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Abstract

Exploiting parallelism in attribute evaluation is of potentially high interest because
of both its applications (e.g. in speeding up heavily-used programs such as compilers)
and its feasibility (i.e. most practical attribute grammars exhibit much parallelism).
In this paper we review and compare the various methods that have appeared in the
literature for both exhaustive and incremental attribute evaluation on both tightly-
coupled (shared-memory) and loosely-coupled (distributed) architectures. We pay
particular attention to a simple but effective method for constructing efficient visit-
sequence-based evaluators that run on tightly-coupled multi-processor machines by
giving an account of how we implemented this method in practice and reporting the
results of preliminary but realistic experiments; these results are highly encouraging.

1 Introduction and Motivation

Since compilers are heavily-used programs, it is of high interest to make them as fast as
possible. One possible way of achieving this is to run them on parallel computers, provided
they can exploit the available parallelism. Hand-made construction of parallel compilers
is possible and has actually been done [Fra83, GZZ89, Lip79, SWJ88, Van88], but it is an
error-prone process because it is hard to organize the accesses to central data structures,
e.g. the program tree and the symbol table, to achieve both correctness and efficiency (cf.
the “don’t know yet” problem in Seshadri’s works). Furthermore, methods that have been
used to parallelize a compiler for a given language are not always immediately applicable
to a compiler for another language. Lastly, “thinking parallel” adds up to the compiler
development costs, which are already great when no good specification method is used.
In addition to reducing development costs, using a specification method allows to
clearly separate the “intellectual” issues of the development, i.e. what is actually in the
specification, from the more mundane implementation techniques. In particular, imple-
mentation techniques can be devised for a specification method independently from a
particular application and reused for all of them. Each improvement in the implementa-
tion will then automatically benefit to all of its uses. Attribute grammars (AGs) [Alb91a,
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DJL88, Knu68| are a specification method that has proved quite useful for compiler con-
struction [Kas9la]. It is clear that devising effective parallel attribute evaluation methods,
i.e. implementations of AGs, is highly interesting since every compiler specified by an AG
can then automatically and safely be turned into a parallel compiler.

Another highly interesting property of AGs is that they are indeed amenable to parallel
implementations: the order in which to evaluate the attribute instances on a given tree is
constrained only by the dependencies induced by the semantic rules, and in most practical
AGs, if not all, this leads only to a (very) partial order, not a total one; then it is possible
to evaluate concurrently instances that are not linked by a dependency path.

It is hence not surprising that parallel attribute evaluation has attracted a good deal
of interest, especially since affordable, general-purpose multi-processor machines are rel-
atively easily available. The aim of this paper is to review the various methods that have
appeared in the literature. As in the sequential case, we’ll have to distinguish exhaustive
and incremental evaluation, but we’ll also classify these methods according to the class of
parallel machines—tightly-coupled (shared-memory) or loosely-coupled (distributed)—
they target, because this leads to very different algorithms. As a case study, we’ll de-
scribe with more details the implementation of a method sketched rather long ago by
Schell [Sch79] and recently revamped [Mar90, Zar90]; this method is interesting because
it aims at exhibiting and exploiting only the most “useful” parallelism, in order to reduce
synchronization costs and gain speed even with a small number of processors. We'll give
an account of the difficulties one encounters and the tradeoffs one should make when
working on parallel machines.

This paper is organized as follows. First we briefly review the various parallel machine
architectures and their programming model; in particular we discuss the cost of the various
parallel primitive operations. Then we explain why parallel attribute evaluation is possible
and attempt to devise a classification scheme for parallel evaluation methods. The next,
main section reviews the various methods that have been proposed in the literature.
Before concluding, we devote some space to the implementation of our preferred method
and a brief assessment of it.

2 Parallel Architectures and Programming

The machines we are interested in here all have more than one processor. The first
distinction we have to make is whether all the processors in a given machine operate
in a synchronous way, i.e. execute the same instruction of the same code at the same
moment (SIMD machines), or in an asynchronous way (MIMD machines). The first ones,
which include in particular vector machines and such “massively parallel” machines as the
Connection Machine, are ill-suited to parallel attribute evaluation because an attributed
tree has a much less “regular” structure than arrays.

Another important distinction is between tightly-coupled (shared-memory) and loosely-
coupled (distributed) machines. In the former, all processors can access with the same
speed the same global memory (in addition to optional private memory). They can thus
communicate easily through shared objects that can be structured at will. However the
communication channels between the processors and the global memory can be overflowed
by simultaneous accesses by the processors; hence this kind of machines does not scale



up to a massively number of processors. In a distributed architecture the processors can
access only their private memory. Inter-processor communication has to be performed
explicitly by sending messages through dedicated channels, either to a limited number
of neighbors (hypercube architectures) or to all other processors (network); differences
in the communication architectures result in different tradeoffs between speed and ease
of access to all processors. Both kinds of architecture are amenable to parallel attribute
evaluation but with rather different methods.

Programming distributed applications “reduces” to using send and receive primi-
tives, which generally exist in both synchronous (blocking) and asynchronous versions.
On tightly-coupled machines, applications are composed of a set of processes. In the syn-
chronous model, process management and synchronization operations are hidden in the
simple cobegin/coend or fork/join construct; the term “synchronous” does not imply
that all the processes execute the same code but merely that they synchronize at these
points (and only there). The asynchronous model uses lower-level process management
operations: spawn for creation, halt for termination and wait for synchronization. To
allow processes to wait for the availability of data computed by other processes, it is
common to use semaphores. In any case, modifications to shared data structures must be
protected by locks.

3 Generalities on Parallel Attribute Evaluation

In the classical theory of attribute grammars [Alb91a, Knu68|, the order in which to
evaluate the attribute instances on a given tree is constrained only by the dependencies
induced by the semantic rules and represented in the (global) dependency graph for this
tree. In most practical AGs, if not all, this leads only to a (very) partial order, not a
total one. In a sequential evaluator this partial order is completely serialized, and various
methods have been devised to do this either at run-time or at construction-time [AIb91b].

