
D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

SmartTools: a Software Factory of DSL Tools

Didier Parigot
INRIA Sophia-Antipolis

2004, route des Lucioles BP93
F-06902 Sophia-Antipolis cedex - France

Didier.Parigot@inria.fr

Carine Courbis
University College London

Computer science department
Adastral Park - Martlesham IP5 3RE - UK

Carine.Courbis@bt.com

ABSTRACT
To cope with the proliferation of new technologies and chang-
ing requirements, the way software is designed and devel-
oped must be changed. Software must be built to last.
Abstracting the different concerns of software from the im-
plementation details and automating as much as possible
its construction can help it aging. An approach based on
domain-specific languages and generative programming can
be a solution.

In this paper, we illustrate how this approach is used in a
software factory of DSL tools. The business knowledge of
each tool (such as a semantic analyser or a view) is iso-
lated from the implementation and then does not need to
be modified when a new feature is required or when a new
technology is targeting but the generator. In this manner,
any modification can automatically be propagated into the
tools, ensuring better software quality.

1. INTRODUCTION
During this last decade, there were many changes in com-
puter science that have an influence upon the way an appli-
cation must be developed. As a result, applications need to
be more open, adaptable and capable of evolving. These new
constraints in software development have emerged primarily
due to the following reasons:

• Firstly, due to the increase use of the Internet, applica-
tions can no longer operate independently but rather
they should be distributed. Therefore, data communi-
cation between applications and users must be taken
into account during the whole application life-cycle.
One important requirement is to choose a well-known
data exchange format.

• The second reason is the proliferation of new com-
ponent technologies. This increases the difficulty in
choosing which component technology will be the most

adaptable and capable of evolving, according to the
context of use. For instance, it is necessary to decide
whether it is more appropriate to use CCM (CORBA
Component Model), EJB (Enterprise Java Bean), or
COM (Component Object Model).

• The third reason is the democratization (widespread)
of computer science. Users have different knowledge,
different needs, a wide range of visualization devices,
and specific activity domains. This feature should
be considered when designing and developing appli-
cations.

• The last reason is business related. To be more com-
petitive, a company must be able to quickly and cheaply
adapt its software in order to meet new user needs and
technology evolution.

To cope with all these changes, the way of designing and im-
plementing complex applications has to be replaced. In or-
der to better address these new challenges of openness, flex-
ibility, and evolution, we propose an approach which relies
on the MDE (Model-Driven Engineering) approach, Com-
ponent Programming, and GP (Generative Programming)
[5]. It promotes the following key-ideas:

• When software is being designed and implemented,
different concerns are addressed by the programmer.
These concerns are better handled if a dedicated meta-
model1 exists for each of them.

• If each meta-model (dedicated to one of the concerns)
is independent from any technology, then it is possi-
ble to capture the expertise of an application indepen-
dently from the context of use. Therefore, the domain-
specific knowledge is much ”more reusable”.

• When building an application, Generative Program-
ming (GP) should be used to glue (assemble) the mod-
els together according to the context of use (e.g. the
technologies). This powerful paradigm enables appli-
cations to evolve.

In order to validate our approach, we have developed a soft-
ware factory, named SmartTools

2 [15], based on this new

1By construction, it will exactly fit to the needs of the con-
cern.
2http://www-sop.inria.fr/smartool/SmartTools/

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

way of programming, which is compliant with the Domain-
Driven Development (DDD) approach [4]. The principal
goal of this research prototype is to propose a tool which
demonstrates that, with new development methods, it is
possible to produce more quickly open and adaptable appli-
cations compared with the classical development methods.
The implementation is based on the concept of a software
factory [7] and is adapted to the design and implementation
of applications which rely on a data model. It provides the
ability to define domain-specific languages (DSLs) and also
to perform transformations on them in order to generate
either refinements or platform-specific models.

