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Abstract

OLGA is the input language of the FNC-2 attribute grammar processing system,
currently under development at INRIA. As such, it is designed for the specification
of attribute grammars and is specialized for this purpose. The features of OLGA
can be classified into those which make it a powerful general-purpose applicative
language and those which make it a specialized AG-description language. A remark-
able feature of OLGA is its strong support for modularity. The paper discusses the
design goals for OLGA and presents the most important aspects of the language. It
also includes comparisons with other existing languages, an overview of the imple-
mentation of OLGA, namely the FNC-2 system, and an account of the experience
gained in using OLGA.

1 Introduction and Design Goals

Since attribute grammars (AGs) have been introduced in Knuth’s seminal paper [Knu68],
they have become a method of choice for describing and implementing syntax-directed
computations, in particular compilers, translators and syntax-directed editors. Many
people have made much research work on various aspects of AGs, and many systems have
been developed around the world which produce efficient attributes evaluators [DJL88].
However, surprisingly few of these works dealt with the design of languages suited to AG
writing. Indeed, most systems use as input language a variant of their implementation
language merely augmented with constructs for attributes computation and access.

Our experience in using the FNC/ERN system and Lisp for developing large applica-
tions, and that of the OPTRAN team with their Pascal-based system [LMW88, sect. 4],

uncovered many flaws with this approach:

e The AG framework requires that the semantic rules be written in a purely applica-
tive fashion because, when side effects are involved, the order of their execution
cannot be guaranteed. Most implementation languages provide imperative con-
structs (e.g. assignment to some global variable) which cannot be controlled by the
AG-processing system.
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e Some languages, for instance Lisp, are dynamically- and/or weakly-typed, which
makes many errors apparent only at run-time, if ever.

e When the AG-description language is derived from an existing implementation lan-
guage, the system has no control over the semantics of the latter and may thus
be prevented from performing useful optimizations. In addition, the generated at-
tributes evaluators can only be produced in that implementation language, which
hampers the portability of the applications.

o The AG formalism does not lend itself naturally to modular programming: a com-
plete application must generally be specified as a single, monolithic block which can
be quite large. Furthermore, this problem is aggravated by the huge level of detail
which is necessary to completely specify an AG: every attribute occurrence must be
defined by a semantic rules. There exist techniques that alleviate this problem by
automatically generating a large proportion of the copy rules, but it remains that
many non-copy rules “look the same” and you still have to write them many times.

e An AG is also often difficult to read because it is based on a “concrete” grammar
which has to be suitable for some parsing technique. This may lead to problems such
as the duplication of many productions and associated semantic rules, the splitting
of closely related computations among different productions, etc.

o It is generally argued that an AG is “structured” by the underlying grammar. This
however imposes a “syntactic” view of the AG, while it would sometimes be more
useful or pleasant to have a “semantic” view of it.

These drawbacks are quite unfortunate because they severely undermine the attractive-
ness of the AG formalism, especially for large projects. Hence, as part of the development
of the new FNC-2 AG-processing system [JoP89, JPJ90], aiming at production-quality,
we undertook the design of a new, specialized language for specifying AGs which would
address these problems. We called it OLGA." Tts detailed specification appears in [JoP89,
part II].

Our requirements for OLGA were threefold: it should be a useful and pleasant tool for
the AG-developer; it should be the best suited partner to the FNC-2 system, from the
internal point of view; it should be a “nice” language. This translated into the following
set of desirable qualities:

e The language should be easy to learn, i.e. it should have a “natural” semantics.

o It should also provide the AG-developer with as much programming safety and
reliability as possible, while remaining very versatile. It should also provide helpful
features.

o [t should also allow the development of very readable and modular programs.

o It should be as close as possible to Knuth’s theory of attribute grammars, provid-
ing all their expressive power but no more; constructs involving side-effects should
therefore be banned.

'OLaga is the acronym of the French wording “Ouf! un Langage pour les Grammaires Attribuées”
which means “At last! a language for attribute grammars.”



e The language should remain independent from the evaluation method which will
eventually be chosen (e.g. exhaustive vs. incremental). Similarly, it should remain
independent from, but easily and efficiently translatable into, most implementation
languages (the first targets we consider are C, Lisp and Ada).

e And, in the end, when all of the above requirements are satisfied, the last features
of that ideal language should be simplicity and cleanness.

