Software (April 23, 2002) Preliminary Version

Aspect and XML-oriented Semantic
Framework Generator: SmartTools

Didier Parigot, Carine Courbis, Pascal Degenne, Alexandre Fau
Joél Fillon, Isabelle Attali

INRIA Sophia-Antipolis - OASIS project
2004, route des Lucioles - BP 93
06902 Sophia-Antipolis cedex, France
First. Last@sophia.inria.fr

Abstract

SmartTools is a semantic framework generator, based on XML and object tech-
nologies. Thanks to a process of automatic generation from specifications, Smart-
Tools makes it possible to quickly develop environments dedicated to domain-specific
and programming languages. Some of these specifications (XML, DTD, Schemas,
XSLT) are issued from the W3C which is an important source of varied emerging
domain-specific languages. SmartTools uses object technologies such as visitor pat-
terns and aspect-oriented programming. It provides code generation adapted to the
usage of those technologies to support the development of semantic analyses. In this
way, we obtain at minimal cost the design and implementation of a modular devel-
opment platform which is open, interactive, uniform, and most important prone to
evolution.

Key words: software generation, development environment,
semantic analyses, aspect-oriented programming, visitor pattern,
program transformation, XML, XSLT.

1 Introduction

In software applications, quality and ability to evolve, as well as development
speed, are of major concern. Well-designed software can be quickly adapted
to new requirements and technologies. It must also be able to exchange many
varied data with other applications, particularly since the wide use of Internet.

The data structures are commonly defined with a DTD! (Data Type Def-
inition) or a Schema from the World Wide Web Consortium (W3C), and

! No reference to W3C specifications (XML and DTD, Schema, DOM, XSL and XSLT,
BML, SOAP) is given in this paper as they are easily available on the W3C web-site
(http://www.w3c.org)

6 February 2002

exchanged with the XML (eXtensible Markup Language) format. These def-
initions are sort of abstract syntaxes of simple languages, named Domain-
Specific Languages (DSL). For this large amount of new specific languages,
there are needs for tools to handle treatments. All programming techniques
can be applied to DSLs as they often have more simple syntaxes and seman-
tics than the programming ones. As DSL designers and end-users may have
no knowledge of these techniques (analysis, compilation, interpretation, etc),
these tools should facilitate (hide) their uses. Additionally, these tools related
to Internet applications need to be quickly developed, prone to evolution and
integration, and easy to use.

The SmartTools platform fits in with these requirements. Its main goal is
to help designers of domain-specific or programming languages to create new
tools. No more than one specification (e.g. a DTD) is needed to quickly pro-
duce (generate) a dedicated development environment that contains a parser, a
pretty-printer, a language-specific structure editor and a set of Java source files
useful for semantics treatments (transformations, analyses). Both, SmartTools
and the target environment are easy to use with a minimal knowledge and
based on well-known techniques (e.g. visitor design pattern, aspect-oriented
programming) or standard specifications (e.g. XSLT - XML Stylesheet Lan-
guage Transformation). They have a modular and flexible implementation
based on re-usable and generic components organized into a distributed archi-
tecture.

All the techniques and the generic components are tested on the internal
languages of SmartTools. It is bootstrapped : about 40% of its source code is
automatically generated. With its open architecture, it is very easy to plug in
new components or interconnect other platforms, among which is .NET with
the SOAP protocol.

The main innovation of SmartTools is to homogeneously gather many dif-
ferent technologies : XML technologies, component, oriented-object program-
ming, visitor design pattern, and Aspect-Oriented Programming (AOP). This
paper does not describe how these technologies are combined but rather why.
It is made of two parts : the first one gives the reasons for using DTDs as
input to define languages, and the visitor design pattern and aspects to specify
semantics analyses ; the second one explains the choices about the architec-
ture.

2 Semantic Tools

Internally, SmartTools uses extended and strongly typed abstract syntax (AST)
definitions for all its tools. The important notions of these definitions are: "op-
erators’ and ’types’. The operators are gathered into named sets: types. The
sons of operators are typed and named. Figure 1 shows the definition of our

2

toy language: tiny2. For example, the affect operator belongs to the State-
ment type and has two sons: the first one is of type Var and the second one
of type Exp.

