
D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

First AOSD Workshop on Aspects, Components, and Patterns for Infrastructure
Software (April 23, 2002) Preliminary VersionAspe
t and XML-oriented Semanti
Framework Generator: SmartToolsDidier Parigot, Carine Courbis, Pas
al Degenne, Alexandre FauJoël Fillon, Isabelle AttaliINRIA Sophia-Antipolis - OASIS proje
t2004, route des Lu
ioles - BP 9306902 Sophia-Antipolis
edex, Fran
eFirst.Last�sophia.inria.frAbstra
tSmartTools is a semanti
 framework generator, based on XML and obje
t te
h-nologies. Thanks to a pro
ess of automati
 generation from spe
i�
ations, Smart-Tools makes it possible to qui
kly develop environments dedi
ated to domain-spe
i�
and programming languages. Some of these spe
i�
ations (XML, DTD, S
hemas,XSLT) are issued from the W3C whi
h is an important sour
e of varied emergingdomain-spe
i�
 languages. SmartTools uses obje
t te
hnologies su
h as visitor pat-terns and aspe
t-oriented programming. It provides
ode generation adapted to theusage of those te
hnologies to support the development of semanti
 analyses. In thisway, we obtain at minimal
ost the design and implementation of a modular devel-opment platform whi
h is open, intera
tive, uniform, and most important prone toevolution.Key words: software generation, development environment,semanti
 analyses, aspe
t-oriented programming, visitor pattern,program transformation, XML, XSLT.1 Introdu
tionIn software appli
ations, quality and ability to evolve, as well as developmentspeed, are of major
on
ern. Well-designed software
an be qui
kly adaptedto new requirements and te
hnologies. It must also be able to ex
hange manyvaried data with other appli
ations, parti
ularly sin
e the wide use of Internet.The data stru
tures are
ommonly de�ned with a DTD 1 (Data Type Def-inition) or a S
hema from the World Wide Web Consortium (W3C), and
1 No referen
e to W3C spe
i�
ations (XML and DTD, S
hema, DOM, XSL and XSLT,BML, SOAP) is given in this paper as they are easily available on the W3C web-site(http://www.w3
.org) 6 February 2002

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

SmartTools - 6 February 2002at 15:47ex
hanged with the XML (eXtensible Markup Language) format. These def-initions are sort of abstra
t syntaxes of simple languages, named Domain-Spe
i�
 Languages (DSL). For this large amount of new spe
i�
 languages,there are needs for tools to handle treatments. All programming te
hniques
an be applied to DSLs as they often have more simple syntaxes and seman-ti
s than the programming ones. As DSL designers and end-users may haveno knowledge of these te
hniques (analysis,
ompilation, interpretation, et
),these tools should fa
ilitate (hide) their uses. Additionally, these tools relatedto Internet appli
ations need to be qui
kly developed, prone to evolution andintegration, and easy to use.The SmartTools platform �ts in with these requirements. Its main goal isto help designers of domain-spe
i�
 or programming languages to
reate newtools. No more than one spe
i�
ation (e.g. a DTD) is needed to qui
kly pro-du
e (generate) a dedi
ated development environment that
ontains a parser, apretty-printer, a language-spe
i�
 stru
ture editor and a set of Java sour
e �lesuseful for semanti
s treatments (transformations, analyses). Both, SmartToolsand the target environment are easy to use with a minimal knowledge andbased on well-known te
hniques (e.g. visitor design pattern, aspe
t-orientedprogramming) or standard spe
i�
ations (e.g. XSLT - XML Stylesheet Lan-guage Transformation). They have a modular and �exible implementationbased on re-usable and generi

omponents organized into a distributed ar
hi-te
ture.All the te
hniques and the generi