Of course, these requirements in many cases contradict one another. Arbitrating between
them is the crux of language design [Hoa73, Ten81].

The rest of this paper will briefly present the current definition of OLGA, both as a
general-purpose applicative language (section 2) and as a specialized language for AG-
description (section 3), compare it with other works (section 4), sketch its implementation
embodied in the FNC-2 system (section 5) and summarize our experience with both of
them (section 6). Unfortunately, due to lack of space, only a few examples will be given

(see [JoP89] for detailed ones).

2 OLGA as a General-purpose Applicative Language

2.1 Applicative Character

First of all, OLGA is a purely applicative language—well, nearly purely, see below—which
means that there is no assignable variable and side effects, just pure expressions and func-
tions. This is a strong step towards programming safety and reliability. However, OLGA
is not a functional language: functions are not first-class values which could be passed
as parameters, created by functions or stored as attribute values; this is because we have
found no universal way—yet—to implement them efficiently in all the implementation
languages we target (but see section 7).

The basic objects of OLGA are thus values and functions. There are no control-flow
constructs but value-selection ones; iteration is replaced by recursion, although there is
also a map list construct.

2.2 Type System

OLGA is a strongly typed language, the other necessary condition for programming safety.
Basic (predefined) types are integers, reals, booleans, characters, strings, (lexical) tokens,
source indexes (positions in the source text, to output error messages) and the type void
with one value null. User-defined types are enumerations, subranges of scalar types,
records, discriminated unions, sets of scalar values and homogeneous lists. Structured
types may be recursive. Each type definition involves the definition of corresponding
construction/conversion functions. In addition, in a “functional” AG there are tree types
and tree values (see below).

Functions, including user-defined ones, may have a polymorphic profile as in ML
[CHP85, HMMS86], although OLGA polymorphism is restricted to set and list types. We
have a type inference algorithm [Car87, Mil78] which can detect at compile time every
inconsistency and error and makes most type declarations optional.



2.3 Scope Rules and Modularity

OLGA is a block-structured language, with various kind of blocks: those with only implicit
declarations, e.g. the let...in construct; those with explicit local declarations and import
clauses (see below), e.g. functions bodies and productions; lastly, top-level compilation
units, i.e. modules, AGs and AASes (see below). Modules and AASes export the objects
they define.

The basic scope rules are similar to those of Ada [ADA 83]. As in Ada also, function
names can be overloaded; we found this feature very convenient to enhance the readability
of OLGA programs. Several distinct name spaces are used in OLGA, which allows to give
the same name to different objects.?

OLGA supports the notion of modules, in which one can define a set of related objects
and export them to the outside world. OLGA modules are similar to those found in e.g.
Ada and Modula-2. A module is split in two actual compilation units, a declaration
module (DCM) which declares the objects which are visible from outside, together with
what is necessary to use them (e.g. function signatures), and a definition module (DFM) in
which the actual implementation of these objects (and maybe other, non-visible objects)
is given. Type checking is performed across module boundaries. Types and other objects
in a declaration module may be specified as opaque. In addition, a module may be
parameterized by types and/or functions. This supports the notion of abstract data

types.

2.4 Miscellaneous Constructs

OLGA provides a powerful pattern matching construct, unifying the structural matching
of ML [HMMS6], the selection driven by a scalar value, such as found in many imperative
languages, and the test for a union tag. For instance, given the following declarations:

type

"~ RT = record x: int; y: UT; end record
and { relates mutually recursive types }
UT = union void; RT; end union;

value
v: UT;

you could write:

case VvV 1is

UT(z: void): ...;
UT(RT([1..10, 13], UT(y: RT))): ...;

end case;

The second clause matches when v’s tag indicates that it actually is a record of type RT,
with the value of its first field being between 1 and 10 or equal to 13 and the tag of its

2For instance the definition of a type automatically defines one or more construction function with
the same name as the type.



second field also indicating that it is of type RT; the value of the latter will be bound to
the variable y in the right-hand side of the clause.

OLGA also provides for the declaration, activation and handling of ezceptions. User-
defined exceptions may return parameters.

2.5 Deviant Constructs

In spite of our strong will, there exist a number of situations in which programming in a
purely applicative fashion proves cumbersome, in particular because some notion of side
effect or global state is most natural. There hence exist in OLGA a number of constructs
which violate the applicative character:

e production of error messages,
o interface with external functions, written in some foreign language,
e construction of circular structures,

together with an explicit sequential composition operator.