Formalismof tiny is

Root is %lop;
Top = progran(Decls decl arationList, Statenents statements);
Decls = decl s(Decl [] declarationList);
Decl = i nt Decl (Var variabl e), bool eanDecl (Var vari able);
Statenments = statements(Statement[] statenentlList);
Statenment = affect (Var variable, Exp value),

whi | e(Condi ti onExp cond, Statenents statenents),
i f(ConditionExp cond, Statenents statenentsThen,
Statenments st atenent sl se);

Condi tionOp = equal (ArithmeticExp left, ArithmeticExp right),
not Equal (ArithmeticExp left, ArithmeticExp right);

Condi tionExp = %ConditionOp, true(), false(), var;

ArithnmeticOp = plus(ArithmeticExp left, ArithmeticExp right),
mnus(ArithmeticExp left, ArithmeticExp right),
nul t (ArithmeticExp left, ArithneticExp right),
div(ArithneticExp left, ArithneticExp right);

ArithneticExp = %ArithnmeticOp, int as STRING var as STRING

Exp = %ArithmeticOp, % onditionCp, var, int, true, false;

Var = var;

End

Fig. 1. the AST definition of tiny

From the AST definition, SmartTools can automatically generate a struc-
tured editor specific to the language. To facilitate the editing (to copy-paste
nodes), it is useful to make the type inclusion possible.

We want, as much as possible, to use existing software components stem-
ming from the W3C standards, such as the DOM (Document Object Model)
API to handle XML documents. But, this latter API does not consider
strongly typed structures. To manipulate strongly typed trees, we have ex-
tended it with the notions of fixed node, listed node and typed node (c.f.
Figure 2). In this way, the tree consistency is guaranteed by the Java type-
checker at its construction. For each operator, SmartTools automatically gen-
erates one class and the associated interface (Figure 3 shows the interface
generated for the affect operator), and one interface by type. These classes
contain the getters and setters needed to handle the sons (e.g. getValueNode,
setValueNode).

It is important that the language designers can define their languages (ab-
stract syntax) by using standard formats (DTD or Schema) proposed by the
W3C and not necessarily with the internal AST definition format of Smart-
Tools. Therefore, we have implemented conversion tools with some restric-
tions. For example, the notion of type does not explicitly exist within the
DTD format i.e. the elements (seen as operators) do not belong to named
sets. As this notion was essential, we had to define a type inference mech-
anism to convert DTDs. Additionally, the right part of element definitions
should only contain parameter entity references to indicate the types of the
sons (e.g. the line 6 of Figure 4 shows a DTD-equivalent definition of the
affect operator). Unfortunately, few DTDs are written in this way. To be

2 used all along this article

DU W N

MAvAdiivd A VUVLLLY S UV 4 ULV AAAVL AU VAL AV LT

[org.w3c.dom.Element] DOM

[or g.apache.xer ces.dom.ElementImpl]

[fr.smarttools.tree.UntypedNode]

tiny.ast.AffectNodel mpl

Ti ny +getVariableNode(): tiny.ast.VarType
+setVariableNode(tree:tiny.ast.VarType):void
+getVaueNode():tiny.ast. ExpType
+setValueNode(treeitiny.ast. ExpType):void

Fig. 2. Class hierarchy for the affect operator

package tiny.ast;

public interface AffectNode extends StatementType {
public tiny.ast.VarType getVari abl eNode();
public void setVariabl eNode(tiny.ast.VarType tree);
public tiny.ast.ExpType get Val ueNode();
public void setVal ueNode(tiny. ast.ExpType tree);

}

Fig. 3. Generated affect operator interface: AffectNode

able to accept as many as possible DTDs, a more complex type analysis (type
inference) was carried out.