omponents are tested on the internallanguages of SmartTools. It is bootstrapped : about 40% of its sour
e
ode isautomati
ally generated. With its open ar
hite
ture, it is very easy to plug innew
omponents or inter
onne
t other platforms, among whi
h is .NET withthe SOAP proto
ol.The main innovation of SmartTools is to homogeneously gather many dif-ferent te
hnologies : XML te
hnologies,
omponent, oriented-obje
t program-ming, visitor design pattern, and Aspe
t-Oriented Programming (AOP). Thispaper does not des
ribe how these te
hnologies are
ombined but rather why.It is made of two parts : the �rst one gives the reasons for using DTDs asinput to de�ne languages, and the visitor design pattern and aspe
ts to spe
ifysemanti
s analyses ; the se
ond one explains the
hoi
es about the ar
hite
-ture.
2 Semanti
 ToolsInternally, SmartTools uses extended and strongly typed abstra
t syntax (AST)de�nitions for all its tools. The important notions of these de�nitions are: 'op-erators' and 'types'. The operators are gathered into named sets: types. Thesons of operators are typed and named. Figure 1 shows the de�nition of our2

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

SmartTools - 6 February 2002at 15:47toy language: tiny 2 . For example, the a�e
t operator belongs to the State-ment type and has two sons: the �rst one is of type Var and the se
ond oneof type Exp.
Formalism of tiny is
Root is %Top;

Top = program(Decls declarationList, Statements statements);
Decls = decls(Decl[] declarationList);
Decl = intDecl(Var variable), booleanDecl(Var variable);
Statements = statements(Statement[] statementList);
Statement = affect(Var variable, Exp value),

while(ConditionExp cond, Statements statements),
if(ConditionExp cond, Statements statementsThen,

Statements statementsElse);
ConditionOp = equal(ArithmeticExp left, ArithmeticExp right),

notEqual(ArithmeticExp left, ArithmeticExp right);
ConditionExp = %ConditionOp, true(), false(), var;
ArithmeticOp = plus(ArithmeticExp left, ArithmeticExp right),

minus(ArithmeticExp left, ArithmeticExp right),
mult(ArithmeticExp left, ArithmeticExp right),
div(ArithmeticExp left, ArithmeticExp right);

ArithmeticExp = %ArithmeticOp, int as STRING, var as STRING;
Exp = %ArithmeticOp, %ConditionOp, var, int, true, false;
Var = var;

End Fig. 1. the AST de�nition of tinyFrom the AST de�nition, SmartTools
an automati
ally generate a stru
-tured editor spe
i�
 to the language. To fa
ilitate the editing (to
opy-pastenodes), it is useful to make the type in
lusion possible.We want, as mu
h as possible, to use existing software
omponents stem-ming from the W3C standards, su
h as the DOM (Do
ument Obje
t Model)API to handle XML do
uments. But, this latter API does not
onsiderstrongly typed stru
tures. To manipulate strongly typed trees, we have ex-tended it with the notions of �xed node, listed node and typed node (
.f.Figure 2). In this way, the tree
onsisten
y is guaranteed by the Java type-
he
ker at its
onstru
tion. For ea
h operator, SmartTools automati
ally gen-erates one
lass and the asso
iated interfa
e (Figure 3 shows the interfa
egenerated for the a�e
t operator), and one interfa
e by type. These
lasses
ontain the getters and setters needed to handle the sons (e.g. getValueNode,setValueNode).It is important that the language designers
an de�ne their languages (ab-stra
t syntax) by using standard formats (DTD or S
hema) proposed by theW3C and not ne
essarily with the internal AST de�nition format of Smart-Tools. Therefore, we have implemented
onversion tools with some restri
-tions. For example, the notion of type does not expli
itly exist within theDTD format i.e. the elements (seen as operators) do not belong to namedsets. As this notion was essential, we had to de�ne a type inferen
e me
h-anism to
onvert DTDs. Additionally, the right part of element de�nitionsshould only
ontain parameter entity referen
es to indi
ate the types of thesons (e.g. the line 6 of Figure 4 shows a DTD-equivalent de�nition of thea�e
t operator). Unfortunately, few DTDs are written in this way. To be
2 used all along this arti
le 3