This serialization is however not imposed by the theory and is “only” an implemen-
tation technique. Instead, on a multi-processor machine, attribute computations can be
distributed over several evaluation processes or tasks that run concurrently. It is still
necessary to comply with the partial evaluation order, of course, but it is quite possible to
evaluate concurrently instances that are not linked by a dependency path; such instances
are called independent.

In most practical AGs, if not all, independent attribute instances are quite common.
For instance, in an AG describing the static semantics of a block-structured language
such as Pascal, all the attribute instances in the bodies of two distinct procedures are
independent; in Pascal again, the attribute instances dealing with label declarations and
uses are independent from the instances dealing with other kinds of declarations. Parallel
attribute evaluation is hence potentially feasible and profitable.

Kuiper [Kui89, KuS90] contributes to the study of parallel attribute evaluation in two
areas: he defines the concept of distributor as a model of (static) allocation of attribute
instances to evaluation processes and he gives an algorithm to statically detect all pairs
of independent attribute instances in a given AG.

Kuiper’s distributors are functions that map each node in some dependency graph
to one of n processes. To compute the value of an attribute instance, the values of all



its direct predecessors must be available, which requires some form of communication
between evaluation processes. Thus a distributor must find a good tradeoff between the
following conflicting goals:

e independent attribute instances must, as much as possible, be allocated to separate
processes, so as to maximize the level of concurrencys;

e dependent attribute instances must, as much as possible, be allocated to the same
process, so as to minimize the level of inter-process communication.

Kuiper defines tree-based and attribute-based distributors. A tree-based distributor
allocates all attribute instances of a same node to the same process. The most useful
tree-based distributors are those that split up trees in connected regions; each evaluation
process then computes all the attributes in a given region. Because attribute dependencies
flow along the tree only, this reduces inter-process communication. This also simplifies
the distributors: each region containing a distinguished node that is the ancestor of all
other nodes in the region, a region-based distributor is uniquely defined by giving the set
of nodes that are the root of the various regions (Kuiper calls them selected nodes). The
most natural static criteria for selecting nodes are based on the production applied at
the nodes or on the non-terminal labeling them; in addition, one must distinguish nested
and non-nested distributors. The example of Pascal procedure bodies given above is an
instance of tree-based distributor.

An attribute-based distributor allocates all instances of a same attribute or of a same
attribute occurrence to the same process. For instance, the example of labels-related
attributes given above is an example of attribute-based distributor. Since attribute-based
distributors do not distinguish between different instances of the same attribute, they
cannot exploit any independence between these instances and this generally limits the
amount of parallelism.

A combined distributor consists in a tree-based distributor followed by an attribute-
based distributor: the former splits up the trees into regions and the latter allocates the
attribute instances attached to each region to a number of separate processes.

In our opinion, Kuiper’s work is interesting because it lays down the foundations for
a scheme to classify parallel attribute evaluation, but unfortunately it is incomplete: one
should add the notion of dependency-based distributor. Such a distributor allocates to
a given process all the attribute instances belonging to some connected region in the
dependency graph. The reason why Kuiper did not address this notion in his work is
that there generally exist no static criterion to define these connected regions. However,
as will be described below, many parallel attribute evaluation methods are based on this
notion of dependency-based distributor, and Kuiper is unable to make them fit in his
classification scheme.

Another important part of Kuiper’s work is an algorithm to statically compute all
pairs of independent attribute instances in a given AG. Actually, and to put it briefly, his
algorithm computes:

1. all the possible (synthesized) dependencies between the attributes of a given non-
terminal, using Knuth’s circularity test;

2. then, all the possible dependencies between the attributes of any pair of non-
terminals [ X, U], where X is a possible ancestor of U;
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3. and finally, all the possible dependencies between the attributes of /' and V in any
triple [X, U, V], where there exist some tree in which U and V label cousin nodes
and X labels one of their common ancestors.

Then, it is possible to prove whether all instances of attribute U.a are independent of
all instances of attribute V.b in every tree by examining all the sets of the dependencies
associated with all triples [ X, U, V]. This algorithm is triply exponential but should benefit
from the optimizations in the resolution of Grammar Flow Analysis [M6W91]. Since this
work is rather recent, it has not received any application yet, as far as we know.

4 Parallel Evaluation Methods

4.1 Exhaustive evaluation on shared-memory machines
4.1.1 Dynamic methods

The possibility of evaluating attributes concurrently was recognized very early since it
is the basis of the first historical implementation of AGs, the FOLDS system [FanT72],
designed and implemented by Fang (his thesis advisor was Knuth himself). A simple,
although not quite accurate, explanation of Fang’s method is as follows: for each attribute
instance! in the tree a separate process is spawned that waits until all the instances it
needs (depends on) are available, computes the relevant value and then signals to all
the processes needing it that it’s available. This can be implemented by associating a
semaphore with each attribute instance.

This method is inherently inefficient because each process only executes a few useful
instructions and the overhead for managing and synchronizing the processes is much
greater that what is gained through their parallel execution. Space inefficiency is even
greater since, in addition to the parse tree and all the attribute instances it bears, space is
needed for all the semaphores and the process descriptors. To compound Fang’s problems,
he had to simulate his parallel machine on a single sequential processor!

4.1.2 Static methods

These problems stated above drove other authors use a static analysis of the AG, based
on the dependencies, to statically detect useful parallelism. Indeed, the main problem
with Fang’s dynamic approach is that the first thing most processes have to do when
they start is wait for data computed by other processes, whereas a simple analysis of the
dependencies in the AG could have shown that this and that process would only encumber
the process queues without being able to do useful work. In fact, this is the same problem
as for dynamic sequential evaluation methods that have to determine the evaluation order
at run-time, which is equivalent to the process scheduling and synchronization problem
in Fang’s method.

! Actually the notion of process was explicit in SPINDLE, the language of FOLDS, as one construct
to define statements. There was in principle no mandatory mapping between semantic rules (attribute
instances) and processes but the usual programming style favored this situation.
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(a) A hypothetical production dependency graph applying to X and Y')

BEGIN 1; EVAL {X.a}; VISIT 1,X;
EVAL {Y.a}; VISIT 1,Y;
EVAL {Z.c}; LEAVE 1;

BEGIN 2; EVAL {X.b}; VISIT 2,X;
EVAL {Y.b}; VISIT 2,Y;
EVAL {Z.d}; LEAVE 2.

