
D
R

A
FT

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

First AOSD Workshop on Aspects, Components, and Patterns for Infrastructure
Software (April 23, 2002) Preliminary VersionAspet and XML-oriented SemantiFramework Generator: SmartToolsDidier Parigot, Carine Courbis, Pasal Degenne, Alexandre FauJoël Fillon, Isabelle AttaliINRIA Sophia-Antipolis - OASIS projet2004, route des Luioles - BP 9306902 Sophia-Antipolis edex, FraneFirst.Last�sophia.inria.frAbstratSmartTools is a semanti framework generator, based on XML and objet teh-nologies. Thanks to a proess of automati generation from spei�ations, Smart-Tools makes it possible to quikly develop environments dediated to domain-spei�and programming languages. Some of these spei�ations (XML, DTD, Shemas,XSLT) are issued from the W3C whih is an important soure of varied emergingdomain-spei� languages. SmartTools uses objet tehnologies suh as visitor pat-terns and aspet-oriented programming. It provides ode generation adapted to theusage of those tehnologies to support the development of semanti analyses. In thisway, we obtain at minimal ost the design and implementation of a modular devel-opment platform whih is open, interative, uniform, and most important prone toevolution.Key words: software generation, development environment,semanti analyses, aspet-oriented programming, visitor pattern,program transformation, XML, XSLT.1 IntrodutionIn software appliations, quality and ability to evolve, as well as developmentspeed, are of major onern. Well-designed software an be quikly adaptedto new requirements and tehnologies. It must also be able to exhange manyvaried data with other appliations, partiularly sine the wide use of Internet.The data strutures are ommonly de�ned with a DTD 1 (Data Type Def-inition) or a Shema from the World Wide Web Consortium (W3C), and
1 No referene to W3C spei�ations (XML and DTD, Shema, DOM, XSL and XSLT,BML, SOAP) is given in this paper as they are easily available on the W3C web-site(http://www.w3.org) 6 February 2002



D
R

A
FT

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

SmartTools - 6 February 2002at 15:47exhanged with the XML (eXtensible Markup Language) format. These def-initions are sort of abstrat syntaxes of simple languages, named Domain-Spei� Languages (DSL). For this large amount of new spei� languages,there are needs for tools to handle treatments. All programming tehniquesan be applied to DSLs as they often have more simple syntaxes and seman-tis than the programming ones. As DSL designers and end-users may haveno knowledge of these tehniques (analysis, ompilation, interpretation, et),these tools should failitate (hide) their uses. Additionally, these tools relatedto Internet appliations need to be quikly developed, prone to evolution andintegration, and easy to use.The SmartTools platform �ts in with these requirements. Its main goal isto help designers of domain-spei� or programming languages to reate newtools. No more than one spei�ation (e.g. a DTD) is needed to quikly pro-due (generate) a dediated development environment that ontains a parser, apretty-printer, a language-spei� struture editor and a set of Java soure �lesuseful for semantis treatments (transformations, analyses). Both, SmartToolsand the target environment are easy to use with a minimal knowledge andbased on well-known tehniques (e.g. visitor design pattern, aspet-orientedprogramming) or standard spei�ations (e.g. XSLT - XML Stylesheet Lan-guage Transformation). They have a modular and �exible implementationbased on re-usable and generi omponents organized into a distributed arhi-teture.All the tehniques and the generi omponents are tested on the internallanguages of SmartTools. It is bootstrapped : about 40% of its soure ode isautomatially generated. With its open arhiteture, it is very easy to plug innew omponents or interonnet other platforms, among whih is .NET withthe SOAP protool.The main innovation of SmartTools is to homogeneously gather many dif-ferent tehnologies : XML tehnologies, omponent, oriented-objet program-ming, visitor design pattern, and Aspet-Oriented Programming (AOP). Thispaper does not desribe how these tehnologies are ombined but rather why.It is made of two parts : the �rst one gives the reasons for using DTDs asinput to de�ne languages, and the visitor design pattern and aspets to speifysemantis analyses ; the seond one explains the hoies about the arhite-ture.
2 Semanti ToolsInternally, SmartTools uses extended and strongly typed abstrat syntax (AST)de�nitions for all its tools. The important notions of these de�nitions are: 'op-erators' and 'types'. The operators are gathered into named sets: types. Thesons of operators are typed and named. Figure 1 shows the de�nition of our2