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

SmartTools - 6 February 2002at 15:47

+getVariableNode(): tiny.ast.VarType
+setVariableNode(tree:tiny.ast.VarType):void
+getValueNode():tiny.ast.ExpType
+setValueNode(tree:tiny.ast.ExpType):void

tiny.ast.AffectNodeImpl

Tiny

DOM

SmartTools

org.w3c.dom.Element

org.apache.xerces.dom.ElementImpl

fr.smarttools.tree.UntypedNodeImpl

fr.smarttools.tree.UntypedNode

fr.smarttools.tree.FixedNode

tiny.ast.AffectNode

fr.smarttools.tree.FixedNodeImpl

tiny.ast.StatementType

Fig. 2. Class hierar
hy for the a�e
t operator
package tiny.ast;
public interface AffectNode extends StatementType {

public tiny.ast.VarType getVariableNode();
public void setVariableNode(tiny.ast.VarType tree);
public tiny.ast.ExpType getValueNode();
public void setValueNode(tiny.ast.ExpType tree);

} Fig. 3. Generated a�e
t operator interfa
e: A�e
tNodeable to a

ept as many as possible DTDs, a more
omplex type analysis (typeinferen
e) was
arried out.1 <!ENTITY % Top ’program’>2 <!ENTITY % Statements ’statements’>3 <!ENTITY % Statement ’if|while|affect’>4 <!ELEMENT program ((%Decls;), (%Statements;))>5 <!ELEMENT statements (%Statement;)*>6 <!ELEMENT affect ((%Var;), (%Exp;))>Fig. 4. Part of the generated DTD of tinyMoreover, we have implemented generators that produ
e a parser and theasso
iated pretty-printer to manipulate programs with a more readable for-mat than the XML one. For this purpose, the designer has to provide extraattributes information on ea
h element (or operator) de�nition (see attributesin Figure 5). This possibility is useful for designers that do not have expertiseon how to write a parser and makes sense only for small and unambiguouslanguages.
affect(Var variable, Exp value)

with attributes {fixed String S1 = "=",
fixed String styleS1 = "kw",
fixed String AO = ";",
fixed String styleAO = "kw"}Fig. 5. Extra data of the a�e
t operator useful for generating a parser and theasso
iated pretty-printer 4

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

SmartTools - 6 February 2002at 15:47Figure 6 shows all the spe
i�
ations that
an be generated from an ASTspe
i�
ation:
• the API of the language (i.e. one
lass and the asso
iated interfa
e byoperator, and one interfa
e by type),
• the basi
 visitors useful for
reating semanti
 analyses,
• a parser for the language (if extra synta
ti
 sugars are provided as operatorattributes in the language de�nition),
• a pretty printer to unparse ASTs a

ording to these extra synta
ti
 sugars,
• a minimal resour
e �le that
ontains useful information for the stru
turededitor and the parser,
• the DTD or the S
hema.

tiny.g

TinyParser.java
TinyLexer.java
TinyParserTokenTypes.java
TinyParserTokenTypes.txt

TypeChecker.xpro

tiny.xml

AffectNode.java
AffectNodeImpl.java
StatementType.java
...

API of Tiny

tiny.dtd

AbstractTypeCheckerTinyVisitor.java
TraversalTypeCheckerTinyVisitor.java

AbstractTinyVisitor.java
TraversalTinyVisitor.java

tiny.ast

tiny.dtd
or

tiny.xsd

tiny.xsd

Antlr

tiny.xpp

Visitor
Generator

API
Generator

Import

Parser
Generator

Pretty
Printer
Generator

Resource
Generator

DTD
or Schema
GeneratorFig. 6. All the spe
i�
ations generated from an ASTFor example, thanks to these tool generators, the tiny environment (Figure??) was automati
ally generated only from one AST spe
i�
ation (see Figure1), one xpro�le spe
i�
ation (see Figure 7) , and the type-
he
ker visitor (100Java lines).Semanti
sThis sub-se
tion presents ways to write analyses (e.g. a type-
he
ker, anevaluator or a
ompiler) on programs by using the visitor design pattern. Ifthe reader wants to have more details and explanations on this well-knownmethodology, he
an refer to [3,8,7℄. For instan
e, we present three extensionsof the visitor pattern te
hnique: v1 using re�exivity me
hanism with pro�ledvisits and tree traversal possibilities, v2 adding simple aspe
t-oriented pro-gramming, v3 splitting the tree traversal (visit method
alls) and the semanti
a
tions by using more
omplex aspe
ts.5