(c) The augmented dependency graph is acyclic (d) A possible visit sequence

Figure 1: l-orderedness test and construction of visit sequences

Visit-sequence-based approach It is hence not surprising that the parallel evalua-
tion problem was addressed with the same static analysis techniques as for sequential
evaluation. Indeed, finding a total order for evaluating the attributes of each node is
the only way to avoid expensive locking at the attribute-instance level and inactive pro-
cesses waiting for not-yet-ready data. So much work was done to adapt the well-known
visit-sequence evaluation paradigm to run on parallel machines [Alb91d, KIK89, KIK90,
Mar90, Sch79, Zar90].

Visit-sequence-based evaluation is described at length elsewhere in this volume [Alb91b,
Kas91b]. Let’s only recall here that such an evaluator can be produced only if the AG
at hand is [-ordered, i.e. if it is possible to find, for each non-terminal, a totally-ordered
partition of its attributes such that, when augmenting each production dependency graph
with the corresponding edges between the attributes of the non-terminals in the RHS and
LHS of the production, the graph remains acyclic. This is exemplified in Fig. 1(a, b, ¢).
The corresponding (sequential) visit-sequence is then produced during a topological sort
of the graph (Fig. 1(d)).

The basic idea of all parallel evaluation methods based on the visit-sequence paradigm
is to keep a total order for evaluating the attributes of each non-terminal (node) but
allow to evaluate the attributes of different nodes, and visit those nodes, in parallel.
The only difference with the construction of the sequential visit sequences is as follows:
when topologically ordering an augmented dependency graph, use sequentiality when it is
mandatory, but use parallelism when you come to a node with more than one successor.
For instance, using the synchronous model of parallelism given in section 2, the second
part of the visit sequence in Fig. 1(d) can be rewritten as:

BEGIN 2; FORK
EVAL {X.b}; VISIT 2,X ||
EVAL {Y.b}; VISIT 2,Y
JOIN; EVAL {Z.d}; LEAVE 2.

The first visit cannot be parallelized because the edge X.c — Y.a mandates sequential
execution of the visits to X and Y.



This method has the very important advantage that synchronization, i.e. the overhead
induced by parallelism, which is the possible cause of inefficiency, is reduced to a minimum
since, because it is driven by the total evaluation order for the attributes of each non-
terminal, the construction guarantees that:

1. all data needed by a process are computed before the process is spawned, and

2. no two processes running concurrently access the same part of the tree and, in
particular, write to the same locations.

In other words, all the overhead is concentrated in the (unavoidable) fork and join
instructions. So each process will run as fast as the corresponding part of the sequential
evaluator. In fact, the l-ordered AG class, with the associated total evaluation order,
is the largest class for which it is possible to use synchronous parallelism. A possible
implementation is detailed below.

There exist several possible variations of this method. Schell [Sch79, sec. 5.5] was
the first to publish it in a form quite close to the one presented above; he presents
modifications to the evaluator-construction algorithms by Kennedy and Warren [KeWT76],
Kastens [Kas80], and Bochmann [Boc76], all based on the idea to perform visits to subtrees
in parallel whenever possible. However he does not detail the run-time operation of the
evaluator further than fork/join. This method was rediscovered independently by the
author during the summer of 1988 and actually implemented (see [Mar90] and below).

Zaring [Zar90] gives a quite thorough analysis of the construction and implementation
of parallel exhaustive and incremental visit-sequence-based evaluators. Incremental evalu-
ation is discussed below. Zaring distinguishes asynchronous and synchronous parallelism,
as presented in section 2. Asynchronous evaluation is able to exploit more parallelism
than synchronous evaluation but must resort to attribute-instance locking to achieve cor-
rectness. Zaring presents a lot of algorithms differing by the kind of parallel model they
use (asynchronous or synchronous) and the kind of visit-sequence instructions they can
perform in parallel (all of EVAL, VISIT and LEAVE instructions are considered). As can
easily be guessed, the LEAVE instructions cause the most problems. In the asynchronous
model these problems are pushed to run-time and solved by attribute-instance locking.
In the synchronous model LEAVE instructions are harder to deal with because they cause
a mismatch between the fork/join process control structure and that of the tree data
structure; indeed, the above-stated property that no two processes running concurrently
access the same part of the tree no longer holds. Zaring gives a rather convoluted solution
to this problem involving additional synchronization. As with most of the works surveyed
in this paper, practical experiments allowing to assess the relative merits of the various
methods are missing.

Alblas [Alb91d] discusses asynchronous concurrent evaluation in which all instructions,
including LEAVE, can be performed in parallel. He shows, as Zaring had pointed out but,
in our opinion, somewhat overlooked, that this leads to much more synchronization opera-
tions than synchronous VISITs only. To overcome this he tries to refine the static analysis
of the AG by splitting the subsets in totally-ordered partitions into smaller independent
subsets. According to Alblas himself, and in the absence of practical experiments, this
complicates the analysis quite a lot without much effect on the behavior of the parallel
evaluator.



Since we believe that synchronous visit-sequence-based parallel evaluation is, until
now, the most efficient parallel evaluation technique, we’d like to explain with rather
great detail how it can be efficiently implemented. Indeed, bad implementation choices
have much greater consequences on the behavior of the system than in the sequential case.
The detailed algorithm we present below, and which clearly exposes all low-level synchro-
nization, is basically an interpreter for visit-sequences enriched by parallel constructs. It
has appeared independently in slightly different forms in [Mar90] and [Zar90]. To avoid
Zaring’s problems, we assume that parallel blocks contain EVAL and VISIT instructions
only (or other nested parallel blocks).

Traditionally [Kas91b], visit-sequences are represented and actually implemented as
linear sequences of instructions. Here we need to be able to represent DAG structures
embedded in linear sequences. We hence introduce the following instructions:

e FORK p marks the beginning of a block of p parallel branches; the next p instructions
must be BR_START instructions.

e BR_START n marks the beginning of a parallel branch, the next instruction of which
is located n places further.

e BR_END m marks the end of a parallel branch and states that the instruction follow-
ing the whole parallel block is located m places further.