D
R

A
FT

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

SmartTools - 6 February 2002at 15:47toy language: tiny 2 . For example, the a�et operator belongs to the State-ment type and has two sons: the �rst one is of type Var and the seond oneof type Exp.
Formalism of tiny is
Root is %Top;

Top = program(Decls declarationList, Statements statements);
Decls = decls(Decl[] declarationList);
Decl = intDecl(Var variable), booleanDecl(Var variable);
Statements = statements(Statement[] statementList);
Statement = affect(Var variable, Exp value),

while(ConditionExp cond, Statements statements),
if(ConditionExp cond, Statements statementsThen,

Statements statementsElse);
ConditionOp = equal(ArithmeticExp left, ArithmeticExp right),

notEqual(ArithmeticExp left, ArithmeticExp right);
ConditionExp = %ConditionOp, true(), false(), var;
ArithmeticOp = plus(ArithmeticExp left, ArithmeticExp right),

minus(ArithmeticExp left, ArithmeticExp right),
mult(ArithmeticExp left, ArithmeticExp right),
div(ArithmeticExp left, ArithmeticExp right);

ArithmeticExp = %ArithmeticOp, int as STRING, var as STRING;
Exp = %ArithmeticOp, %ConditionOp, var, int, true, false;
Var = var;

End Fig. 1. the AST de�nition of tinyFrom the AST de�nition, SmartTools an automatially generate a stru-tured editor spei� to the language. To failitate the editing (to opy-pastenodes), it is useful to make the type inlusion possible.We want, as muh as possible, to use existing software omponents stem-ming from the W3C standards, suh as the DOM (Doument Objet Model)API to handle XML douments. But, this latter API does not onsiderstrongly typed strutures. To manipulate strongly typed trees, we have ex-tended it with the notions of �xed node, listed node and typed node (.f.Figure 2). In this way, the tree onsisteny is guaranteed by the Java type-heker at its onstrution. For eah operator, SmartTools automatially gen-erates one lass and the assoiated interfae (Figure 3 shows the interfaegenerated for the a�et operator), and one interfae by type. These lassesontain the getters and setters needed to handle the sons (e.g. getValueNode,setValueNode).It is important that the language designers an de�ne their languages (ab-strat syntax) by using standard formats (DTD or Shema) proposed by theW3C and not neessarily with the internal AST de�nition format of Smart-Tools. Therefore, we have implemented onversion tools with some restri-tions. For example, the notion of type does not expliitly exist within theDTD format i.e. the elements (seen as operators) do not belong to namedsets. As this notion was essential, we had to de�ne a type inferene meh-anism to onvert DTDs. Additionally, the right part of element de�nitionsshould only ontain parameter entity referenes to indiate the types of thesons (e.g. the line 6 of Figure 4 shows a DTD-equivalent de�nition of thea�et operator). Unfortunately, few DTDs are written in this way. To be
2 used all along this artile 3



D
R

A
FT

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

SmartTools - 6 February 2002at 15:47

+getVariableNode(): tiny.ast.VarType
+setVariableNode(tree:tiny.ast.VarType):void
+getValueNode():tiny.ast.ExpType
+setValueNode(tree:tiny.ast.ExpType):void

tiny.ast.AffectNodeImpl

Tiny

DOM

SmartTools

org.w3c.dom.Element

org.apache.xerces.dom.ElementImpl

fr.smarttools.tree.UntypedNodeImpl

fr.smarttools.tree.UntypedNode

fr.smarttools.tree.FixedNode

tiny.ast.AffectNode

fr.smarttools.tree.FixedNodeImpl

tiny.ast.StatementType

Fig. 2. Class hierarhy for the a�et operator
package tiny.ast;
public interface AffectNode extends StatementType {

public tiny.ast.VarType getVariableNode();
public void setVariableNode(tiny.ast.VarType tree);
public tiny.ast.ExpType getValueNode();
public void setValueNode(tiny.ast.ExpType tree);