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

SmartTools - 6 February 2002at 15:47Re�exive visitors (v1)To make the development of visitors based on the AST de�nitions easier,SmartTools automati
ally generates two visitor
lasses: Abstra
tVisitor andTraversalVisitor. The abstra
t visitor de
lares all the visit methods (one byoperator). The TraversalVisitor inherits from the Abstra
tVisitor and imple-ments all the visit methods in order to perform an in-depth tree traversal.This visitor
an be extended and its visit methods re�ned (overridden) tospe
ify an analysis.Thanks to the xpro�le spe
i�
ation language of SmartTools, it is possibleto spe
ify the visit signatures i.e. to generate visits with di�erent names,return types, and parameters. The granularity of this personalization is atthe (AST) type level. Figure 7 presents the xpro�le spe
i�
ation of a type-
he
ker for tiny. From this spe
i�
ation, the system automati
ally generatesthe two
orre
tly-typed visitors (Abstra
tVisitor and TraversalVisitor). Onlyuseful visit methods have to be overridden to implement the type-
he
ker (seeFigure 8 for the a�e
t operator). The advantage of using pro�led visits is toavoid
asts and obtain more readable visitor programs.
XProfile TypeChecker;
Formalism tiny;
import tiny.visitors.TinyEnv;

Profiles
Object check(%Top, TinyEnv env);
Object check(%Decls, TinyEnv env);
Object check(%Decl, TinyEnv env);
Object check(%Statements, TinyEnv env);
Object check(%Statement, TinyEnv env);
String check(%Exp, TinyEnv env);
String check(%ArithmeticOp, TinyEnv env);
String check(%ConditionOp, TinyEnv env);
String check(%ArithmeticExp, TinyEnv env);
String check(%ConditionExp, TinyEnv env);
String check(%Var, TinyEnv env);

Strategy TOPDOWN; Fig. 7. Visit signatures of a type-
he
ker for tiny1 public Object check(AffectNode node, TinyEnv env) throws VisitorException {2 String varName = node.getVariableNode().getValue();3 String typeLeft = env.getType(varName);4 String typeRight = check(node.getValueNode(), env); //visit the value node56 if (typeLeft == null)7 errors.setError(node, "This variable " + varName + " was not declared");8 else {9 if (!typeRight.equals(TinyEnv.ERROR) && (!typeLeft.equals(typeRight)))10 errors.setError(node, "Incompatible types: " + varName + " is a" +11 typeLeft.equals(TinyEnv.INT)?"int":"bool") +" variable");12 }13 return null;14 } Fig. 8. A�e
t visit of the type-
he
kerWith the xpro�le language, it is also possible to spe
ify the tree traversal(from the starting node to the destination node(s)) of a visitor. Thus, only thenodes on the path are visited instead of all the nodes of the tree. It redu
esthe visitor runtime on sizeable trees and above all the size of the generated6

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

SmartTools - 6 February 2002at 15:47visitors. A dependen
e graph analysis on the AST de�nition is performedto generate the
orresponding abstra
t and traversal visitors with the 'right'visits a

ording to the given path. For example with the traversal spe
i�edon Figure 9, only the visits of the while and a�e
t operators and the visitsof the operators
ontained between the root (TOP) and these operators (i.eprogram, statements and if a

ording to the AST de�nition of Figure 1) willbe
alled.
Traversal Essai:

%Top -> while, affect;Fig. 9. Traversal spe
i�
ation from the root (TOP) to while and a�e
tIn SmartTools, we use the Java re�exivity me
hanism to implement thevisitor te
hnique and not the
lassi
al solution of a spe
i�
 method, usuallydenoted a

ept, de�ned on ea
h operator 3 . Indeed, the introdu
tion of avisitor pro�le prohibits from using this
lassi
al solution (a

ept method). Ageneri
 method (named invokeVisit) is exe
uted when any visit method is
alled. The goal of this generi
 method is to invoke the 'right' visit method(with a strongly-typed node) by using re�exivity.The use of re�exivity is runtime-expensive. To a

elerate the invoke pro-
ess, an indire
tion table is stati
ally produ
ed at
ompilation-time when theabstra
t visitor is generated. This table
ontains for ea
h pair (operator, type)the Java referen
e to the visit java.lang.re�e
t.Method obje
t to
all. Withthis table, it is also possible to
hange the visit method name and to havedi�erent arguments. This solution is a simpli�
ation of the multi-method ap-proa
h that dynami
ally performs the sear
h of the best method to apply. Wehave
ompared these two approa
hes by using a Java multi-method implemen-tation [2℄. The performan
es are equivalent, but our approa
h is mu
h easierto realize.Visitors with Aspe
t (v2)The re�exivity me
hanism used to implement the visitor pattern te
hniquemakes the exe
ution of additional
ode before or after the visit
alls possi-ble. In this way, a
on
ept of aspe
t-oriented programming [4,6℄ spe
i�
 forour visitors
an be added without modifying the sour
e
ode, unlike the �rstversions of Aspe
tJ [1,5℄. An aspe
t
an be de�ned just by implementing theAspe
t interfa
e and then re
orded (see methods on Figure 10) on any visitor.For example, if the aspe
t of Figure 11 is re
orded on a visitor, it will tra
eout all the
alled visits.Several aspe
ts
an be
onne
ted on a visitor. They are exe
uted in se-quen
e (a

ording to the registration order). This
onne
tion (as well as the
3 SmartTools
an also help designers to develop this kind of e�
ient visitors. But, their
odes are less readable (more
asts, no aspe
t, no tree traversal
hoi
e, et
) than the v1 orv2 visitors . Therefore, we do not des
ribe them in this arti
le.7

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

SmartTools - 6 February 2002at 15:47

VisitorImpl

+visit(node:Node,params:Object): Object
#invokeVisit(params:Object[]): Object
+addAspect(aspect:Aspect): void
+removeAspect(aspect:Aspect): void
+addAspectOnOperator(op:Operator,aspect:Aspect): void
+removeAspectOnOperator(op:Operator,aspect:Aspect): void
+addAspectOnType(type:Type,aspect:Aspect): void
+removeAspectOnType(type:Type,aspect:Aspect): voidFig. 10. Visitor with aspe
t (v2) API

package fr.smarttools.debug;
import fr.smarttools.tree.visitorpattern.Aspect;
import fr.smarttools.tree.Type;

public class TraceAspect implements Aspect {
public void before(Type t, Object[] param) {

System.out.println ("Start visit on " + param[0].getClass());
}
public void after(Type t, Object[] param) {

System.out.println ("End visit on " + param[0].getClass());
}

} Fig. 11. Aspe
t that tra
es out the visit methodsdis
onne
tion)
an be done dynami
ally at runtime. The behavior of a visitor
an thus be modi�ed dynami
ally by addition or withdrawal of these aspe
ts.For example, a graphi
al debug mode for the visitors with a step-by-step ex-e
ution was spe
i�ed as an aspe
t regardless of any visitor. To add theseaspe
ts on the v1 visitors, the generi
 method (invokevisit) was extended.Visitor with Tree Traversal and
omplex Aspe
ts (v3)With the
on
ept of aspe
t-oriented programming, it is possible to split thetree traversal (visit method
alls) and the semanti
 pro
essing (semanti
 a
-tions). Let us suppose that the visit
ode of the a�e
t(Var, Exp) operator hasthis shape:
visit(AffectNode node ...) {

codeBefore
visit of the first son
codeBetween1_2
visit of the second son
codeAfter