For instance, the parallel visit-sequence presented above would be implemented as:

BEGIN 2; FORK 2; BR_START 2; BR_START 4;
EVAL {X.b}; VISIT 2, X; BREND 4;
EVAL {Y.b}; VISIT 2,Y; BR_END 1;

EVAL {Z.d}; LEAVE 2.

The parallel evaluator is made of one (big) process per available processor. Each
processor runs the same visit-sequence interpreter presented in Fig. 2 and 3. The various
concurrent activities are (small) tasks; at a given time there may exist many more tasks
than processors: each processor executes one task while the others wait in a task queue.

The algorithm is designed so that each tree node contains no information in addi-
tion to the classical fields (pointers to the sons, production number, attribute values);
bookkeeping information for the visits and tasks is stored in separate, explicitly-managed
structures. This helps keeping space consumption to what is strictly necessary. In par-
ticular we do not require that each node contains a pointer to its father.

A visit descriptor contains a pointer to some node, a field for holding the return
address into the visit sequence of the father, for VISIT and LEAVE instructions, and a
pointer to the parent visit descriptor. In a sequential evaluator a stack is sufficient to store
visit descriptors but in a parallel evaluator the control structure needs to be a “cactus
stack,” i.e. a tree. Note that, apart from that, EVAL, VISIT and LEAVE instructions are
implemented as in a sequential evaluator. Choose-VSC(p, ) returns the index of the first
instruction of the 2-th visit in the visit-sequence for production p. The s parameter to an
EVAL instruction is a set of attribute occurrences in the current production; we assume
that, for each such set, a corresponding evaluation procedure has been generated.

In addition to the tree and attributes, the global (shared) variables are the visit se-
quences themselves, with FORK and BR_START and BR_END instructions as above, and the



type task-descr = record

type visit-descr = record visit: Tvisit-descr;
node: Ttree; VSC': VS-index;
VSC': VS-index; join-counter: integer;
parent-visit: |visit-descr; join-lock: lock-type;

end record; parent-task: | task-descr;

end record;

globalvar VS: VS-array { the visit sequences themselves };
tq: queue of task-descr { with lock };
root: tree { root of global tree };
localvar wvisit, tmpv: |visit-descr;
task, tmpt: Ttask-descr;
VSC': VS-index;
node: |tree;
i: integer;
done: boolean;

doforever
task — dequeue(tq) { waits until tg becomes non-empty };
visit — task].visit;
VSC — task1.VSC,
node «— wvisit].node;
done — false;

repeat
case VS[VSC]is
EVAL s: call procedure eval-s, with node as unique parameter;

VSC —VSC+1;

VISIT i,j: tmpv «— alloc-visit-descr();
tmpvT.parent-visit «— visit;
visit «— tmpv;
visit]. VSC — VSC + 1 { return address };
node — nodel.son[j];
visit|.node «— node;
VSC — choose-VSC(node.prod, i);
LEAVE i:  if node = root then halt endif;
VSC — wvisit].VSC,
tmpv «— visit;
visit «— wvisit].parent-visit;
free-visit-descr(tmpv);
node «— wvisit].node;

{ to be continued }

Figure 2: Algorithm for the parallel visit sequence interpreter



FORK p:  taskl.join-counter «— p;
unlock(task1.join-lock) { to make sure };
for:—1,...,pdo

tmpt — alloc-task-descr();
tmpt].visit — wvisit;
tmpt].parent-task — task;
tmpt]. VSC «— VSC + 1
enqueue( tmpt)
endfor;
done — true; { fall back to the scheduler }

BR_START n:
VSC — VSC + n;

BR_END m: tmpt — tlask;
task «— task].parent-task;
free-task-descr(tmpt);
lock(task1.join-lock);
decrement(taskT.join-counter);
1 «— taskl.join-counter;
unlock(task1.join-lock);
if i = 0 then { block is complete, continue with the visit sequence }
VSC —VSC+m
else { fall back to the scheduler }
done — true
endif
endcase
until done

enddo

Figure 3: Algorithm for the parallel visit sequence interpreter (continued)

task queue with associated lock variable (managed by procedures “enqueue” and “de-
queue”). Note that the queue is a simple FIFO; tasks have no priorities. A task descrip-
tor in this queue contains a pointer to some visit descriptor, itself containing a pointer
to the relevant node, a visit sequence counter pointing to some instruction in the visit
sequence for this node, a “join counter” and associated lock variable, and a pointer to the
descriptor of the calling task. The (private) state variables of each process are a pointer to
the current node, a visit sequence counter pointing to the current instruction in the visit
sequence and pointers to the current task and visit descriptors. We omitted the details
of process initialization and termination. Explicit chaining of task and visit descriptors
allows nested parallel blocks. The implementation of FORK and BR_END instructions should
now be easy to understand.

A possible bottleneck lies in the access to the task queue through “enqueue” and
“dequeue,” which must be protected by a lock. It is possible to alleviate this by having
one queue per processor instead of a single queue: each processor enqueues in its own
queue only while it can dequeue from any queue through polling; this does not eliminate
locking but strongly increases concurrency. The only other synchronization points are
in BR_END instructions; they cause no problem because the number of branches in each
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parallel block is generally small. In addition, allocation and deallocation of visit and task
descriptors should use one free list per process(or). Lastly, an obvious optimization is, on
FORKs, to enqueue task descriptors for all the branches but the last one and then proceed
to execute the latter on the same processor.

The results of section 5.2 will show that this technique allows to create enough parallel
tasks to efficiently use a multi-processor machine.