As for circular structures, we initially came up with a purely applicative construct,
inspired by the letrec construct of ML but for values. However, it seems that this
construct is impossible to compile in the general case, even with strong restrictions on
the expressions involved in the cycle. So we had to introduce a much more imperative
physical-replacement operation, named define, together with a polymorphic undef value.
Given the following declaration:

type
RT = record x: int; y: RT; end record;

imagine that you want to construct and return a value of type RT whose second field is
itself; the applicative and non-applicative ways to achieve that are as follows:

letrec v := RT(1, v) in v
let v := RT(1, undef) in (define v.y := v ;; v)

The define “statement” raises an exception when the “variable” it modifies has a value
other than undef.

3 OLGA as an Attribute Grammar Description Lan-
guage

3.1 Abstract syntax

The syntactic base of AGs written in OLGA is not a concrete syntax as in the classical
framework [Knu68] but rather an abstract syntaz as in [VM 82], that is a grammar express-
ing the structure of the notions of the language being described rather than their textual
appearance. This frees the grammar writer from cumbersome syntactic constraints which



stem from a particular parsing method and, on the other hand, allows smaller trees since
they do not include keywords, simple productions and such spurious things.

The abstract syntax formalism used for OLGA is very close to Metal [KLMS83], the
one used in the CENTAUR programming environment [BCD88], although with a stronger
notion of typing. It provides for heterogeneous, fixed arity operators, similar to con-
crete productions, and homogeneous, variable-arity operators (list nodes). Operators are
grouped into phyla, which roughly correspond to non-terminals; it is possible to include
a phylum into another one.

3.2 Modularity

FNC-2 views an AG as specifying a mapping from one attributed abstract tree (AAT) to
zero, one or more other AATs. This is a very general and versatile framework, since many
language processors (e.g. compilers, specialized editors, pretty-printers, cross-referencers,
etc.) use some kind of trees as internal representation of their data; FNC-2 can hence
be interfaced with many such tools. FNC-2 provides a cousin language of OLGA, named
asz, to describe those AATs by means of an attributed abstract syntax (AAS) (see also
section 5). To improve modularity, an AAS may be imported into another one. The types
of the attributes of an AAS must be defined in a separate DCM.

The notion of AAS is central to the modularity features of OLGA and FNC-2. In
particular it is possible to “pipe” two attribute evaluators generated by FNC-2, provided
that the output AAS of the first one is the same as the input AAS of the second one.
This allows to achieve a high degree of modularity since it is possible to split a large,
complicated AG performing several tasks into a sequence of several smaller and simpler
AGs, each performing only one task (this is the notion of attribute coupled grammars [GG
84]). Furthermore, this is achieved at no loss of efficiency since, through descriptional
composition |GG 84, Gie 86], it is possible to mechanically construct, from two “piped”
AGs, a third one performing the same translation but without building the intermediate
tree. We have proved that the unusual features of OLGA for tree construction and the
AG class accepted by FNC-2 do not impair this process, however we have not (yet)
implemented it.

There are two kinds of AGs in OLGA, side-effect and functional, respectively roughly
equivalent to classical AGs [Knu68] and ACGs [GG 84]. A side-effect AG is one in which
there is exactly one output AAS which has exactly the same syntax as the input one
(but possibly different attributes); in that case, the output AAT is physically the same
as the input one, except that the output attributes have replaced the input ones. A
functional AG has zero, one or more output AASes; the corresponding output AATSs
must be constructed by semantic rules and carried by attributes, and the input AAT is
destroyed thereafter. Each output AAS defines a set of tree types corresponding to its
phyla and a set of tree construction functions corresponding to the operators. The output
AATs must be constructed bottom-up and carried by synthesized attributes, but pattern
matching can be used to access the subtrees of an already constructed tree to reuse them
to construct a different tree.

An AG is structured into phases and, of course, productions. A phase is purely
a structuring construct which has no effect on the AG in the classical sense (i.e. it is
“transparent” to productions and semantic rules), except that it is a block and hence



may contain local declarations and import clauses. For instance, an AG describing the
verification of the contextual constraints for some programming language might have a
phase for name analysis and one for type analysis; each phase needs not know about the
functions used in the other, and they communicate only through the attributes.