The design of both prototype and applications generated by
it addresses five concerns (see Figure 1): the application
data model, the writing of semantics analyses, its architec-
ture, the views of the data model, and its graphical user
interface. To each of those concerns, we have associated a
meta-model3:

• The data meta-model, named AbSynt. It describes
the application structure and should have an application-
independent format in order to cut from the technology-
specific details. More precisely, the AbSynt language
is a meta-language (meta-meta-model) which is used
to define languages (meta-model);

• The semantics meta-model of both the data model and
the application, named ViProfile. It integrates sev-
eral facilities in order to structure and to modularize
the code. This should improve the maintenance of the
code and enable easier code reuse;

• The view meta-model, named CoSynt. Several views
of a data model can be defined, such as a structured
editor in order to more easily create and update in-
stances of this model (programs or documents). This
view model must be device-independent.

• The component meta-model, named Cdml. It is as
tightly integrated as possible with the application re-
quirements. In particular, it enables to specify the
provided and required services.

• The GUI meta-model, named Lml. It describes a pos-
sible configuration of a GUI for a given application.

The generators associated with those meta-models handle
the generation of the application, providing the glue to en-
able it to work on a specific platform, according to the con-
text of use. If the platform or the underlying technology
evolves, it is not necessary to update the meta-models which
represent the domain-specific expertise, but the generators
only. The experience gained through developing Smart-

Tools i) provides a more precise description of the approach
and, ii) demonstrates how the approach favors the possible
adaptations of an application according to the future evolu-
tions of the software platform.

3Sometimes one will use the language term in the place
of meta-model term when there can be confusions between
meta-model and model term

Semantic
Model

Default Visitor
+ AOP

SmartTools Generators

Data
Model

View
Model

Component
Model

Data
manipulation

API

DTD or
XML Schema
UML Model

Structured
Editor

Pretty-printer

Parser
specifications

Glue for
Components

GUI
Model

GUI
Component

Figure 1: MDE approach in SmartTools

The principal contribution of our approach is to show that
it is more important to propose a rich set of generators, each
specialized in one concern, than to propose more generic ap-
proaches or strongly specialized ones for a given concern.
The limitations of our approach are primarily the following:
i) strong dependences on the Java programming language
and the Swing library; ii) our graphic tools are well adapted
for simple meta-models and the possibilities of our graphi-
cal user interface still remain very basic; iii) our two meta-
models (AbSynt and Cdml) are minimalist (They will be
soon extended to respectively add the inheritance and dis-
tribution notions).

This paper is divided in five parts, plus one part dedicated
to the related work and one to the conclusion, section 2
provides a concrete example of how SmartTools can be
used to develop tools. For instance, we show the example
of a graphical user interface (GUI) of SmartTools. The
four following sections describe the main meta-models pro-
vided by SmartTools (data, semantics, component and
view meta-models) based on the GUI application described
in Section 2. For each meta-model (from Section ?? to 6),
we present the main aspects of the model and we lay stress
on the benefits of using both MDE approach and GP as well
as on the interest of using standards.

2. SHORT OVERVIEW OF SmartTools

SmartTools is heavily bootstrapped; that is it internally
uses its technology to develop its own languages and com-
ponents. Through the development of these languages and
components, our approach in integrating the mentioned paradigms
and technologies has been intensively tested and refined.
One of the goals of SmartTools is to provide facilities for
the development of new tools or programming environments,
especially for non-complex description languages. Its design
takes into account the specificities of these languages: i)
they have their own data description language that should
be accepted as input, and ii) the designers of such lan-
guages may not have a deep knowledge in computer sci-
ence. Since then, SmartTools has been used to produce
tools for many diverse languages (about thirty languages)
such as SVG, DTD, XML schema, CSS, WSDL, and BPEL.

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

However the most complete application is SmartTools it-
self which is composed of the generators associated at each
language (AbSynt,CoSynt,Cdml,Lml,ViProfile). The
SmartTools framework represents approximately 100 000
lines of Java source code before the generation stage and 1
000 000 lines after. This ratio shows the efficiency of this ap-
proach and validates this new development approach based
on GP.

In this section we present how a language, our GUI lan-
guage, can be developed using SmartTools. The main
reasons of this choice are that the GUI implementation is
strongly bootstrapped and its models (data model, compo-
nent model, etc...) are easy to understand. This GUI exam-
ple will be used all along of this paper, for each meta-model.