Segment-based approach Klein [Kle91] describes another approach based on the no-
tion of segments. The local dependency graph of each production is (statically) partitioned
into a number of segments, with the condition that each two attributes of a non-terminal
are always in the same segment in every production or in distinct segments. At run-time
the various local segments are vertically melted whenever they have at least one common
attribute instance; this leads to a partition of the global dependency graph into a number
of segments. In each segment, the dependencies are linearized to obtain a computation
order but the evaluation of the instances in distinct segments can proceed concurrently,
with synchronization points defined by cross-segment dependencies. This general model
is highly dynamic, so Klein proceeds with giving local-segments-choosing criteria that
allow to statically precompute a lot of information, including the evaluation order in the
(global) segments by means of visit-sequence-like code. His criteria thus apply to parallel
ordered attribute grammars, a new class that includes the OAG class but which Klein
otherwise fails to characterize. Once the local segments are given, the POAG test and
the construction of parallel visit-sequences are performed by a polynomial algorithm quite
similar to Kastens” OAG test. Klein also describes several methods for computing local
segments that meet his POAG criteria and lead to different grains of parallelism. This
work is attractive but unfortunately Klein gives little material for comparing it with other
approaches; in particular, since processes are synchronized by explicit rendez-vous, the
worst-case performance is potentially very bad (although simulations performed by Klein
on realistic AGs exhibit good speedups).

Klein and Koskimies [KIK89, KIK90] give a variation of this method restricted to one-
pass evaluators (11-AGs). This is a bit surprising because the main advantage of one-pass
(sequential) evaluation, namely that evaluation can be performed during parsing without
constructing a physical tree, is lost in parallel evaluation, while the strong restrictions
on the expressive power remain. They nevertheless bring in an interesting result by
describing how parallel one-pass evaluation can proceed concurrently with parsing and
tree construction.

4.2 Incremental evaluation on shared-memory machines
4.2.1 Dynamic methods

Kaplan and Kaiser [KaK86] propose a simple modification of Reps’ dynamic propaga-
tion algorithm [Rep84] for incremental attribute evaluation that is well-suited for tightly-
coupled multiprocessor machines. Their algorithm is given in Fig. 4. The aim is to
perform as many attribute (re)evaluations in parallel as possible, by choosing at a given

2 Note from the author: since my German is a little weak, I may have missed something in Edi Klein’s
thesis. If so, I hope he will forgive me.
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proc IncEval(t, r);
decl ¢: fully attributed tree;
r: node in ¢ with inconsistent attributes;
s: set of attribute instances;
a: attribute instance;
begin
SetUp(t,r,s);

proc Propagate(a);
decl a: attribute instance;

s: set of attribute instances;
begin

Evaluate(a);

if @ has changed then

Expand(a)
endif;

foreach a € s do
spawn Propagate(a)

Remove(a, s);
foreach a € s do

endfor; spawn Propagate(a)
halt endfor;
end IncEval; halt

end Propagate;

Figure 4: Dynamic concurrent incremental evaluation algorithm

time the complete set of independent instances and spawning a separate process to work
on each of them.

The synchronization between processes is hidden in the procedures Expand, Remove
and, to a lesser extent, SetUp, which maintain the (incremental) dependency graph (the
“model,” to use Reps’ terminology); this graph is shared between all the processes.
SetUp(t,r, s) takes a tree ¢t and a node r in ¢ that has inconsistent attributes, constructs
the (initial) model and returns in s the attribute instances that are ready for evaluation
because they have in-degree 0 in the model. Expand(a) augments the model to include
all instances that depend on a (see [Alb91c, Rep84] for more details). Remove(a, s) re-
moves instance a and its associated edges from the model and returns in s the attribute
instances that are ready for evaluation. Great care must be taken in the implementation
of these procedures to ensure the consistency of the model and the correctness of the
“ready for evaluation” sets that are returned to calling processes. This requires locking
at the attribute instance level.

The above algorithm is easily extended to handle multiple asynchronous subtree re-
placements, i.e. replacement that occur at separate locations in the tree concurrently with
each other and with attribute (re)evaluation. This situation naturally occurs in parallel
implementations of attributed tree transformation systems [Alb91c]. Assuming that each
subtree replacement is an atomic operation, modifications to the above reevaluation algo-
rithm are as follows. SetUp is turned into an atomic operation that merges the model it
creates with the “global” model; this merging is a union operation that equates identical
edges and vertices in both models.> Then, each time a subtree replacement is performed,
the IncEval procedure is executed and will add to the current model the initial local model
at the replacement point. From this point it makes no difference if the new model for
the new subtree overlaps with others or not; Remove and Expand will return the correct
results regardless. Kaplan and Kaiser prove that, given a tree in which k subtrees are
replaced asynchronously, any attribute instance is (re)evaluated at most k times.

Although, as far as we know, no real implementation of this algorithm has been built,

3This can be achieved, for instance, by attaching the edges in the model to the attribute instances
that are themselves attached to the tree nodes.
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we believe that it should perform rather well in practice because, on one hand, every
process does not have to wait for results of other processes and can perform some useful
work as soon as it is started (which is not the case for e.g. Fang’s scheme described in
section 4.1.1) and, on the other hand, each process accesses the model with a rather
high degree of “locality” (one instance and its immediate successors), which means that
it does not have to synchronize with too many other processes. In fact, it is easy to
combine the above algorithm with the notion of tree-based distribution by partitioning
the model into separate regions that are each managed by a distinct, much coarser-
grained process, thus considerably reducing the amount of synchronization and inter-
process communication. Kaplan and Kaiser have used this idea to adapt their algorithm
to distributed architectures, see section 4.4 below.

4.2.2 Static methods

Zaring uses as the basis for his parallel incremental evaluation algorithms the simple
sequential visit-sequence-based method described by Engelfriet [Eng84] and derived from
one devised by Reps [Rep84, Ch. 9]. In this method the same visit-sequences as for
exhaustive evaluation are used to drive a slightly modified interpreter: VISIT and LEAVE
instructions are treated as no-ops if they would visit an inactive node; initially only the
tree-modification point and its parent are active; a node is made active whenever one
of its attribute instances is reevaluated and its new value is different from the old one.
Evaluation is started at the first instruction of the visit-sequence of the tree-modification
node. Engelfriet proves that this method is optimal in the usual sense [Rep84], even if
it unnecessarily evaluates some attributes; it is obvious that it can be implemented very
efficiently.