} One
an observe that the semanti
 part (i.e all ex
ept the re
ursive
alls)is divided into N sons + 1 pie
es of
ode. These N+1 pie
es
an be treated likeaspe
ts with new points of an
horing i.e before, between and after the visitmethod
alls of the sons. We have de�ned a new visitor (named v3 visitor)that takes as arguments a tree traversal and one or more semanti
 a
tions(i.e. in the form of aspe
ts) as shown on Figure 12. This visitor
an
all theseaspe
ts on these new points of an
horing. Therefore, these aspe
ts must havefor ea
h operator, in addition to the traditional before and after methods,the betweeni_i+1 methods (
ode to be exe
uted between the ith and i+1thsons). This new visitor
an
onne
t one or more aspe
ts des
ribed in the v2visitors. Figure 13 shows the type-
he
ker semanti
s asso
iated with the a�e
toperator using this new form of aspe
t. There is no more re
ursive
all unlike8

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

SmartTools - 6 February 2002at 15:47the v1 (see Figure 8 line 4) or v2 visitors but it is ne
essary to use sta
ks (seeFigure 13 lines 5 and 6) to transmit the visit results of the sons.
VisitorAspect

+current(): void
+visit(): Object
+invokeVisit(): Object
+backward(): void
+forward(): void
+ignore(): void
+jumpTo(): void
+between(): Object
+before(): void
+after(): void
+addAspect(): void
+removeAspect(): void
+addAspectOnOperator(): void
+addAspectOnType(): void

TreeTraversal

+traverse(node:Node): void
+backward(): void
+forward(): void
+ignore(): void
+jumpTo(): void

Semantic1

+before(): Object
+after(): Object
+betweenN_M(): Object

SemanticN

+after(): Object
+before(): Object
+betweenN_M(): Object

current, visit, before, after

ignore, backward, forward, jumpTo

ignore, backward, forward, jumpTo

before, after, between

Fig. 12. v3 visitor1 public void before(AffectNode node, Object param) {}2 public void between1_2(AffectNode node, Object param) {}3 public void after(AffectNode node, Object param) {4 String varName = node.getVariableNode().getValue();5 String typeRight = (String)typeStack.pop();6 String typeLeft = (String)typeStack.pop();78 same if code than Figure 8 (lines 6 to 12)9 } Fig. 13. Type-
he
ker of the a�e
t operatorThe type-
he
ker of tiny was extended with a initialization
he
k on vari-ables (see Figure 14) only by
omposing the two aspe
ts (see Figure 15). Themain interest of this programming style is to make the extension of analysespossible without modi�
ation only by adding new aspe
ts. In this way, anal-yses are modular and re-usable. However, these analyses are more
omplexto program be
ause of the splitting of the semanti
s and the tree traversal(
ompare Figures 13 and 8). Currently, we study how to share data betweensemanti
s, problems linked to the
ommon tree traversal (e.g. what to do ifone semanti
s wants to loop on a node and not the others?), ; we also studyme
hanisms to ease the programming of these aspe
ts by hiding the sta
kmanagement.
public void before(AffectNode node, Object param) {unplugVariableCheck = true;}
public void visit1(AffectNode node, Object param) {unplugVariableCheck = false;}
public void after(AffectNode node, Object param) {

env.setInitialized(node.getVariableNode().getValue());
} Fig. 14. Initialization
he
k for the a�e
t operator (v3 visitor)9

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

SmartTools - 6 February 2002at 15:47

TypeCheckerVisitor typeCheck = new TypeCheckerVisitor();
TinyEnv env = typeCheck.getEnv();
InitVarCheckerVisitor initVarCheck = new InitVarCheckerVisitor(env);
new Visitor(new LeftToRightTreeTraversal(),

new Semantics[]{typeCheck, initVarCheck}).start(tree, null);Fig. 15. Composition of two aspe
tsFor the v3 visitor (see Figure 12), there is also a generi
 method thatmanages the next node to visit a

ording to the
urrent position, the treetraversal and some spe
ial traversal instru
tions. This method also
opes withthe sear
h of the next method to
all and the invo
ation of the v2 aspe
ts onthese visits.3 Ar
hite
tureSmartTools is
omposed of independent software modules that
ommuni
atewith ea
h other by ex
hanging asyn
hronous messages. These messages aretyped and
an be
onsidered as events. Ea
h module registers itself on a
en-tral software
omponent, the message
ontroller (
.f. Figure 16), to listen tosome spe
i�
 types of messages. It
an rea
t to them by possibly posting newmessages. The
ontroller is responsible for managing the �ow of messages anddelivering them to their spe
i�
 destination(s). The
omponents of Smart-Tools are thus event-driven. This se
tion presents the di�erent modules ofSmartTools and des
ribes the behavior of the message
ontroller.
Document 1