2.1 GUI Language - Lml

The SmartTools GUI is only a particular graphical view
(windows, tabs, panels, views, menu, etc.) of a document
(based on the Lml language, Layout Markup Language). A
GUI model can be considered as a tree of manipulated mod-
els (documents or programs) and their associated graphical
views. In this way, we can reuse all the tree manipulation
methods (insert a node, remove a node, etc.) and the fea-
tures provided by the view meta-model (See Section 6). For
instance, the GUI of Figure 2 can be serialized into an XML
file (see Figure 3). This GUI shows two graphical views of it
- one in XML on the left, and one using a specific concrete
syntax on the right - and is also itself a view of it.

Figure 2: Three views of the GUI model of Figure
3: an XML view on the left, a textual view on the
right, and the window itself (interpretation of the
model)

2.2 Models of this GUI Application
To describe the Lml component, it is necessary to define the
following models:

• The component model (see Figure 4) which specifies
the services of the Lml component. With this com-
ponent model, the classical concepts for a component

<layout>
<frame title="SmartTools: lml demo"

statusBar="on" width="1000"
height="800" dynTabSwitch="off">

<set title="Lml example for this GUI">
<split orientation="1" position="68">

<view title="Layout demo.lml in XML format"
behavior=""
viewType="fr.smarttools.core.view.GdocView"
docRef="file:demos/lml/resources/lml/demo.lml"
styleSheet="resources:css/xml-styles.css"
transform="resources:xsl/genericXml.xsl" />

<view title="Layout demo.lml"
behavior=""
viewType="fr.smarttools.core.view.GdocView"
docRef="file:demos/lml/resources/lml/demo.lml"
styleSheet="resources:css/lml-styles.css"
transform="resources:xsl/lml-bml.xsl" />

</split>
</set>

</frame>
</layout>

Figure 3: GUI Model (Lml) uses to produce the
application shown in Figure 2

are described such as the facade, the container, the in-
puts and outputs, associated with the DSL data model
(formalism).

• The data-model (see Figure 5) which define the Lml

language. This language gives the logical structure of
a GUI model: a layout is composed of a set of frames,
a frame (window) is composed of a set of sets (tabs),
a set is a view or a split, etc.

• A view model which represents easy-to-read views of
Lml documents such as the one in the right part of
Figure 2 or the window/GUI itself. For the left part of
this Figure, SmartTools uses a generic view model
(the default one) to produce an XML view, applicable
to any model.

<component name="lml" type="document"
extends="logicaldocument" >

<formalism name="lml" file="lml.absynt"
dtd="lml.dtd"/>

<containerclass name="LmlContainer"/>
<facadeclass name="LmlFacadeFacade"

userclassname="LmlFacade"/>
<parser type="xml" <extention name="lml"/>

classname="lml.parsers.LmlXMLParser">
</parser>
<lml name="DEFAULT"

file="resources:lml/lml-default.lml"/>
<behavior

file="resources:behaviors/lml-behaviors.xml"/>
<input doc="update tree"

method="update" name="update">
<attribute doc="transformation to apply"

javatype="java.lang.String"
name="transformationName"/>

<attribute doc="orientation"
javatype="java.lang.String"
name="orientation"/>

</input>
</component>

Figure 4: Component Model (Cdml) of Lml

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Formalism of lml is
Root is Layout;
Operator and type definitions {
Layout = layout (FS[] fs);
FS = %Frame, %Set;
Frame = frame (Set[] set);
Set = set (VGroup view);
VGroup = split (VGroup view1, VGroup view2),view ();}
Attribute definitions {
REQUIRED title as Java.Lang.String in frame,set,view;
REQUIRED orientation as Java.Lang.String in split;
REQUIRED position as Java.Lang.String in split;
REQUIRED styleSheet as Java.Lang.String in view;
REQUIRED viewType as Java.Lang.String in view;
REQUIRED behaviour as Java.Lang.String in view;
REQUIRED docRef as Java.Lang.String in view; }

Figure 5: Data Model (AbSynt) of Lml

2.3 Implementation of the GUI Application
To build this GUI, a particular graphic component was im-
plemented, named glayout. This graphic component is par-
ticular in the sense that is associated a dedicated graphic
object (layout, frame, split and view) to each Lml en-
tity. A transformation (built on the same principle as for
construction of the graphic views, see Section 6) maps the
logical entities to the graphic objects to create the GUI. The
business logic of this application - the GUI - is only made
up of these graphic objects and this transformation.