Each production is also a block; values local to a production may depend on at-
tributes of this production and hence play the role of what is usually referred to as “local
attributes.” Thus, the condition that an AG be in normal form is not too constraining.
A production may appear several times in each AG or phase when this improves the
readability but, of course, a given attribute should be defined only once.

3.3 Attributes and Semantic Rules

In each AG there are three kinds of attributes. The input and output attributes are those
carried by the input and output AATs and are declared in the corresponding AASes.
Input attributes are constants. In side-effect AGs, output attributes must be given a
direction (inherited or synthesized) and be defined by semantic rules, whereas in a func-
tional AG they have no direction and must be attached to the corresponding AAT while
it is being built. Working attributes are “local” to the AG and correspond to classical
ones; for instance they carry the output AATs during their construction. They must have
a direction.

In OLGA, a semantic rule is written, as expected, as the assignment of some value
to some attribute occurrence. The right-hand side expression can refer, in addition to
attributes of the production at hand, to attributes of nodes upward in the tree and
attributes of subtrees (after suitable pattern matching to control the access). OLGA
provides several special constructs for semantic rules in list productions [VM 82]. The
basic idea is that all the sons must be treated in a uniform way, except maybe the leftmost
and rightmost ones. Thus, to define an inherited attribute of a son, the case position
construct distinguishes the first, last and other sons; the corresponding expressions
may refer to attributes of the father and the left and right brothers (where sensible). In
the same vein, to define a synthesized attribute of the father, the case arity construct
allows to distinguish special numbers of sons (usually, but not only, zero and one) and
the general case, and to refer to attributes of the first and last sons. There is also a
map construct to compute a value by applying some function uniformly and iteratively to
synthesized attributes of the sons. Fig. 1 presents a (hopefully self-explanatory) example
of these constructs; notice that, with suitable declarations for $in-env and $out-env, the
first two rules would be automatically generated by FNC-2.

3.4 Automatic Generation of Unspecified Semantic Rules

As stated in the introduction, an AG is generally difficult to read because there must be
a semantic rule for every attribute occurrence. Even with a mechanism to automatically
generate most copy rules, such as those implemented in DELTA [Lor 77], FNC/ERN [Jou
84c] and of course FNC-2, there remains a large number of non-copy rules which “look
alike” in that they express the same computation, with only syntactic variations. For
instance, in an AG describing a code generator, there are many rules which specify that
the code for the father is a mere concatenation of the code for the sons.



where decls -> DECL* use

$in-env(DECL) := case position is
first: $in-env(decls);
other: $out-env(DECL.left);

end case;

$out-env := case arity is
0: $in-env;
other: $out-env(DECL.last);

end case;
$correct := map left & value true
other $correct (DECL)
end map;

end where;

Figure 1: Examples of semantic rules for a list production

Thus, a way to decrease the size of an AG and improve its readability is to specity
in a single place a “template” for such similar rules and have the system generate all
the corresponding actual rules by interpreting the template in the context of specific
productions. This idea is not original [DuC88, Tie87] but is nevertheless quite recent.
We implemented it in OLGA [Le B89]. The basic mechanism is the definition of attribute
classes, which are sets of attribute occurrences, and associated templates to specify the
semantic rules which define these occurrences. The templates are actually structured
in two levels, a syntactic level used to specify in which productions the templates will
be applied, and a semantic level which correspond to the actual rules. We needed this
separation, also found in [DuC88] but not in [Tie87], because of list operators [Le B89].

The other benefit of this feature—the most important in our opinion—is that this
gives a more “semantic” view of the AG, because closely related semantic computations
are grouped in a single place (the definition of a class) rather than being spread over several
syntactic productions. The phase construct supplements this semantic structuring.

4 Comparison with Other Languages

4.1 General-purpose Applicative Languages

The general-purpose features of OLGA borrow much from Lisp and above all ML. The
similarities with the latter are so striking that we were often asked, “Why don’t you use
ML as the base language for OLGA?” The answer is that we did not want to be tied to a
particular implementation language, even such a good one as ML and even if this often
means reinventing the wheel.