The problem with extending this scheme with asynchronous execution of EVAL instruc-
tions is that the decision to visit or not to visit some node through VISIT or LEAVE depends
on whether the node is active or not, and this status may not be completely determined at
the time when it is checked if there exist EVAL processes that may set the node active and
have not yet finished to run; these EVAL instructions are called (potential) activators of the
node. One way to overcome this problem is to require potential activators to be executed
non-asynchronously, but this incurs a loss of concurrency. An alternative is to maintain at
each node a counter of still-running potential activators. Zaring shows that asynchronous
execution of VISIT instructions only or LEAVE instructions only is impractical because it
would require a complicated attribute-instance locking protocol that would probably incur
much run-time overhead. Asynchronous execution of both VISIT and LEAVE instructions
(EVAL instructions being executed asynchronously or not) is easily achieved by the same
simple attribute-instance locking scheme as for exhaustive evaluation; Zaring gives several
algorithms to implement this.

Synchronous parallel incremental reevaluation is much easier: it’s a quite simple, al-
though not obvious, combination of the above (sequential) reevaluation algorithm based
on the notion of active nodes and the fork/join model of evaluation presented in sec-
tion 4.1.2, easily implemented with “atomic counters” as in the detailed algorithm pre-
sented in the same section. Zaring [Zar90] gives all the details and proofs.

Results obtained by simulation show that all these types of parallel incremental reeval-
uation methods perform roughly similarly and rather well, but only actual implementa-
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tions and extensive experiments will allow to correctly assess them.

4.3 Exhaustive evaluation on distributed architectures

When working on a distributed architecture it is necessary to make data as local as possible
to each process, in order to reduce synchronization and inter-process communication,
which are much more expensive than on a tightly-coupled architecture. Global data
structures that are heavily used in methods for shared-memory machines must instead be
split into pieces that will be “owned” by the various processes.

Bohm and Zwanepoel [B6Z87] describe a concurrent attribute evaluation method that
is well suited to run on, and has actually been implemented on, a distributed architecture,
namely a network of workstations connected by a high-speed network. In this scheme, the
parser builds the parse tree and splits it at nodes chosen by the AG author, so that the
resulting tree fragments have a size greater than some specified minimum (fragments can
be nested). It then sends these fragments to separate sites that perform attribute evalua-
tion on each of them. The evaluator that runs on each site uses a hybrid static/dynamic
method: dynamic evaluation is used only for the attributes belonging to tree nodes that
lie on the path from the root of the local subtree to (the root of) a remotely-evaluated
subtree. During the reconstruction of the subtree from the linearized form received over
the network, it is determined for each node n whether it lies on such a path. If not,
attributes at n and below will be evaluated by a static (visit-sequence-based) evaluator
and no dependency information is computed. Otherwise, n’s attributes are entered in
the global (to the process) dependency graph that will be used for dynamic evaluation
[AIb91b], together with the edges induced by the semantic rules. Attributes of the chil-
dren of n that are to be evaluated by the static sub-evaluator are also added to this graph,
however they are connected by the transitive static dependencies computed at generation
time rather than by the true dynamic dependencies. When tree construction is complete,
evaluation starts in topological order of the dependency graph, as is classical for dynamic
evaluation. When all predecessors for a statically evaluated attribute become available,
the appropriate static visit procedure is invoked. When all predecessors for a remotely
evaluated attribute become available, a packet of information is sent to the remote site
and evaluation continues with other ready vertices in the graph. Attributes that depend
on remotely evaluated attributes are made ready for evaluation when the values of those
remote attributes are received over the network. The efficiency of this scheme is highly
dependent on the choice of the boundary nodes, which should minimize transfer of (gener-
ally bulky) information over the network. In addition, certain attributes can be specified
as holding a priority, which directs the dynamic evaluator to try to compute them as soon
as possible; attributes that must be transmitted to remote sites should be specified as
holding a priority.

Bohm and Zwanepoel actually implemented their method on a collection of Sun-2
workstations running the message-based V-System and connected by a 10-megabit/s net-
work. Experiments were made on an AG describing a compiler for a sizable subset of
Pascal to VAX assembly language. Trees can be split at statements, statement lists, pro-
cedure declarations and lists of these. Measurements on typical 1000-lines-or-so programs
exhibit a maximum speedup of about 3 when 5 machines are used, while the evaluator
running on a single machine has performance equivalent to the vendor-supplied Pascal
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compiler. Bohm and Zwanepoel describe various implementation techniques, e.g. applica-
tive implementations of symbol tables and code strings as trees, that help make efficient
use of parallelism. Detailed analysis of the behavior of the combined evaluator shows that
less than 0.1% of the attributes are evaluated dynamically. It also shows that, because
inter-process communication is so expensive, this method does not scale up very well to
a large number of processors. Furthermore, since processes are so coarse-grained, the
amount of concurrency is very sensitive to the way the tree is split into separate frag-
ments: the best results are achieved when fragments are of approximately equal size but
they plummet down quickly with more uneven decompositions.

4.4 Incremental evaluation on distributed architectures

Kaplan and Kaiser adapted their own work on concurrent incremental evaluation (see sec-
tion 4.2.1 above) to work on loosely-coupled (distributed) architectures and in a different
context described below. Their concurrent incremental reevaluation algorithm presented
in Fig. 4 is amenable to “data splitting” as discussed at the beginning of previous section.
The idea is, as in Bohm and Zwanepoel’s scheme, to partition the tree into connected re-
gions that are owned by separate processes that maintain them in a consistently-attributed
state.

When a subtree replacement occurs in some region (Kaplan and Kaiser did not discuss
inter-region tree modifications), attribute reevaluation begins as usual. Each time the
model is expanded, a check is performed to see if the expansion would cause a flow
of attribute propagation onto a remote process, or become dependent on an attribute
“owned” by a remote process. For the former case, the model is built as normal and then
cut so as to separate all remote attributes belonging to a given remote process from the
rest of the model. A special vertex, called remote, is inserted into the model so that all
dependencies flowing over the cut out of the local region now flow via remote. Attribute
values flowing into the local region are handled by giving them the previous values they
had when propagating into the local region (see below) and making them immediately
ready for evaluation. The model is then altered so that anything flowing out of remote is
discarded, all attributes flowing into the local region are made ready for evaluation, and
evaluation continues as normal.