2.4 The GUI Application Deployment
In order to launch this application (the GUI), SmartTools

uses a deployment model (see Figure 6). It is necessary to
specify the components4 which are used (mainly the Lml

component and the glayout component) by this applica-
tion. This deployment model will be used to create a com-
munication channel between the component manager and
the glayout component which requires the use of a Lml

document - a GUI model - (file:resources/lml/demo.lml, see
Figure 3). This model described the initial state of the GUI
application, Figure 2. For this GUI application, the Figure
7 shows the created components and their interconnections
with this GUI model.

<application
repository="file:stlib/" library="file:lib/">

<load_component jar="view.jar" name="glayout"/>
<load_component jar="lml.jar" name="lml"/>
<connectTo
id_src="ComponentManager"
type_dest="glayout">
<attribute name="docRef"

value="file:resources/lml/demo.lml"/>
<attribute name="xslTransform"

value="file:resources/xsl/lml2bml.xsl"/>
<attribute name="behaviors"

value="file:resources/behaviors/bootbehav.xml"/>
</connectTo>

</application>

Figure 6: Deployment model of the GUI application

3. DATA MODEL GENERATOR
For some years, the standardization efforts of both the OMG
(Object Management Group) and the W3C (World Wide
4These components are SmartTools components.

Component
Manager

Demo.lml
LmL Component

Text view
View Component

XML view
View Component

GUI
Glayout Component

Figure 7: Manipulated Components and inter-
connections with the GUI application

Web Consortium) have played major roles in resolving the
data and model integration issues. The standard formalisms
continuously evolve in order to better address the new needs
of applications. For instance, to improve document data
validation, the DTD (Document Type Definition) language
has been replaced by more complex and richer data type
document meta-languages such as XML Schema or RDFS
(Resource Description Framework Schema). Another exam-
ple deals with object-oriented modeling: the UML (Unified
Modeling Language) approach has evolved toward a domain-
specific model definition based on the MOF (Meta-Object
Facility) meta-formalism [8].

3.1 Data Meta-Model (AbSynt language)
Instead of using the formalisms mentioned above, we have
preferred to define our own abstract data meta-model which
i) enables associating a semantics using the separation of
concerns, ii) is easy to use to describe non-complex DSLs
and iii) is independent from any formalism. This meta-
model aims to define models associated with an application
and is called AbSynt. It is simple and close to Abstract Syn-
tax Tree (AST) definitions as shown in Figure 5. This Fig-
ure describes the data model of our GUI application (Lml

language, see Section 2). It is composed of type and oper-
ator definitions, and attribute declarations (an attribute is
a piece of information attached to either a type or an oper-
ator). For example, FS type represents a type which may
have two implementations: either the frame operator or the
set operator that have both the attribute title. This meta-
model can be used to define the abstract syntax of existing
programming languages as well as DSLs. It is the corner-
stone for all the generated tools and components specified
within SmartTools.

3.2 Impact of the MDE and GP Approaches
The openness of a data-model to standards is as important
as its expressiveness. In order to ensure that, we rely on
generators and on model transformations. For instance, we
have defined translators (in both ways) between our meta-
model and the DTD or the XML Schema meta-models. Due
to these translators, it is possible to accept either a DTD,
an XML Schema, or an AbSynt model to describe a data
model in SmartTools. SmartTools also accepts UML
model (in HUTN notation, UML Human-Usable Textual No-
tation). From this data model representation, it is possible
to generate, as shown in Figure 8, the following capabilities:

• An API. This API provides help for the manipulation

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

of abstract syntax trees (for instance, in order to write
semantics analyses);

• An equivalent DTD, XML Schema, or UML descrip-
tion. With this capability, designers can easily export
their data models;

• An editor guided by the syntax. It is a basic view that
may be generated automatically in order to facilitate
the handling of documents or programs (a model).