} Fig. 3. Generated a�et operator interfae: A�etNodeable to aept as many as possible DTDs, a more omplex type analysis (typeinferene) was arried out.1 <!ENTITY % Top ’program’>2 <!ENTITY % Statements ’statements’>3 <!ENTITY % Statement ’if|while|affect’>4 <!ELEMENT program ((%Decls;), (%Statements;))>5 <!ELEMENT statements (%Statement;)*>6 <!ELEMENT affect ((%Var;), (%Exp;))>Fig. 4. Part of the generated DTD of tinyMoreover, we have implemented generators that produe a parser and theassoiated pretty-printer to manipulate programs with a more readable for-mat than the XML one. For this purpose, the designer has to provide extraattributes information on eah element (or operator) de�nition (see attributesin Figure 5). This possibility is useful for designers that do not have expertiseon how to write a parser and makes sense only for small and unambiguouslanguages.
affect(Var variable, Exp value)

with attributes {fixed String S1 = "=",
fixed String styleS1 = "kw",
fixed String AO = ";",
fixed String styleAO = "kw"}Fig. 5. Extra data of the a�et operator useful for generating a parser and theassoiated pretty-printer 4



D
R

A
FT

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

SmartTools - 6 February 2002at 15:47Figure 6 shows all the spei�ations that an be generated from an ASTspei�ation:
• the API of the language (i.e. one lass and the assoiated interfae byoperator, and one interfae by type),
• the basi visitors useful for reating semanti analyses,
• a parser for the language (if extra syntati sugars are provided as operatorattributes in the language de�nition),
• a pretty printer to unparse ASTs aording to these extra syntati sugars,
• a minimal resoure �le that ontains useful information for the struturededitor and the parser,
• the DTD or the Shema.

tiny.g

TinyParser.java
TinyLexer.java
TinyParserTokenTypes.java
TinyParserTokenTypes.txt

TypeChecker.xpro

tiny.xml

AffectNode.java
AffectNodeImpl.java
StatementType.java
...

API of Tiny

tiny.dtd

AbstractTypeCheckerTinyVisitor.java
TraversalTypeCheckerTinyVisitor.java

AbstractTinyVisitor.java
TraversalTinyVisitor.java

tiny.ast

tiny.dtd 
or

tiny.xsd

tiny.xsd

Antlr

tiny.xpp

Visitor
Generator

API
Generator

Import

Parser
Generator

Pretty 
Printer
Generator

Resource
Generator 

DTD 
or Schema
GeneratorFig. 6. All the spei�ations generated from an ASTFor example, thanks to these tool generators, the tiny environment (Figure??) was automatially generated only from one AST spei�ation (see Figure1), one xpro�le spei�ation (see Figure 7) , and the type-heker visitor (100Java lines).SemantisThis sub-setion presents ways to write analyses (e.g. a type-heker, anevaluator or a ompiler) on programs by using the visitor design pattern. Ifthe reader wants to have more details and explanations on this well-knownmethodology, he an refer to [3,8,7℄. For instane, we present three extensionsof the visitor pattern tehnique: v1 using re�exivity mehanism with pro�ledvisits and tree traversal possibilities, v2 adding simple aspet-oriented pro-gramming, v3 splitting the tree traversal (visit method alls) and the semantiations by using more omplex aspets.5



D
R

A
FT

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

SmartTools - 6 February 2002at 15:47Re�exive visitors (v1)To make the development of visitors based on the AST de�nitions easier,SmartTools automatially generates two visitor lasses: AbstratVisitor andTraversalVisitor. The abstrat visitor delares all the visit methods (one byoperator). The TraversalVisitor inherits from the AbstratVisitor and imple-ments all the visit methods in order to perform an in-depth tree traversal.This visitor an be extended and its visit methods re�ned (overridden) tospeify an analysis.Thanks to the xpro�le spei�ation language of SmartTools, it is possibleto speify the visit signatures i.e. to generate visits with di�erent names,return types, and parameters. The granularity of this personalization is atthe (AST) type level. Figure 7 presents the xpro�le spei�ation of a type-heker for tiny. From this spei�ation, the system automatially generatesthe two orretly-typed visitors (AbstratVisitor and TraversalVisitor). Onlyuseful visit methods have to be overridden to implement the type-heker (seeFigure 8 for the a�et operator). The advantage of using pro�led visits is toavoid asts and obtain more readable visitor programs.
XProfile TypeChecker;
Formalism tiny;
import tiny.visitors.TinyEnv;