<IENTITY % Top ' prograni >

<IENTITY % Statenents 'statenments’>
<IENTITY % Statement 'if|while|affect’ >

<! ELEMENT program ((%becls;), (%Statenents;))>
<! ELEMENT statenments (%statement;)*>

<l ELEMENT affect ((%var;), (%Exp;))>

Fig. 4. Part of the generated DTD of tiny

Moreover, we have implemented generators that produce a parser and the
associated pretty-printer to manipulate programs with a more readable for-
mat than the XML one. For this purpose, the designer has to provide extra
attributes information on each element (or operator) definition (see attributes
in Figure 5). This possibility is useful for designers that do not have expertise
on how to write a parser and makes sense only for small and unambiguous
languages.

affect (Var variable, Exp val ue)
with attributes {fixed String S1 = "=",
fixed String styleSl = "kw',
fixed String AO=";",
fixed String styleAO = "kw'}

Fig. 5. Extra data of the affect operator useful for generating a parser and the
associated pretty-printer

MAvAdiivd A VUVLLLY S UV 4 ULV AAAVL AU VAL AV LT

Figure 6 shows all the specifications that can be generated from an AST
specification:

o the API of the language (i.e. one class and the associated interface by
operator, and one interface by type),

 the basic visitors useful for creating semantic analyses,

o a parser for the language (if extra syntactic sugars are provided as operator
attributes in the language definition),

* a pretty printer to unparse ASTs according to these extra syntactic sugars,

¢ a minimal resource file that contains useful information for the structured
editor and the parser,

e the DTD or the Schema.

APl of Tiny

Af f ect Node. j ava el nyo.rdt @ b
Af f ect Nodel npl . j ava : ar ser T
St at enent Type. j ava tiny. xsd Gener at or @

Ti nyPar ser . j ava

TinyLexer. java

Ti nyPar ser TokenTypes. j ava
Ti nyPar ser TokenTypes. t xt

API @
Gener at or

tiny. ast

Pretty

Pri nt er

Gener at or

AbstractTinyVisitor.java
Traversal TinyVisitor.javal

Resource
Gener at or

Visitor -
DTD tiny.dtd
or Schema
Gener at or
TypeChecker . xpr o tiny.xsd

Abstract TypeChecker TinyVisitor.java
Traver sal TypeChecker Ti nyVisitor.jav

Fig. 6. All the specifications generated from an AST

For example, thanks to these tool generators, the tiny environment (Figure
??7) was automatically generated only from one AST specification (see Figure
1), one xprofile specification (see Figure 7) , and the type-checker visitor (100
Java lines).

Semantics

This sub-section presents ways to write analyses (e.g. a type-checker, an
evaluator or a compiler) on programs by using the visitor design pattern. If
the reader wants to have more details and explanations on this well-known
methodology, he can refer to [3,8,7]. For instance, we present three extensions
of the visitor pattern technique: v1 using reflexivity mechanism with profiled
visits and tree traversal possibilities, v2 adding simple aspect-oriented pro-
gramming, v3 splitting the tree traversal (visit method calls) and the semantic
actions by using more complex aspects.

5

©00~NDU AW -

MAvAdiivd A VUVLLLY S UV 4 ULV AAAVL AU VAL AV LT

Reflezive visitors (vl)

To make the development of visitors based on the AST definitions easier,
SmartTools automatically generates two visitor classes: AbstractVisitor and
TraversalVisitor. The abstract visitor declares all the visit methods (one by
operator). The TraversalVisitor inherits from the AbstractVisitor and imple-
ments all the visit methods in order to perform an in-depth tree traversal.
This visitor can be extended and its visit methods refined (overridden) to
specify an analysis.

Thanks to the xprofile specification language of SmartTools, it is possible
to specify the visit signatures i.e. to generate visits with different names,
return types, and parameters. The granularity of this personalization is at
the (AST) type level. Figure 7 presents the xprofile specification of a type-
checker for tiny. From this specification, the system automatically generates
the two correctly-typed visitors (Abstract Visitor and TraversalVisitor). Only
useful visit methods have to be overridden to implement the type-checker (see
Figure 8 for the affect operator). The advantage of using profiled visits is to
avoid casts and obtain more readable visitor programs.