DTD
XML schema

UML

Structured
editor

Absynt model

DTD

Tree
manipulation

API

ABSYNT Generators

 XML schema

UML

Figure 8: Generated tools from the data meta-
models (AbSynt)

3.3 Reuse of Existing Technologies
The openness to standards has an interesting side-effect: it
enables the use of APIs related to the standards. For ex-
ample, in order to avoid the design and the implementation
of another propriatory tree manipulation API, we have cho-
sen the DOM (Document Object Model) API standard as the
tree kernel. In this way, the code dedicated to tree manipula-
tions which is specific to SmartTools is minimal and there-
fore easy to maintain. Moreover our tree implementation
benefits from any new service and bug fixes when this stan-
dard and its different implementations evolve. Therefore our
tree implementation is open, capable of evolving, and can
benefit from any DOM-compliant tool or service. For exam-
ple, all the trees manipulated in SmartTools can be seri-
alized in XML (see Figure 9), transformed with XSLT (Ex-
tensible Stylesheet Language Transformation), or addressed
with XPath for free as these services are provided by the
DOM API.

4. SEMANTICS GENERATOR
New programming paradigms such as AOP [12], SOP [9]
and GP [5] have appeared in the last ten years to provide
new ways of developing flexible extensible applications. In a
certain way, the ”Gang of Four” (GOF) book [6] was already

DTD
or

XML Schema

Our data
meta-model

Java classes
above DOM

convert into generate

XML
Document

is
conform

with

Objects/Nodes

is

instance

of

can be seralized in

is represented by

translate into

Figure 9: Bridge between data meta-models and
models

dealing with the problems associated with designing more
modular, flexible and extensible software through the pro-
posal of design patterns. One of them is the visitor design
pattern [14]; it separates the data structures (a hierarchy of
classes) from the associated treatments. These treatments
are written in a modular way (one class), making easier any
modification or extension.

4.1 Semantic Meta-Model (ViProfile language)
In SmartTools, we aim to allow the developer to seman-
tically analyze the data, for example to check its validity
(type checker), to retrieve some pieces of information, or to
evaluate it (interpreter). Such analyses may have a specific
tree traversal strategy and use some variables for computa-
tional purposes. The language designers (who may not have
a deep knowledge in computer science) should only focus
on the information to query within the model, not on the
technical issues. Additionally these queries should be easy
to modify and to extend, even at runtime.

To meet these requirements, we have chosen to implement
the visitor design pattern according to the needs which are
commonly required for the analysis (traversal strategy and
visit method signatures). Based on these needs, we have
defined the semantics model, named ViProfile (Figure 10
gives a semantic model of the Lml language). Both seman-
tics and data models are used by our generator to produce
a default visitor which visits only the nodes included into
the traversal strategy. To write a new semantics analysis in-
volves extending through inheritance the default visitor and
overriding some of its visit methods in order to specify the
suitable treatment. The implementation of our generators
(in particular the AbSynt and CoSynt generators) strongly
use this visitor technique, as well as our data meta-model
transformations (in Figure 9).

XProfile lml;
Formalism lml;
import lml.SymTab;
Profiles
java.lang.Object visit(%Layout, lml.SymTab symTab);
java.lang.Object visit(%FS, lml.SymTab symTab);
java.lang.Object visit(%Frame, lml.SymTab symTab);
java.lang.Object visit(%Set, lml.SymTab symTab);
java.lang.Object visit(%Vgroup, lml.SymTab symTab);
Strategy TOPDOWN;

Figure 10: A semantic model (ViProfile) of Lml

The ability to be able to extend a semantics analysis dynam-
ically (at runtime) is possible due to a dynamic AOP tech-
nique dedicated to our semantics model. For its implemen-
tation, instead of using static source code transformations
or reflexive mechanisms, we have chosen to generate hooks
at the join points. The integration of this capability into our
semantics analyses is performed through an extension of the
visitor generator. Due to this extension, the semantics anal-
yses attached to one data model can be extended, not only
by inheritance, but also (dynamically) with aspects. The
main advantage of such an approach is to provide AOP fa-
cilities which are i) close to the needs of the DSL designer,
ii) easy to us as the resulting description of the operational
semantics is simple to understand, and iii) straightforward
to implement so that it may quickly integrate new needs

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

or potential evolutions. In [3], we5 strongly use our AOP
approach to develop an extensible and adaptable BPEL en-
gine.