Profiles
Object check(%Top, TinyEnv env);
Object check(%Decls, TinyEnv env);
Object check(%Decl, TinyEnv env);
Object check(%Statements, TinyEnv env);
Object check(%Statement, TinyEnv env);
String check(%Exp, TinyEnv env);
String check(%ArithmeticOp, TinyEnv env);
String check(%ConditionOp, TinyEnv env);
String check(%ArithmeticExp, TinyEnv env);
String check(%ConditionExp, TinyEnv env);
String check(%Var, TinyEnv env);

Strategy TOPDOWN; Fig. 7. Visit signatures of a type-heker for tiny1 public Object check(AffectNode node, TinyEnv env) throws VisitorException {2 String varName = node.getVariableNode().getValue();3 String typeLeft = env.getType(varName);4 String typeRight = check(node.getValueNode(), env); //visit the value node56 if (typeLeft == null)7 errors.setError(node, "This variable " + varName + " was not declared");8 else {9 if (!typeRight.equals(TinyEnv.ERROR) && (!typeLeft.equals(typeRight)))10 errors.setError(node, "Incompatible types: " + varName + " is a" +11 typeLeft.equals(TinyEnv.INT)?"int":"bool") +" variable");12 }13 return null;14 } Fig. 8. A�et visit of the type-hekerWith the xpro�le language, it is also possible to speify the tree traversal(from the starting node to the destination node(s)) of a visitor. Thus, only thenodes on the path are visited instead of all the nodes of the tree. It reduesthe visitor runtime on sizeable trees and above all the size of the generated6



D
R

A
FT

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

SmartTools - 6 February 2002at 15:47visitors. A dependene graph analysis on the AST de�nition is performedto generate the orresponding abstrat and traversal visitors with the 'right'visits aording to the given path. For example with the traversal spei�edon Figure 9, only the visits of the while and a�et operators and the visitsof the operators ontained between the root (TOP) and these operators (i.eprogram, statements and if aording to the AST de�nition of Figure 1) willbe alled.
Traversal Essai:

%Top -> while, affect;Fig. 9. Traversal spei�ation from the root (TOP) to while and a�etIn SmartTools, we use the Java re�exivity mehanism to implement thevisitor tehnique and not the lassial solution of a spei� method, usuallydenoted aept, de�ned on eah operator 3 . Indeed, the introdution of avisitor pro�le prohibits from using this lassial solution (aept method). Ageneri method (named invokeVisit) is exeuted when any visit method isalled. The goal of this generi method is to invoke the 'right' visit method(with a strongly-typed node) by using re�exivity.The use of re�exivity is runtime-expensive. To aelerate the invoke pro-ess, an indiretion table is statially produed at ompilation-time when theabstrat visitor is generated. This table ontains for eah pair (operator, type)the Java referene to the visit java.lang.re�et.Method objet to all. Withthis table, it is also possible to hange the visit method name and to havedi�erent arguments. This solution is a simpli�ation of the multi-method ap-proah that dynamially performs the searh of the best method to apply. Wehave ompared these two approahes by using a Java multi-method implemen-tation [2℄. The performanes are equivalent, but our approah is muh easierto realize.Visitors with Aspet (v2)The re�exivity mehanism used to implement the visitor pattern tehniquemakes the exeution of additional ode before or after the visit alls possi-ble. In this way, a onept of aspet-oriented programming [4,6℄ spei� forour visitors an be added without modifying the soure ode, unlike the �rstversions of AspetJ [1,5℄. An aspet an be de�ned just by implementing theAspet interfae and then reorded (see methods on Figure 10) on any visitor.For example, if the aspet of Figure 11 is reorded on a visitor, it will traeout all the alled visits.Several aspets an be onneted on a visitor. They are exeuted in se-quene (aording to the registration order). This onnetion (as well as the
3 SmartTools an also help designers to develop this kind of e�ient visitors. But, theirodes are less readable (more asts, no aspet, no tree traversal hoie, et) than the v1 orv2 visitors . Therefore, we do not desribe them in this artile.7