XProfile TypeChecker;
Formal i smtiny;
inport tiny.visitors. TinyEnv;

Profiles

Obj ect check(%op, TinyEnv env);

Obj ect check(%Decls, TinyEnv env);

Obj ect check(%Decl, TinyEnv env);

bj ect check(%statenents, TinyEnv env);
Obj ect check(%8t atenent, TinyEnv env);
String check(%Exp, TinyEnv env);

String check(%ArithneticOp, TinyEnv env);
String check(%ConditionOp, TinyEnv env);
String check(%Arithneti cExp, TinyEnv env);
String check(%ConditionExp, TinyEnv env);
String check(%ar, TinyEnv env);

Strategy TOPDOW;

Fig. 7. Visit signatures of a type-checker for tiny

public Object check(AffectNode node, TinyEnv env) throws VisitorException {
String varName = node. get Vari abl eNode() . get Val ue();
String typeLeft = env.get Type(varNane);
String typeRi ght = check(node. get Val ueNode(), env); //visit the val ue node

if (typeLeft == null)
errors.setError(node, "This variable " + varNane + " was not declared");
el se {
if (!typeRight.equal s(TinyEnv. ERROR) & (!typeLeft.equal s(typeRight)))
errors.setError(node, “lnconpatible types: " + varName + " is a" +
typeLeft.equal s(Ti nyEnv. I NT)?"int":"bool") +" variable");

return null;

Fig. 8. Affect visit of the type-checker

With the xprofile language, it is also possible to specify the tree traversal
(from the starting node to the destination node(s)) of a visitor. Thus, only the
nodes on the path are visited instead of all the nodes of the tree. It reduces
the visitor runtime on sizeable trees and above all the size of the generated

6

visitors. A dependence graph analysis on the AST definition is performed
to generate the corresponding abstract and traversal visitors with the 'right’
visits according to the given path. For example with the traversal specified
on Figure 9, only the visits of the while and affect operators and the visits
of the operators contained between the root (TOP) and these operators (i.e
program, statements and if according to the AST definition of Figure 1) will
be called.

Traversal Essai:
%op -> while, affect;

Fig. 9. Traversal specification from the root (TOP) to while and affect

In SmartTools, we use the Java reflexivity mechanism to implement the
visitor technique and not the classical solution of a specific method, usually
denoted accept, defined on each operator®. Indeed, the introduction of a
visitor profile prohibits from using this classical solution (accept method). A
generic method (named invokeVisit) is executed when any visit method is
called. The goal of this generic method is to invoke the ’right’ visit method
(with a strongly-typed node) by using reflexivity.

The use of reflexivity is runtime-expensive. To accelerate the invoke pro-
cess, an indirection table is statically produced at compilation-time when the
abstract visitor is generated. This table contains for each pair (operator, type)
the Java reference to the visit java.lang.reflect. Method object to call. With
this table, it is also possible to change the visit method name and to have
different arguments. This solution is a simplification of the multi-method ap-
proach that dynamically performs the search of the best method to apply. We
have compared these two approaches by using a Java multi-method implemen-
tation [2]. The performances are equivalent, but our approach is much easier
to realize.

Visitors with Aspect (v2)
The reflexivity mechanism used to implement the visitor pattern technique
makes the execution of additional code before or after the visit calls possi-
ble. In this way, a concept of aspect-oriented programming [4,6] specific for
our visitors can be added without modifying the source code, unlike the first
versions of AspectJ [1,5]. An aspect can be defined just by implementing the
Aspect interface and then recorded (see methods on Figure 10) on any visitor.
For example, if the aspect of Figure 11 is recorded on a visitor, it will trace
out all the called visits.

Several aspects can be connected on a visitor. They are executed in se-
quence (according to the registration order). This connection (as well as the

3 SmartTools can also help designers to develop this kind of efficient visitors. But, their
codes are less readable (more casts, no aspect, no tree traversal choice, etc) than the v1 or
v2 visitors . Therefore, we do not describe them in this article.