5. COMPONENT GENERATOR
Many component technologies have been proposed such as
COM and DCOM by Microsoft, CCM by the OMG, and
EJB by Sun. More recently, the Web-Services technology
has appeared with the possibility to list the component ser-
vices in catalogs (UDDI - Universal Description, Discover
and Integration). According to [17], three of the main chal-
lenges in component technologies are the followings:

• To extend the classical method-call. In this way, the
runtime environment (in a three-tier architecture, the
Internet, a message service, or a database access) can
be taken into account without any modification to the
business logic.

• To extend the notion of interface. The provided and
required services can be described and discovered (for
example, with the introspection available within Java
Beans), and the interface can dynamically be adapted.

• To add meta-information to a component. This is a
generic approach to record information dealing with
several concerns such as deployment management or
security policies.

As SmartTools generates and imports components, it was
vital to include a component architecture for its evolution
and to simplify the interconnections with external tools. In-
cluding a component architecture for a factory tool is also
useful to be able to build applications with only the required
components.

5.1 Abstract Component Meta-Model (Cdml

language)
Instead of using an existing component technology, we de-
cided to define an abstract component meta-model (see Fig-
ure 4) i.e. one that is independent from any component
technology to clearly express the needs of SmartTools.
Without this meta-model, these needs would have been hid-
den by the use of a component format (for example, IDL
- Interface Definition Language) which is not dedicated to
our application.

When building the component meta-model it was necessary
to take into account the aims of SmartTools which are
to define a new data model, to query it and to import ex-
isting model representations. One of the consequences of
this is that very often components are related to one data-
model even if this is not mandatory. Therefore, the Smart-

Tools component meta-model is strongly linked with the
data meta-model. This means that the components may
be built knowing the data-model representation. This in-
fluences the way components may interact with each other.
From a component model (see Figure 4), a generator can au-
tomatically produce the non-functional code, that is to say

5The work of Carine Courbis at UCL.

the container that hides all the communication and inter-
connection mechanisms. For example, the broadcast mech-
anism used to propagate any modification made on a logical
document to its associated views (see Section 6) is totally
transparent to the designer of an application.

5.2 Reuse of Existing Technologies
We explain in Section 6 that components may interact with
each other by exchanging data. Due to the use of the DOM
API (see Section 3.3), all the XML facilities are available.
For example, any document can be serialized into an XML
form. In particular, it enables components to exchange com-
plex information such as sub-trees or path information using
XPath. One of the main advantages is that all the compo-
nents which conform with the same data model can exchange
complex pieces of information between their business logic.

5.3 Flexibility of the Component Configura-
tion

Our connection process is much more flexible and dynamic
than those offered by the technologies mentioned earlier and
which are mainly dedicated to client/server architectures or
Web applications. In SmartTools, component intercon-
nections are dynamically created when requested and use
a kind of pattern-matching on the names of services pro-
vided or required by the components to bind the connectors
(ports). Our component manager uses our component and
deployment models (see an example in Figure 6) - two XML
formats - to instantiate components and to establish connec-
tions between them. Figure 11 summarizes the operations
performed by our component manager and also the various
XML files (models) that are used.

Generated
Container

C2 component

Container

 Component manager

Facade

C1 component

Classes Classes

Facade

connectTo

Generated
Container

Facade

Application
deployment
description

(XML)

C1 component
description

(XML)

C2 component
description

(XML)

Component
manager

description
(XML)

Additional
 behavior

description
(XML)

Figure 11: Functional diagram of the component
manager

5.4 Impact of MDA and GP Approaches
As mentionned earlier, there are many advantages in creat-
ing an abstract component meta-model which fits with the
application requirements rather than using a non-specific
model. With the integration of a MDA approach (based
on GP), we are able to produce from our abstract com-
ponent meta-model the implementations (Platform Specific
Models) towards well-known component technologies such
as Web-Services, CCM, or EJB (see Figure 12). The ex-
perience gained by building those projections makes us be-
lieve that none of the component technologies mentioned
above (Web-Services, CCM, EJB) would have fitted with
our needs. From our point of view, they are suitable for dis-

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Remote and
Home

interfaces

Component
Model

CDML Generators

SmartTools Web-services

CCMEJB

IDL file
+ CORBA

server class

Container
+ Facade
sub-class

WSDL file
+ SOAP

corresponding
class

Figure 12: Component model transformations

tributed applications but not for applications with a generic
(thus configurable) GUI.