D
R

A
FT

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

SmartTools - 6 February 2002at 15:47

VisitorImpl

+visit(node:Node,params:Object): Object
#invokeVisit(params:Object[]): Object
+addAspect(aspect:Aspect): void
+removeAspect(aspect:Aspect): void
+addAspectOnOperator(op:Operator,aspect:Aspect): void
+removeAspectOnOperator(op:Operator,aspect:Aspect): void
+addAspectOnType(type:Type,aspect:Aspect): void
+removeAspectOnType(type:Type,aspect:Aspect): voidFig. 10. Visitor with aspet (v2) API

package fr.smarttools.debug;
import fr.smarttools.tree.visitorpattern.Aspect;
import fr.smarttools.tree.Type;

public class TraceAspect implements Aspect {
public void before(Type t, Object[] param) {

System.out.println ("Start visit on " + param[0].getClass());
}
public void after(Type t, Object[] param) {

System.out.println ("End visit on " + param[0].getClass());
}

} Fig. 11. Aspet that traes out the visit methodsdisonnetion) an be done dynamially at runtime. The behavior of a visitoran thus be modi�ed dynamially by addition or withdrawal of these aspets.For example, a graphial debug mode for the visitors with a step-by-step ex-eution was spei�ed as an aspet regardless of any visitor. To add theseaspets on the v1 visitors, the generi method (invokevisit) was extended.Visitor with Tree Traversal and omplex Aspets (v3)With the onept of aspet-oriented programming, it is possible to split thetree traversal (visit method alls) and the semanti proessing (semanti a-tions). Let us suppose that the visit ode of the a�et(Var, Exp) operator hasthis shape:
visit(AffectNode node ...) {

codeBefore
visit of the first son
codeBetween1_2
visit of the second son
codeAfter

} One an observe that the semanti part (i.e all exept the reursive alls)is divided into N sons + 1 piees of ode. These N+1 piees an be treated likeaspets with new points of anhoring i.e before, between and after the visitmethod alls of the sons. We have de�ned a new visitor (named v3 visitor)that takes as arguments a tree traversal and one or more semanti ations(i.e. in the form of aspets) as shown on Figure 12. This visitor an all theseaspets on these new points of anhoring. Therefore, these aspets must havefor eah operator, in addition to the traditional before and after methods,the betweeni_i+1 methods (ode to be exeuted between the ith and i+1thsons). This new visitor an onnet one or more aspets desribed in the v2visitors. Figure 13 shows the type-heker semantis assoiated with the a�etoperator using this new form of aspet. There is no more reursive all unlike8



D
R

A
FT

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

SmartTools - 6 February 2002at 15:47the v1 (see Figure 8 line 4) or v2 visitors but it is neessary to use staks (seeFigure 13 lines 5 and 6) to transmit the visit results of the sons.
VisitorAspect

+current(): void
+visit(): Object
+invokeVisit(): Object
+backward(): void
+forward(): void
+ignore(): void
+jumpTo(): void
+between(): Object
+before(): void
+after(): void
+addAspect(): void
+removeAspect(): void
+addAspectOnOperator(): void
+addAspectOnType(): void

TreeTraversal

+traverse(node:Node): void
+backward(): void
+forward(): void
+ignore(): void
+jumpTo(): void

Semantic1

+before(): Object
+after(): Object
+betweenN_M(): Object

SemanticN

+after(): Object
+before(): Object
+betweenN_M(): Object

current, visit, before, after

ignore, backward, forward, jumpTo

ignore, backward, forward, jumpTo

before, after, between

Fig. 12. v3 visitor1 public void before(AffectNode node, Object param) {}2 public void between1_2(AffectNode node, Object param) {}3 public void after(AffectNode node, Object param) {4 String varName = node.getVariableNode().getValue();5 String typeRight = (String)typeStack.pop();6 String typeLeft = (String)typeStack.pop();78 same if code than Figure 8 (lines 6 to 12)9 } Fig. 13. Type-heker of the a�et operatorThe type-heker of tiny was extended with a initialization hek on vari-ables (see Figure 14) only by omposing the two aspets (see Figure 15). Themain interest of this programming style is to make the extension of analysespossible without modi�ation only by adding new aspets. In this way, anal-yses are modular and re-usable. However, these analyses are more omplexto program beause of the splitting of the semantis and the tree traversal(ompare Figures 13 and 8). Currently, we study how to share data betweensemantis, problems linked to the ommon tree traversal (e.g. what to do ifone semantis wants to loop on a node and not the others?), ; we also studymehanisms to ease the programming of these aspets by hiding the stakmanagement.
public void before(AffectNode node, Object param) {unplugVariableCheck = true;}
public void visit1(AffectNode node, Object param) {unplugVariableCheck = false;}
public void after(AffectNode node, Object param) {

env.setInitialized(node.getVariableNode().getValue());
} Fig. 14. Initialization hek for the a�et operator (v3 visitor)9