7

MAvAdiivd A VUVLLLY S UV 4 ULV AAAVL AU VAL AV LT

Visitorimpl

+vi si t (node: Node, parans: Obj ect): Obj ect

#i nvokeVi sit (parans: Gbject[]): Object

+addAspect (aspect: Aspect): void

+renpveAspect (aspect : Aspect): void

+addAspect OnQper at or (op: Oper at or, aspect: Aspect): void

+r enpbveAspect OnOper at or (op: Oper at or, aspect : Aspect): void
+addAspect OnType(type: Type, aspect : Aspect): void

+r enoveAspect OnType(type: Type, aspect: Aspect): void

Fig. 10. Visitor with aspect (v2) API

package fr.smarttool s. debug;
inport fr.snmarttool s.tree.visitorpattern. Aspect;
inport fr.snarttool s.tree. Type;

public class TraceAspect inplenents Aspect {
public void before(Type t, Object[] param {
Systemout.println ("Start visit on " + paranf0].getC ass());

}
public void after(Type t, Object[] param {
Systemout.println ("End visit on " + paranf0].getd ass());

Fig. 11. Aspect that traces out the visit methods

disconnection) can be done dynamically at runtime. The behavior of a visitor
can thus be modified dynamically by addition or withdrawal of these aspects.
For example, a graphical debug mode for the visitors with a step-by-step ex-
ecution was specified as an aspect regardless of any visitor. To add these
aspects on the v1 visitors, the generic method (invokevisit) was extended.

Visitor with Tree Traversal and complex Aspects (v3)

With the concept of aspect-oriented programming, it is possible to split the
tree traversal (visit method calls) and the semantic processing (semantic ac-
tions). Let us suppose that the visit code of the affect(Var, Exp) operator has
this shape:

vi sit (Affect Node node ...) {
codeBef ore
visit of the first son
codeBet weenl_2
visit of the second son
codeAf ter

One can observe that the semantic part (i.e all except the recursive calls)
is divided into N sons -+ 1 pieces of code. These N+-1 pieces can be treated like
aspects with new points of anchoring i.e before, between and after the visit
method calls of the sons. We have defined a new visitor (named v3 visitor)
that takes as arguments a tree traversal and one or more semantic actions
(i.e. in the form of aspects) as shown on Figure 12. This visitor can call these
aspects on these new points of anchoring. Therefore, these aspects must have
for each operator, in addition to the traditional before and after methods,
the betweeni i+1 methods (code to be executed between the i" and i+1%
sons). This new visitor can connect one or more aspects described in the v2
visitors. Figure 13 shows the type-checker semantics associated with the affect
operator using this new form of aspect. There is no more recursive call unlike

8

©0o~NDU A WN -

MAvAdiivd A VUVLLLY S UV 4 ULV AAAVL AU VAL AV LT

the v1 (see Figure 8 line 4) or v2 visitors but it is necessary to use stacks (see
Figure 13 lines 5 and 6) to transmit the visit results of the sons.

Semanticl
+before(): bject
+after(): Object
g+b(-zt weenN_M): Object

TreeTraversal

+t raver se(node: Node) : void
+backward(): void
+forward(): void
+ignore(): void
+j unpTo(): void

before, after, betwe:

C SemanticN

+after(): Object
+before(): Object
+bet weenN_M): Obj ect

clyrent, visit, before, after

ignore, backward, forward, jumpJo

ignore, backward, forward, jumpTo

VisitorAspect

+current(): void
+visit(): Object

+i nvokeVisit(): Object
+backward(): void

+f orward(): void

+i gnore(): void

+j unpTo(): void

+bet ween(): Object
+before(): void
+after(): void
+addAspect (): void

+r emoveAspect (): void
+addAspect OnOperator(): void
+addAspect OnType(): void

Fig. 12. v3 visitor

public void before(Affect Node node, Object param {}
public void betweenl_2(Affect Node node, Object param {}
public void after(AffectNode node, Cbject param {
String varName = node. get Vari abl eNode() . get Val ue();
String typeRight = (String)typeStack. pop();
String typeLeft = (String)typeStack. pop();

sane if code than Figure 8 (lines 6 to 12)