Propagate is modified so that, when the special vertex remote becomes ready for
evaluation, local attribute information is packed into a message that is sent to the remote
process. In the remote region attribute reevaluation will be triggered as if there had been
a subtree replacement at the node that forms the border between the two regions. The
model for that remote region is now built in dual to the approach just described for the
local region: attributes flowing into the (new) local region are considered as ready for
evaluation and attributes that flow out are assigned a remote vertex as described above.

It must be noted that this distributed algorithm is not optimal in the usual sense,
because some attribute instances may be reevaluated more than once, even when a single
local tree modification and no remote tree modification occurs. Furthermore, the global
efficiency of this scheme is, as Bohm and Zwanepoel’s one, highly dependent on the choice
of region-separating nodes: they must be chosen so that dependencies flowing through
them are reduced to a minimum. For instance, procedures in a block-structured language
are good candidates to become regions. It is not clear however how such “good” nodes
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can be automatically determined by static analysis of the AG.

As described above, the algorithm is suitable for all kinds of distributed architectures
and all kinds of tree-modifying events. However Kaplan and Kaiser devised their method
for a more specific application. They envisage a model of program development in which
several programmers each use a workstation to develop a module, with the workstations
connected by a high-speed network (this is a quite common setting nowadays). Each
programmer runs a copy of an AG-based programming environment that performs in-
cremental attribute reevaluation according to the above algorithm. The regions are the
different modules that form the complete program at hand. To each programmer, and
to the attribute reevaluation process that she runs, the module she is currently editing is
the local region; all other modules are remote regions. The above algorithm works well
in this setting, except that a few problems require some adaptation: a remote module
may be “dormant” because it is not being edited or it is inaccessible due to network or
machine failure, or some user may be performing some editing operation that temporarily
makes the tree unsuitable for receiving attribute information. The problems are handled
by the introduction of the general concept of firewalls. A firewall acts as a barrier behind
which a region/process can shelter if it is not ready to accept change propagations from
other regions. When an attribute propagation reaches a firewall that is in place, it queues
until the firewall goes down, at which point the change is propagated to the region as if
a tree modification had taken place at the firewall. See [KaK86] for more details. Not
waiting for remote modules to propagate back changed values achieves a tradeoff between
accurateness of semantic information and undue delays that is quite satistying for the
envisaged application context.

Kaplan and Kaiser’s work was pursued by them and Kaiser’s group at Columbia
University, mainly by implementing it into the Mercury system [KKM87] and refining the
engineering details; a very thorough survey of all this work appears in [KaK90], together
with references to other more specific publications. Recently, Kaplan and Kaiser [KaK90]
proposed a variation of the priority-based incremental reevaluation algorithm presented
in [ACRS87] that accommodates multiple asynchronous tree modifications and multiple
execution threads.

Shinoda and Katayama [ShK90] propose a variation of AGs in which every node in
an attributed tree is defined and represented as a persistent object in the object-oriented
terminology. An object definition involves the specification of its static semantics (an
AG in the usual sense) and its dynamic semantics (collection of messages it is able to
respond to). According to Shinoda and Katayama, OOAGs are useful to specify and
implement large and complex persistent data structures such as databases or programs
in a software development system. Among the (dynamic) messages an object is able to
respond are tree modification messages. These modifications trigger incremental reevalua-
tion of the static attributes. Shinoda and Katayama’s method is called “locally controlled
distributed incremental attribute evaluation.” It is a rather simple variation of Kaplan
and Kaiser’s distributed algorithm described previously, in which each node is a complete
region. Propagation of the “changed” or “unchanged” status of an attribute instance is
performed by sending special kinds of messages, called signals, that do not require an
answer; Shinoda and Katayama define the Propagate and Relax signals. Signals sent to
different objects can be handled concurrently by these objects and in turn generate other
signals to other objects. Shinoda and Katayama claim that their scheme eliminates the
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concurrency bottleneck represented by multiple atomic accesses to the (shared) global
model. In our opinion this is hard to verify, given that their experimental implementation
of this scheme is done on a sequential machine.

Alblas [A1b90] proposes a combination of Bohm and Zwanepoel’s scheme with that of
Kaplan and Kaiser, suitable for incremental reevaluation on distributed architectures. As
with Kaplan and Kaiser’s method, the tree is split in a “top” fragment and a collection
of non-nested “bottom” subtrees, each of them being owned by a separate process. As
with Bohm and Zwanepoel’s scheme, both static and dynamic incremental reevaluation
methods are used. Bottom subtrees are reevaluated by a static algorithm similar to
the one of Reps and Engelfriet presented at the beginning of section 4.2.2, except that
the decision to visit or not to visit a parent or child node is reexamined at each VISIT
and LEAVE instruction by determining whether any of the “input attributes” to this visit
has changed instead of relying on the coarser nodewise (in)active status bit. The top
fragment is processed by an entirely dynamic algorithm similar to the one by Kaplan and
Kaiser as described at the beginning of this section, or to the dynamic part of Bohm and
Zwanepoel’s algorithm. Concurrency is achieved by processing distinct bottom subtrees
in parallel, since the dynamic algorithm is able to manage this. Alblas [AlIb90] also
describes how to delay reevaluation until after several tree modifications (he places his
work in the context of attributed tree transformation systems) by introducing the notion
of “safe approximations” of a consistently attributed tree. Thus, different reevaluations
and different tree transformations may occur asynchronously and concurrently in different
regions; the only constraint is that each region is either in a reevaluation phase or in a tree
transformation phase, and that it will accept attribute change propagation only when in
a reevaluation phase.

Feng [Fen91] improves Kaplan and Kaiser’s distributed incremental reevaluation algo-
rithm presented at the beginning of this section by applying the rather well-known idea
of bypassing copy-rules chains in each sub-model. He proves that his algorithm is better
in both time and communication costs.