With such an approach, the exportation of the produced
components is easier and our DSLs can evolve and be much
better adapted. Moreover, the architecture of produced ap-
plications is i) minimal (only the essential components may
be deployed), ii) much more flexible, and iii) dynamic as
new components can be very quickly developed and plugged
in at any time.

6. GRAPHICAL VIEW GENERATOR
The graphical interfaces that make applications interactive
must also be able to evolve themselves according to the ap-
plication changes. Two main challenges, when designing a
graphical interface, should be kept in mind: the interface
might be executed on different visualization devices and also
through a Web interface. The proliferation of new domain-
specific models requires the ability to quickly design and im-
plement interfaces (or pretty-printers) which are specific to
one model or domain. In this context, visual programming
can be very useful when building programming environments
dedicated to non-complex domain-specific models.

6.1 View Meta-Model (CoSynt language)
For this purpose, we have defined a specific language, named
CoSynt, which enables the designers to define a concrete
syntax to their DSL. With CoSynt, tree transformations can
be specified based on the data model. These different out-
puts are obtained through a sequence of model transforma-
tions or refinements (see Figure 13).

6.2 Reuse of Existing Technologies
More precisely, due to the tree abstract transformations (in-
dependent from any technology) described with CoSynt,
the CoSynt generator produces i) a ANTLR parser and ii),
for the reverse operation - the pretty-printing - two XSLT
stylesheets which produce respectively a textual form and
graphical view (based on Java Beans) of the document (see
Figure 14).

6.3 Impact of MDE and GP Approaches

AST
+

sugars
+

boxes

AST
+

sugarsAST

AST
+

sugars
+

boxes
+

styles

AST Concrete
syntax

tree

Tree of
graphical
objects

Tree of
graphical
objects

with styles

Figure 13: Successive model transformations per-
formed to obtain a graphical view

Antlr parser
text -> tree

View Model

COSYNT Generator

Xslt produce
textual format
tree -> text

Data Model

Xslt produce
Graphic view
tree -> view

Figure 14: CoSynt generator

This CoSynt generator is a typical example of a MDE com-
ponent. It takes as input a data-model and the descrip-
tion of the transformations to be performed on it, using a
dedicated transformation language. It produces (outputs)
various implementations (XSLT file, user-defined language
parser) of these transformations. To provide such compo-
nents is particularly suitable for software development be-
cause i) it enables the designer to define a DSL which is
independent from a particular technology and dedicated to
the data-model, and ii) it automatically produces symmet-
rical and incremental transformations based on standards.

7. RELATED WORK
Both our approach and SmartTools are on the edge of
different software engineering domains and many related re-
search works. For those reasons, we have preferred drawing
up the main advantages of the approach instead of trying to
compare both of them directly with their respective related
work. We have focused on the advantages of this approach
according to the openness and ability to evolve of produced
applications more than one the skills of SmartTools it-
self. There is no doubt that on each concern, the proposed
techniques or solutions are certainly less powerful compared
to equivalent research work or specific tools. For example,
our AOP approach is very specific to our semantics analyses
and cannot be compared directly with general approaches or
tools such as AspectJ [16]. It is necessary to keep in mind
that the core of our approach is to apply at different lev-
els an MDE approach using GP. The main benefits of this
approach are the followings:

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

• To handle different concerns homogeneously and si-
multaneously. On the contrary, the component tech-
nologies mentioned earlier are mainly interested in the
distribution concern.

• To remain on the implementation level. The UML
modelling approaches [10] suffer from the gap between
the specification and implementation levels.

• To produce generator-free source code, very close to
hand-written programs. Very often, tools such as [2,
11, 13], introduce a strong dependence between the
generator and the produced code.

• To be capable of evolving and open due to the use of
standard technologies (e.g. XSLT for program trans-
formation). For example, there are many other tools
available for program transformations [13] but they use
proprietary input formats and interpretor engines that
require additional effort to plug them in and use them.

• To treat the GUI or other environment facilities as
separated entities (components) that may or not, be
integrated in the resulting application. This feature
does not usually exist in IDEs (Integrated Development
Environments) [1] that forces produced applications to
be integrated into the IDE framework itself.

Finally, our approach is based on the general concepts (ab-
straction, granularity, specificity) of Software Factory which
are described in [7].