D
R

A
FT

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

SmartTools - 6 February 2002at 15:47

TypeCheckerVisitor typeCheck = new TypeCheckerVisitor();
TinyEnv env = typeCheck.getEnv();
InitVarCheckerVisitor initVarCheck = new InitVarCheckerVisitor(env);
new Visitor(new LeftToRightTreeTraversal(),

new Semantics[]{typeCheck, initVarCheck}).start(tree, null);Fig. 15. Composition of two aspetsFor the v3 visitor (see Figure 12), there is also a generi method thatmanages the next node to visit aording to the urrent position, the treetraversal and some speial traversal instrutions. This method also opes withthe searh of the next method to all and the invoation of the v2 aspets onthese visits.3 ArhitetureSmartTools is omposed of independent software modules that ommuniatewith eah other by exhanging asynhronous messages. These messages aretyped and an be onsidered as events. Eah module registers itself on a en-tral software omponent, the message ontroller (.f. Figure 16), to listen tosome spei� types of messages. It an reat to them by possibly posting newmessages. The ontroller is responsible for managing the �ow of messages anddelivering them to their spei� destination(s). The omponents of Smart-Tools are thus event-driven. This setion presents the di�erent modules ofSmartTools and desribes the behavior of the message ontroller.
Document 1

Document 2

Document GI

View1 / Doc1

View2 / Doc1

View1 / Doc2

Graphic
Interface

(View/DocIG)

Message controller

 Document manager  Parser manager BaseFig. 16. Arhiteture of SmartToolsThe main software modules of SmartTools are the following:
• Eah doument ontains an AST. In Figure 16, Doument 1 andDoument2 ontain the ASTs on whih the user is working. Doument GI is a speialone. It ontains the AST desribing the struture of the GUI (e.g. the ASTof the Figure ??).
• The user interfae module manages the views, the menus and the toolbarof SmartTools.
• Eah view is an independent module showing the ontent of a doument in aformat depending on the type of the view. For example, some views displaythe tree in olored-syntax text format, others as a graphial representation.10



D
R

A
FT

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

SmartTools - 6 February 2002at 15:47

• The parser manager hooses the right parser to use for a �le. Then, it runsthe parser and builds the orresponding AST. The doument manageruses this tree to build a doument module and onnets it to the messageontroller.
• The base is a module that ontains de�nitions of resoures used in Smart-Tools: olors, styles, fonts, menus, toolbars, ations, et.Of ourse, new types of modules an register themselves on the message on-troller. That is one of the ways to extend the features of SmartTools for aspei� purpose or to embed SmartTools in another environment.When a module needs to ommuniate with another module, it reates amessage and posts it on the message ontroller. Then, the message ontrollerbroadasts this message to the appropriate listeners (modules) that will reatto it. Thus, modules that want to reeive speial types of messages from themessage ontroller have to beome listeners of these types of messages. Theyhave to implement the MsgListener interfae and provide a reeive(xxxMsg)method for every type of supported message. Then, they have to register onthe message ontroller (see ode just below) and obtain their unique moduleidenti�er from it.

idDoc= msgControler.register(this);XxxMsg in the reeive method stands for the lass of the expeted message.Messages are typed objets i.e there is one spei� lass for every type ofmessage. Their ommon behavior is held in one abstrat lass that is thesuper lass of all the messages. New kinds of messages an be reated byextending that ommon lass or any other existing message lass.In the following example, the module expets to reeive SeletMsg, Close-DoMsg and CutMsg messages sent to the module identi�ed by idDo andoming from an anonymous sender.
msgControler.addMsgListener("SelectMsg", idDoc, Msg.ANONYMOUS);
msgControler.addMsgListener("CloseDocMsg", idDoc, Msg.ANONYMOUS);
msgControler.addMsgListener("CutMsg", idDoc, Msg.ANONYMOUS);Douments (i.e ASTs) and views are independently registered on the mes-sage ontroller. A doument does not need to know how many views arerelated to it. When a modi�ation is made, the doument posts a modi�a-tion message. The type of that message indiates whih modi�ation has beendone and the message body ontains the path of the modi�ed node (from theroot of the tree). For some kinds of messages, the hange is also spei�ed.Suh messages will be sent only to the views that are registered to reeivethese modi�ation messages oming from this doument. Other modules willnot reeive them.The message ontroller has a built-in message �ltering apability. It ispossible to write �lters that wath or in�uene the �ow of input and outputmessages on the ontroller. That �ltering apability has been suessfully usedfor several spei� needs: benhmarking, debugging, undoing user ations, andautomatially translating messages into another format (SOAP messages).11