Document 2

Document GI

View1 / Doc1

View2 / Doc1

View1 / Doc2

Graphic
Interface

(View/DocIG)

Message controller

 Document manager Parser manager BaseFig. 16. Ar
hite
ture of SmartToolsThe main software modules of SmartTools are the following:
• Ea
h do
ument
ontains an AST. In Figure 16, Do
ument 1 andDo
ument2
ontain the ASTs on whi
h the user is working. Do
ument GI is a spe
ialone. It
ontains the AST des
ribing the stru
ture of the GUI (e.g. the ASTof the Figure ??).
• The user interfa
e module manages the views, the menus and the toolbarof SmartTools.
• Ea
h view is an independent module showing the
ontent of a do
ument in aformat depending on the type of the view. For example, some views displaythe tree in
olored-syntax text format, others as a graphi
al representation.10

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

SmartTools - 6 February 2002at 15:47

• The parser manager
hooses the right parser to use for a �le. Then, it runsthe parser and builds the
orresponding AST. The do
ument manageruses this tree to build a do
ument module and
onne
ts it to the message
ontroller.
• The base is a module that
ontains de�nitions of resour
es used in Smart-Tools:
olors, styles, fonts, menus, toolbars, a
tions, et
.Of
ourse, new types of modules
an register themselves on the message
on-troller. That is one of the ways to extend the features of SmartTools for aspe
i�
 purpose or to embed SmartTools in another environment.When a module needs to
ommuni
ate with another module, it
reates amessage and posts it on the message
ontroller. Then, the message
ontrollerbroad
asts this message to the appropriate listeners (modules) that will rea
tto it. Thus, modules that want to re
eive spe
ial types of messages from themessage
ontroller have to be
ome listeners of these types of messages. Theyhave to implement the MsgListener interfa
e and provide a re
eive(xxxMsg)method for every type of supported message. Then, they have to register onthe message
ontroller (see
ode just below) and obtain their unique moduleidenti�er from it.

idDoc= msgControler.register(this);XxxMsg in the re
eive method stands for the
lass of the expe
ted message.Messages are typed obje
ts i.e there is one spe
i�

lass for every type ofmessage. Their
ommon behavior is held in one abstra
t
lass that is thesuper
lass of all the messages. New kinds of messages
an be
reated byextending that
ommon
lass or any other existing message
lass.In the following example, the module expe
ts to re
eive Sele
tMsg, Close-Do
Msg and CutMsg messages sent to the module identi�ed by idDo
 and
oming from an anonymous sender.
msgControler.addMsgListener("SelectMsg", idDoc, Msg.ANONYMOUS);
msgControler.addMsgListener("CloseDocMsg", idDoc, Msg.ANONYMOUS);
msgControler.addMsgListener("CutMsg", idDoc, Msg.ANONYMOUS);Do
uments (i.e ASTs) and views are independently registered on the mes-sage
ontroller. A do
ument does not need to know how many views arerelated to it. When a modi�
ation is made, the do
ument posts a modi�
a-tion message. The type of that message indi
ates whi
h modi�
ation has beendone and the message body
ontains the path of the modi�ed node (from theroot of the tree). For some kinds of messages, the
hange is also spe
i�ed.Su
h messages will be sent only to the views that are registered to re
eivethese modi�
ation messages
oming from this do
ument. Other modules willnot re
eive them.The message
ontroller has a built-in message �ltering
apability. It ispossible to write �lters that wat
h or in�uen
e the �ow of input and outputmessages on the
ontroller. That �ltering
apability has been su

essfully usedfor several spe
i�
 needs: ben
hmarking, debugging, undoing user a
tions, andautomati
ally translating messages into another format (SOAP messages).11