However OLGA is not ML. First, it is not interactive. Secondly, OLGA is not functional;
there is a map list construct to apply a function to each element in a list but you cannot
define it in OLGA. There are also differences in the type system and in the notion of
modules (the OLGA notion of parameterized modules is clearly closer to that of Ada



and inferior to the ML notion of signatures). Generally speaking, we admit that OLGA
is inferior to ML regarding its formal semantic foundations. However, experience shows
that it is nevertheless quite usable and that the features we did not include in OLGA make
it easy to implement. In addition, the syntax and concepts of OLGA make it rather close
to (a subset of) Ada, which should ease the teaching/learning process, in particular in
industrial contexts.

4.2 AG-description Languages

As can be seen in [DJL88], most AG-processing systems use as input language a variation
of the language in which the generated evaluators are written. We have shown in the
introduction that this lead to serious drawbacks. In this section we compare OLGA with
three AG-description languages which also try to avoid this pitfall: ALADIN [KHZ 82],
the language of the GAG system, the anonymous language of the Linguist system [Far
89], hereafter referred to as Linguist, and SSL [RT 89b], the language of the Synthesizer
Generator [RT 89a].

All four languages are basically applicative, although all of them provide some deviant
constructs such as an interface with external functions. All of them provide for recursive
function definitions and offer more or less sophisticated selection constructs (the richer
being OLGA). The type constructors of ALADIN and Linguist are roughly the same as
those of OLGA, except that Linguist also provides functional types and values. Only
OLGA provides polymorphism. The SSL type system is rather different since it integrates
both the syntactic (trees) and semantic (attributes) domains, i.e. the value of an attribute
can be some subtree, itself attributed, on which you can evaluate an AG; hence all type
constructors are presented in terms of phyla and operators (SSL also uses an abstract
syntax, although with no list construct). This idea is pushed to its limits in MARVIN
[GGV 86], which provides only one type constructor, grammars, and one way to define
functions, AGs (more precisely ACGs).

As for productions, attributes and semantic rules, only Linguist remains absolutely
faithful to the original framework, by providing pure BNF; this is related to the fact that
it is the only system which actually integrates a parser generator. SSL also provides pure
BNF, but its grammars are used as abstract ones, i.e. they do not necessarily reflect the
textual appearance of the source language (the parsing aspect is rather separate from the
main body of an SSL AG). ALADIN provides extended BNF, i.e. the RHS of a production
may be a regular expression; however alternatives are forbidden (they must be separate
productions) and repetition clauses may not be nested, so the expressive power is roughly
similar to that of OLGA list operators. Special laws deal with the attributes of symbols
appearing in a repetition clause, some of them involving implicit list processing, but, in
our opinion, these laws are not very natural and hard to understand and make the AG
difficult to read. All languages but Linguist provide access to upward non-local attributes;
ALADIN also allows to access downward non-local attributes, but we think that this
construct is rather ill-defined. All four languages offer a construct to abbreviate or a
mechanism to automatically generate copy rules, but it seems that OLGA is the winner
in this respect. Linguist also provides a very crude mechanism to generate some non-
copy rules. ALADIN is the only language to provide context conditions, i.e. predicates on
attributes values which must evaluate to true for the semantic rules to be valid; we believe



however that this does more harm than good, because the AG author has no control on
error recovery.

There exist several “external” means by which an AG system can provide more or less
modularity:

o define external functions in separate files;

e file inclusion a la epp.

ALADIN, Linguist and SSL all provide for the former, but these external functions must
be written in a foreign language; hence you are forced to trade modularity for the comfort
of using the built-in language. Linguist is designed to be used with ¢pp whereas SSL has
its own file inclusion mechanism. An interesting feature of Linguist is that it allows to
encapsulate the translation defined by a whole AG into a single function, which can then be
used as an external function by another AG [FaS89]; this allows some form of modularity
a la MARVIN but is not well integrated with the language itself. It hence appears that
OLGA is clearly superior to its three competitors on modularity; only MARVIN can
compete with OLGA in this respect, thanks to ACGs composition, but it is otherwise
only a minimal language.

5 Implementation: the FINC-2 System

The FNC-2 system [JoP89, JPJ90] is the implementation of OLGA, that is an AG-
processing system. It aims at production-quality by being powerful, efficient, easy to
use and versatile. More details on the evaluation methods and optimization techniques
used in FNC-2 to achieve these qualities appear in [JPJ90, JuP90, Par 88]. Its easiness of
use is due to the qualities of OLGA, and its versatility stems from the view that an AG is
an AAT to AAT mapping, which allows to integrate evaluators generated by FNC-2 with
many other tree-based tools, and from the complete independence of an AG specification
in OLGA w.r.t. its implementation(s).