D
R

A
FT

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

SmartTools - 6 February 2002at 15:47The arhiteture of SmartTools is designed to ease onnetion with otherdevelopment environments or tools. Some experiments [9℄ are in progress toprovide several features of SmartTools as web servies and to use them froma lient tool running on a .NET platform.4 ConlusionsWe have presented a software generator whih produes programming envi-ronments strongly based on XML and objet-oriented tehnologies. The mostimportant ontribution of this approah was to propose at the same time andwith a uniform way, a set of advaned programming features, integrated intoa modular arhiteture, with extensible graphial viewing engines and opento XML. We have hosen to use non-proprietary APIs to be open and to takeadvantage of future or external developments around W3C spei�ations. Onthe semanti level, we present a dediated aspet-oriented programming ap-proah assoiated with the visitor design pattern ompliant with the DOMspei�ations. We expet a large set of domain-spei� languages to be basedon the W3C spei�ations. The users (and designers) of suh languages arenot supposed to be experts of language theories. Therefore, we propose asemanti framework easy to use and requiring a minimal knowledge. Domain-spei� languages represent a large potential of appliations in various �eldsand will ertainly introdue new open problems.AknowledgmentsWe have muh bene�ted from disussions with Colas Nahaboo, Thierry Kor-mann and Stéphane Hillion from the ILOG team on the topi of XML teh-nologies. We would also like to thank Gilles Roussel, Etienne Duris and RémyForax for their helpful omments of their Java Multi-Methods implementation.Referenes[1℄ Aspetj-oriented programming (aop) for java. http://www.aspetj.org.[2℄ R. Forax, E. Duris, and G. Roussel. Java Multi-Method Framework. InInternational Conferene on Tehnology of Objet-Oriented Languages andSystems (TOOLS'00), Nov. 2000.[3℄ E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. AddisonWesley, Reading, MA, 1995.[4℄ G. Kizales. Aspet-oriented programming: A position paper from the xeroxPARC aspet-oriented programming projet. In M. Muehlhauser, editor, SpeialIssues in Objet-Oriented Programming. 1996.12



D
R

A
FT

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

SmartTools - 6 February 2002at 15:47[5℄ G. Kizales, J. Hugunin, M. Kersten, J. Lamping, C. Lopes, and W. G. Griswold.Semantis-Based Crossutting in AspetJ. In Workshop on Multi-DimensionalSeparation of Conerns in Software Engineering (ICSE 2000), 2000.[6℄ G. Kizales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,and J. Irwin. Aspet-oriented programming. In M. Ak³it and S. Matsuoka,editors, ECOOP '97 � Objet-Oriented Programming 11th European Conferene,Jyväskylä, Finland, volume 1241 of Leture Notes in Computer Siene, pages220�242. Springer-Verlag, New York, NY, June 1997.[7℄ J. Palsberg and C. B. Jay. The Essene of the Visitor Pattern. In COMPSAC'98,22nd Annual International Computer Software and Appliations Conferene,Vienna, Austria, Aug. 1998.[8℄ J. Palsberg, B. Patt-Shamir, and K. Lieberherr. A New Approah to CompilingAdaptive Programs. In H. R. Nielson, editor, European Symposium onProgramming, pages 280�295, Linkoping, Sweden, 1996. Springer Verlag.[9℄ J. G. Variamparambil. Getting smarttools and visualstudio.net to talk to eahother using soap and web servies. Tehnial report, INRIA, 2001. http://www-sop.inria.fr/oasis/SmartTools/publiations/Joseph/report.ps.

13