Fig. 13. Type-checker of the affect operator

The type-checker of tiny was extended with a initialization check on vari-
ables (see Figure 14) only by composing the two aspects (see Figure 15). The
main interest of this programming style is to make the extension of analyses
possible without modification only by adding new aspects. In this way, anal-
yses are modular and re-usable. However, these analyses are more complex
to program because of the splitting of the semantics and the tree traversal
(compare Figures 13 and 8). Currently, we study how to share data between
semantics, problems linked to the common tree traversal (e.g. what to do if
one semantics wants to loop on a node and not the others?), ; we also study
mechanisms to ease the programming of these aspects by hiding the stack
management.

public void before(Affect Node node, Object paran) {unplugVariabl eCheck

public void visitl(AffectNode node, Object paran) {unplugVariabl eCheck

public void after(AffectNode node, Object param {
env.setlnitialized(node. getVariabl eNode(). getVal ue());

}

true;}
fal se;}

Fig. 14. Initialization check for the affect operator (v3 visitor)

9

TypeChecker Visitor typeCheck = new TypeCheckerVisitor();
TinyEnv env = typeCheck. get Env();
I ni t Var Checker Vi si tor initVarCheck = new | nitVar CheckerVisitor(env);
new Visitor(new LeftToRi ght TreeTraversal (),
new Senantics[]{typeCheck, initVarCheck}).start(tree, null);

Fig. 15. Composition of two aspects

For the v3 visitor (see Figure 12), there is also a generic method that
manages the next node to visit according to the current position, the tree
traversal and some special traversal instructions. This method also copes with
the search of the next method to call and the invocation of the v2 aspects on
these visits.

3 Architecture

SmartTools is composed of independent software modules that communicate
with each other by exchanging asynchronous messages. These messages are
typed and can be considered as events. Each module registers itself on a cen-
tral software component, the message controller (c.f. Figure 16), to listen to
some specific types of messages. It can react to them by possibly posting new
messages. The controller is responsible for managing the flow of messages and
delivering them to their specific destination(s). The components of Smart-
Tools are thus event-driven. This section presents the different modules of
SmartTools and describes the behavior of the message controller.

Docunent 1 Viewl / Docl

Docunent 2 View2 / Docl

Graphi c

Interface

l

Message control |l er

| Docunent manager | | Par ser manager | | Base

Fig. 16. Architecture of SmartTools

The main software modules of SmartTools are the following:

* Each document contains an AST. In Figure 16, Document 1 and Document
2 contain the ASTs on which the user is working. Document GI is a special
one. It contains the AST describing the structure of the GUI (e.g. the AST
of the Figure ?7).

* The user interface module manages the views, the menus and the toolbar
of SmartTools.

e Each view is an independent module showing the content of a document in a
format depending on the type of the view. For example, some views display
the tree in colored-syntax text format, others as a graphical representation.

10

* The parser manager chooses the right parser to use for a file. Then, it runs
the parser and builds the corresponding AST. The document manager
uses this tree to build a document module and connects it to the message
controller.

e The base is a module that contains definitions of resources used in Smart-
Tools: colors, styles, fonts, menus, toolbars, actions, etc.

Of course, new types of modules can register themselves on the message con-
troller. That is one of the ways to extend the features of SmartTools for a
specific purpose or to embed SmartTools in another environment.

When a module needs to communicate with another module, it creates a
message and posts it on the message controller. Then, the message controller
broadcasts this message to the appropriate listeners (modules) that will react
to it. Thus, modules that want to receive special types of messages from the
message controller have to become listeners of these types of messages. They
have to implement the MsgListener interface and provide a receive(xxxMsg)
method for every type of supported message. Then, they have to register on
the message controller (see code just below) and obtain their unique module

identifier from it.
i dDoc= nmsgControl er.register(this);

XxxMsg in the receive method stands for the class of the expected message.
Messages are typed objects i.e there is one specific class for every type of
message. Their common behavior is held in one abstract class that is the
super class of all the messages. New kinds of messages can be created by
extending that common class or any other existing message class.