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

SmartTools - 6 February 2002at 15:47The ar
hite
ture of SmartTools is designed to ease
onne
tion with otherdevelopment environments or tools. Some experiments [9℄ are in progress toprovide several features of SmartTools as web servi
es and to use them froma
lient tool running on a .NET platform.4 Con
lusionsWe have presented a software generator whi
h produ
es programming envi-ronments strongly based on XML and obje
t-oriented te
hnologies. The mostimportant
ontribution of this approa
h was to propose at the same time andwith a uniform way, a set of advan
ed programming features, integrated intoa modular ar
hite
ture, with extensible graphi
al viewing engines and opento XML. We have
hosen to use non-proprietary APIs to be open and to takeadvantage of future or external developments around W3C spe
i�
ations. Onthe semanti
 level, we present a dedi
ated aspe
t-oriented programming ap-proa
h asso
iated with the visitor design pattern
ompliant with the DOMspe
i�
ations. We expe
t a large set of domain-spe
i�
 languages to be basedon the W3C spe
i�
ations. The users (and designers) of su
h languages arenot supposed to be experts of language theories. Therefore, we propose asemanti
 framework easy to use and requiring a minimal knowledge. Domain-spe
i�
 languages represent a large potential of appli
ations in various �eldsand will
ertainly introdu
e new open problems.A
knowledgmentsWe have mu
h bene�ted from dis
ussions with Colas Nahaboo, Thierry Kor-mann and Stéphane Hillion from the ILOG team on the topi
 of XML te
h-nologies. We would also like to thank Gilles Roussel, Etienne Duris and RémyForax for their helpful
omments of their Java Multi-Methods implementation.Referen
es[1℄ Aspe
tj-oriented programming (aop) for java. http://www.aspe
tj.org.[2℄ R. Forax, E. Duris, and G. Roussel. Java Multi-Method Framework. InInternational Conferen
e on Te
hnology of Obje
t-Oriented Languages andSystems (TOOLS'00), Nov. 2000.[3℄ E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. AddisonWesley, Reading, MA, 1995.[4℄ G. Ki
zales. Aspe
t-oriented programming: A position paper from the xeroxPARC aspe
t-oriented programming proje
t. In M. Muehlhauser, editor, Spe
ialIssues in Obje
t-Oriented Programming. 1996.12

D
R

A
FT

DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

SmartTools - 6 February 2002at 15:47[5℄ G. Ki
zales, J. Hugunin, M. Kersten, J. Lamping, C. Lopes, and W. G. Griswold.Semanti
s-Based Cross
utting in Aspe
tJ. In Workshop on Multi-DimensionalSeparation of Con
erns in Software Engineering (ICSE 2000), 2000.[6℄ G. Ki
zales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,and J. Irwin. Aspe
t-oriented programming. In M. Ak³it and S. Matsuoka,editors, ECOOP '97 � Obje
t-Oriented Programming 11th European Conferen
e,Jyväskylä, Finland, volume 1241 of Le
ture Notes in Computer S
ien
e, pages220�242. Springer-Verlag, New York, NY, June 1997.[7℄ J. Palsberg and C. B. Jay. The Essen
e of the Visitor Pattern. In COMPSAC'98,22nd Annual International Computer Software and Appli
ations Conferen
e,Vienna, Austria, Aug. 1998.[8℄ J. Palsberg, B. Patt-Shamir, and K. Lieberherr. A New Approa
h to CompilingAdaptive Programs. In H. R. Nielson, editor, European Symposium onProgramming, pages 280�295, Linkoping, Sweden, 1996. Springer Verlag.[9℄ J. G. Variamparambil. Getting smarttools and visualstudio.net to talk to ea
hother using soap and web servi
es. Te
hni
al report, INRIA, 2001. http://www-sop.inria.fr/oasis/SmartTools/publi
ations/Joseph/report.ps.

13

