tenance in Demeter/Java. In Proceedings of the 19th Inter-
national Conference on Software Engineering, pages 604—
605. ACM Press, May 1997.

D. Mandrioli and B. Meyer, editors. Advances in Object-
Oriented Software Enineering. Prentice Hall, New York,
1992.

T. Millstein and C. Chambers. Modular statically typed mul-
timethods. In R. Guerraoui, editor, Proceedings ECOOP’99,
LCNS 1628, pages 279-303, Lisbon, Portugal, June 1999.
Springer-Verlag.

D. R. Musser and A. A. Stepanov. Algorithm-oriented
generic libraries. Software Practice and Experience,
24(7):623-642, July 1994.

M. Odersky. Objects + views = components? Lecture Notes
in Computer Science, 1912:50-68, 2000.

OMG. UML - Unified Modeling Language.
http://ww.uni.org.

J. Palsberg and C. B. Jay. The Essence of the Visitor Pat-
tern. In COMPSAC’98, 22nd IEEE International Computer
Software and Applications Conference, pages 9-15, Vienna,
Austria, Auguste 1998.

J. Palsberg, B. Patt-Shamir, and K. Lieberherr. A New Ap-
proach to Compiling Adaptive Programs. In H. R. Nielson,
editor, European Symposium on Programming, pages 280—
295, Linkoping, Sweden, 1996. Springer Verlag.

D. Parigot, C. Courbis, P. Degenne, A. Fau, C. Pasquier,
J. Fillon, C. Help, and I. Attali. Aspect and XML-
oriented Semantic Framework Generator: SmartTools. In
ETAPS’2002, LDTA workshop, Grenoble, France, April
2002. Electronic Notes in Theoretical Computer Science
(ENTCS).

R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A
flexible solution for aspect-oriented programming in Java.

Lecture Notes in Computer Science, 2192:1-24, 2001.

C. Simonyi. The death of programming languages, the birth
of intentional programming. Technical report, Microsoft,
Inc., Sept. 1995.

G. Sunyé, F. Pennaneac’h, W.-M. Ho, A. L. Guennec, and
J.-M. Jézéquel. Using UML action semantics for executable
modeling and beyond. In Advanced Information Systems En-
gineering. 13th International Conference, CAISE 2001, In-
terlaken, Switzerland, June 4-8, 2001, Proceedings, volume
2068 of LNCS, pages 433-447. Springer, 2001.

C. Szyperski, J. Bosch, and W. Weck. = Component-
oriented programming. Lecture Notes in Computer Science,
1743:184-192, 1999.

P. Wadler. GJ: A Generic Java. Dr. Dobb’s Journal of Soft-
ware Tools, 25(2):23-26, 28, Feb. 2000.

T. Ziadi, B. Traverson, and J.-M. Jézéquel. From a UML
Platform Independent Component Model to Platform Spe-
cific Component Models. In International workshop in Soft-
ware Model Engineering (WiSME02) at UML2002, Dresden
(Germany), Sept. 2002.

http://www.uml.org

	. Introduction
	. Overview of the approach
	. Data Models
	. Semantic Models
	. Component Models
	. Graphical User Interfaces
	. Related Works
	. Conclusion