In the following example, the module expects to receive SelectMsg, Close-
DocMsg and CutMsg messages sent to the module identified by idDoc and

coming from an anonymous sender.

nsgCont rol er. addMsgLi st ener (" Sel ect Msg", i dDoc, Msg. ANONYMOUS) ;
nsgCont rol er. addMsgLi st ener (" Cl oseDocMsg", idDoc, Msg. ANONYMOUS);
nsgCont rol er. addMsgLi st ener (" Cut Msg", idDoc, Msg. ANONYMOUS);

Documents (i.e ASTs) and views are independently registered on the mes-
sage controller. A document does not need to know how many views are
related to it. When a modification is made, the document posts a modifica-
tion message. The type of that message indicates which modification has been
done and the message body contains the path of the modified node (from the
root of the tree). For some kinds of messages, the change is also specified.
Such messages will be sent only to the views that are registered to receive
these modification messages coming from this document. Other modules will
not receive them.

The message controller has a built-in message filtering capability. It is
possible to write filters that watch or influence the flow of input and output
messages on the controller. That filtering capability has been successfully used
for several specific needs: benchmarking, debugging, undoing user actions, and
automatically translating messages into another format (SOAP messages).

11

The architecture of SmartTools is designed to ease connection with other
development environments or tools. Some experiments [9] are in progress to
provide several features of SmartTools as web services and to use them from
a client tool running on a .NET platform.

4 Conclusions

We have presented a software generator which produces programming envi-
ronments strongly based on XML and object-oriented technologies. The most
important contribution of this approach was to propose at the same time and
with a uniform way, a set of advanced programming features, integrated into
a modular architecture, with extensible graphical viewing engines and open
to XML. We have chosen to use non-proprietary APIs to be open and to take
advantage of future or external developments around W3C specifications. On
the semantic level, we present a dedicated aspect-oriented programming ap-
proach associated with the visitor design pattern compliant with the DOM
specifications. We expect a large set of domain-specific languages to be based
on the W3C specifications. The users (and designers) of such languages are
not supposed to be experts of language theories. Therefore, we propose a
semantic framework easy to use and requiring a minimal knowledge. Domain-
specific languages represent a large potential of applications in various fields
and will certainly introduce new open problems.

Acknowledgments

We have much benefited from discussions with Colas Nahaboo, Thierry Kor-
mann and Stéphane Hillion from the ILOG team on the topic of XML tech-
nologies. We would also like to thank Gilles Roussel, Etienne Duris and Rémy
Forax for their helpful comments of their Java Multi-Methods implementation.

References

[1] Aspectj-oriented programming (aop) for java. http://www.aspectj.org.

[2] R. Forax, E. Duris, and G. Roussel. Java Multi-Method Framework. In
International Conference on Technology of Object-Oriented Languages and
Systems (TOOLS’00), Nov. 2000.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison
Wesley, Reading, MA, 1995.

[4] G. Kiczales. Aspect-oriented programming: A position paper from the xerox
PARC aspect-oriented programming project. In M. Muehlhauser, editor, Special
Issues in Object-Oriented Programming. 1996.

12

[5] G. Kiczales, J. Hugunin, M. Kersten, J. Lamping, C. Lopes, and W. G. Griswold.
Semantics-Based Crosscutting in AspectJ. In Workshop on Multi-Dimensional
Separation of Concerns in Software Engineering (ICSE 2000), 2000.

[6] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka,
editors, ECOOP ’97 — Object-Oriented Programming 11th European Conference,
Jyvaskyld, Finland, volume 1241 of Lecture Notes in Computer Science, pages
220-242. Springer-Verlag, New York, NY, June 1997.

[7] J. Palsberg and C. B. Jay. The Essence of the Visitor Pattern. In COMPSAC’98,
22nd Annual International Computer Software and Applications Conference,
Vienna, Austria, Aug. 1998.

[8] J. Palsberg, B. Patt-Shamir, and K. Lieberherr. A New Approach to Compiling
Adaptive Programs. In H. R. Nielson, editor, FEuropean Symposium on
Programming, pages 280-295, Linkoping, Sweden, 1996. Springer Verlag.

[9] J. G. Variamparambil. Getting smarttools and visualstudio.net to talk to each
other using soap and web services. Technical report, INRIA, 2001. http://www-
sop.inria.fr/oasis/SmartTools/publications/Joseph /report.ps.

13