5 Experiments with a Practical Implementation

For a long time we have thought of experimenting with parallel attribute evaluation.
The availability of a general-purpose, shared-memory multi-processor machine at INRIA
made this possible. Through the development and use of the FNC-2 AG-processing system
[JoP91] and its ancestors, we already had great experience with both static and dynamic
(sequential) attribute evaluation methods, and we knew that the former were much more
efficient than the latter. We also knew about Fang’s ideas and were wary that indiscrimi-
nate use of parallelism could do more harm than good, so we were interested in a method
that would exploit “useful” parallelism only. This led us to rediscover Schell and Zaring’s
ideas presented in section 4.1.2. In addition we felt that only an actual implementation on
a real machine would allow to correctly assess the value of parallel attribute evaluation.
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5.1 Implementation

Our experiments were conducted on a Sequent Balance machine whose features seemed,
at first sight, to perfectly match our needs: multi-processor (10 processors) with shared
memory; fork/join model of parallel computation; C language and Unix interface; local
availability.

At first, we thought of directly using the fork and wait system calls of the DYNIX
operating system running on the Sequent; this fitted well in our sequential implementation
of visit sequences, which FNC-2 translates into recursive procedures. After modifying the
evaluator generator to have it produce parallel visit sequences, the second step was thus
to create a new back-end which translated them into recursive procedures with calls to
fork and wait; the translation of individual semantic rules was unmodified, except for the
insertion of private or shared storage specifiers. Space optimizations are not possible as
for the sequential case [Kas91b]; in consequence, we use the classical solution of storing
all the attributes at tree nodes.

We quite early aborted the implementation of the fork/wait model when we read in
the manual that DYNIX implemented only heavyweight UNIX processes, in which the fork
system call involves a complete copy of the non-shared portion of the memory image of
the parent process; the corresponding time penalty (of the order of 50 ms) was intolerable,
given that the processes we generate are quite small. Our solution is hence to replace the
recursive procedure with fork/wait model by the purely interpretive algorithm presented
at the end of section 4.1.2.

We have actually made several simplifications to this algorithm. First, each branch
in a parallel block is restricted to be a single VISIT instruction. Secondly, space for visit
descriptors (pointer to father and return address) and for part of the task descriptors
(join counter and lock) is pre-allocated in the tree nodes rather than allocated on demand
in separate descriptors. This simplifies the implementation (visit descriptors disappear
entirely) and probably gains some speed, at the expense of space consumption. However
we have very early come to have one task queue per processor, because we believed that
access to the single queue was a bottleneck before discovering that our first disappointing
results were the fault of the shared-memory allocator (see below).

5.2 Preliminary experiments

Parallel evaluators were constructed for two AGs that are in our opinion typical of, al-
though much simpler than, those that could be written for compiler construction appli-
cations. They respectively describe the contextual constraints checking and translation
to an intermediate form of the block-structured toy language simproc [JoP89, App. DJ.
These AGs were not modified at all for the experiment. The generated visit-sequences
exhibit 9 parallel blocks out of 17 total blocks (BEGIN-LEAVE pairs), with 2.55 branches
per parallel block, for the first one, and 9 parallel blocks out of 11 total blocks, with
2.44 branches per parallel block, for the second one. This already shows that even simple
AGs offer a lot of parallelism, and using larger AGs would lead to even more exploitable
opportunities for parallelism and hence better results than those presented below.

These AGs were run on a number of typical source texts. We give here measures for
only one of them (Fig. 5). The figures were computed by measuring the real (wall-clock)
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Figure 5: Typical practical results. Horizontal axis is the number of processors, vertical
axis is (real) running time. P is the parallel interpreter, S is a sequential interpreter, PS
is the parallel interpreter driven by sequential visit sequences.

running time of the evaluators on a varying number of processors. It must be noted
that this time does not include parsing and tree construction but only pure attribute
evaluation. We believe that these figures are quite satisfactory, given the simplicity of our
evaluation method and implementation. Furthermore, as said above, they are sort of a
lower bound: we expect measures on more realistic examples to be even better.

The performance of the parallel evaluator (P) on the check AG is a perfect example
of successful parallelization: on one processor it is comparable (only 8% slower) to a
sequential evaluator (S), which means that the overhead caused by the parallelization
is quite small, and adding more processors leads to quasi-linear speedup. The efficacy,
i.e. the quotient of the speedup by the number of processors, smoothly decreases from
98% with 2 processors to 83% with 6 of them; these are very good figures. The parallel
evaluator running on only two processors is already 82% faster than the sequential one.

The performance on the term AG is less good (but still reasonable, given the small
size of the examples). This is because check performs much more data traversal, i.e.
pure computation, than data creation (allocation), whereas it is the opposite for term,
which merely creates a new representation of the input program that is quasi-isomorphic
to the input tree. The shape of the curve for term (efficacy of 91% with 2 processors and
only 60% with 6 of them) clearly shows that the bottleneck is here the shared-memory
allocator, which is out of our control. The fact that the sequential evaluator (S) runs a bit
slower on term than the parallel evaluator driven by sequential visit sequences (i.e. with
no FORK, etc.) can be explained by the fact that, on VISIT instructions, the latter stores
the return address in the (pre-allocated) tree while the former stores it and the pointer
to the father in a separate stack that it must explicitly manage; this “overhead” is less
visible in more computation-bound AGs such as check.

These experiments, although certainly not intensive enough, already show that syn-
chronous parallel attribute evaluation is able to fully exploit the power of the machine
it runs on, and that it holds its promises of making best use of cheap parallelism and
reducing synchronization costs to a minimum. Its implementation on shared-memory
multi-processor machines is easy. We have thus proved that parallel attribute evaluation
is quite possible and effective.

In addition to performing more experiments, we intend to pursue this work in two
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directions:

e restrict parallelism by a “less blind” static analysis of the AG, i.e. parallelize only at
well-chosen nodes (as Bohm and Zwanepoel and others do, but more automatically );
this would lead to bigger tasks and smaller overhead;

e devise specific space optimization techniques for parallel evaluation methods.

6 Conclusion

In this paper we have explained why parallel attribute evaluation is both valuable and
feasible, and reviewed the various methods therefore that have appeared in the literature.
We have also shown on a prototype implementation that preliminary results are quite
encouraging. We believe that this topic will increasingly attract both theoretical and
practical research.
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