8. CONCLUSION
Through the continuous development of SmartTools, we
are validating a new approach in software development mainly
based on transformations and generations of models. We
promote the idea that each concern should be described by
a DSL (meta-model) in order to better fit the application
requirements. Moreover, these meta-models should be inde-
pendent from the context of use, that is from any existing
technology. The main advantage of this approach is that the
meta-models are resilient to any evolution in the underlying
technologies except when a new concern needs to be added.
This evolution is performed only through modifications of
the generators associated with each meta-model. These gen-
erators contain the design methodologies (they represent al-
together the software tool factory). They are customized
due to input models, and they produce new intermediate
models (which may represent refinements) or the final mod-
els adapted to the software platform.

9. REFERENCES
[1] Eclipse. http://www.eclipse.org/.
[2] P. Borras, D. Clément, T. Despeyroux, J. Incerpi, G. Kahn,

B. Lang, and V. Pascual. Centaur: the System. SIGSOFT
Software Eng. Notes, 13(5):14–24, November 1988.

[3] C. Courbis and A. Finkelstein. Towards an Aspect
Weaving BPEL Engine. In Y. Coady and D. H. Lorenz,
editors, Proceedings of the Third AOSD Workshop on
Aspects, Components, and Patterns for Infrastucture
Software (ACP4IS), number NU-CCIS-04-04, Lancaster,
UK, March 2004. College of Computer and Information
Science Northeastern University.

[4] R. Crocker and G. L. S. Jr., editors. Companion of the
18th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2003, October 26-30, 2003,
Anaheim, CA, USA. ACM, 2003. Special track, Krzysztof
Czarnecki and John Vlissides.

[5] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Techniques, and Applications.
Addison-Wesley, June 2000. ISBN 0201309777 chapter
Aspect-Oriented Decomposition and Composition.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison Wesley, Reading, MA, 1995. ISBN
0-201-63361-2-(3).

[7] J. Greenfield and K. Short. Software factories: assembling
applications with patterns, models, frameworks and tools.
In Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, pages 16–27. ACM Press,
2003.

[8] O. M. Group. Meta Object Facility (MOF) specification
(version 1.3). Technical report, Object Management Group,
Mar. 2000.

[9] W. Harrison and H. Ossher. Subject-oriented programming
(A critique of pure objects). In A. Paepcke, editor,
Proceedings ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
411–428. ACM Press, Oct. 1993.

[10] J.-M. Jézéquel, H. Hußmann, and S. Cook, editors. UML
2002 - The Unified Modeling Language, 5th International
Conference, Dresden, Germany, September 30 - October 4,
2002, Proceedings, volume 2460 of Lecture Notes in
Computer Science. Springer, 2002.

[11] M. Jourdan, D. Parigot, C. Julié, O. Durin, and C. Le
Bellec. Design, Implementation and Evaluation of the
FNC-2 Attribute Grammar System. In Conf. on
Programming Languages Design and Implementation,
pages 209–222, White Plains, NY, June 1990.

[12] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In M. Akşit and S. Matsuoka, editors,
ECOOP ’97 — Object-Oriented Programming 11th
European Conference, Jyväskylä, Finland, volume 1241 of
Lecture Notes in Computer Science, pages 220–242.
Springer-Verlag, New York, NY, June 1997.

[13] P. Klint. A Meta-Environment for Generating
Programming Environments. ACM Transactions on
Software Engineering Methodology, 2(2):176–201, 1993.

[14] J. Palsberg and C. B. Jay. The Essence of the Visitor
Pattern. In COMPSAC’98, 22nd IEEE International
Computer Software and Applications Conference, pages
9–15, Vienna, Austria, Auguste 1998.

[15] D. Parigot, C. Courbis, P. Degenne, A. Fau, C. Pasquier,
J. Fillon, C. Help, and I. Attali. Aspect and XML-oriented
Semantic Framework Generator: SmartTools. In
ETAPS’2002, LDTA workshop, Grenoble, France, April
2002. Electronic Notes in Theoretical Computer Science
(ENTCS).

[16] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC:
A flexible solution for aspect-oriented programming in
Java. Lecture Notes in Computer Science, 2192:1–24, 2001.

[17] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. ACM Press and
Addison-Wesley, New York, NY, 1998.