FNC-2 comes with several companion processors that allow the development of com-
plete applications. The organization of the various components forming a typical applica-
tion is shown in Fig. 2. OLGA is used to specity the most important of these components,
AGs and modules; the same compiler is used for both—the evaluator generator is merely
bypassed when compiling a module. As said above, asz describes AASes. Ate describes
tree construction “actions” associated to the productions of a concrete grammar; there
exist two instantiations of this language, one on top of the SYNTAX? system [BoDS8§|
and one of top of yace. Ppat [Pla89] describes the textual layout (unparsing) of AATs,
using the TEX-like paradigm of nested boxes of text. Mkfnc2 describes the organization of
the various components of the application; in the future, the corresponding processor will
be extended into a full-fledged library manager. All of these specialized languages have
much in common with OLGA, which makes the whole system easy to use and smoothly
integrated.

As of today, FNC-2 is in a quite usable state, even for large applications (see below);
an evidence of this is that all the components of the system, except the evaluator gen-
erator, have been or are being bootstrapped. However, not all of OLGA is implemented

3Trademark of INRIA
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Figure 2: A Typical Application

yet: full polymorphism, parameterized modules, attribute classes and the associated rule
templates, and some other features are still missing. A rather naive translator to Lisp
has been implemented. The translator to C is more sophisticated but still lacks a garbage
collector. It performs classical optimizations such as tail-recursion elimination. Ppat is
still under development.

6 Experience

6.1 Design and Implementation

We tried to design OLGA without thinking of a particular implementation; we believe
that the Ada experience was an example to follow in this respect. Indeed, the first
versions of the OLGA manual were around long before FNC-2 began to run. This had



two advantages: first, this leads to a cleaner definition of the language, because you
are not hampered by implementation constraints; second, provided that the definition
remains stable enough, it allows to start to use the language early and hence have real-
size examples to test the system when it comes up (this was the case for FNC-2 with the
PARLOG compiler described below). However, this may lead to overlook implementation
problems which may in the end prove impossible to overcome (e.g. the letrec construct
of OLGA). Maybe we would not have had such difficulties if we had chosen to base our
language on a “good” existing language such as ML; however we believe that our approach
leads to more advantages than drawbacks, as we tried to show in this paper.

It seems that we fell in all the usual traps of language design [Hoa73, Ten81]. In
particular, we have never been able to simplify the language (except in one case, the
pattern matching construct alluded to above), and we always ended up in adding new
constructs which proved very hard to integrate smoothly with the rest of the language.
This is made especially acute by our high ambitions for OLGA. ..

Our philosophy for system development was to start with a minimal, quick and dirty
implementation and then use bootstrap to pursue the development with better conditions
(after all, the main applications of AGs are language processors such as... AG proces-
sors!). However, non-trivial optimizations such as tail-recursion elimination and space
optimizations in the evaluator generator proved to be necessary right from the beginning.

OLGA proved easy to translate to Lisp, because of their common concepts and features
and because there is no need for a particular run-time system. Naively translating it to C
was also easy, but making it efficient is hard; in particular, we need a garbage collector,
and writing such a tool in a high-level language is not easy.

6.2 Language Usage
Until now we have worked on three real-size applications:

e a compiler from the parallel logic language PARLOG to code for the SPM abstract
machine [GJR 87];

e a compiler from ISO-Pascal to P_code, which had been originally written in Lisp
for the FNC/ERN system [Jou 84c| and was translated to OLGA [Dur88] (work not
yet completed);

e and FNC-2 itself (bootstrap) and its companions (asz, ate, ppat, mkfnc2).

In addition, FNC-2 is used in the PAGODE code generator generator [DMR89], both to
develop the generator itself and to compile some of the modules it generates.

Even in its incomplete present status, we found OLGA generally satisfying. In particu-
lar, there are very few parts of the system which could not be written in OLGA; the most
prominent are the evaluator generator and the parts which write text to files (ppat will
provide a solution for those). This shows that the expressive power of the language is suf-
ficient for our purposes. The automatic generation of most copy rules and many non-copy
rules greatly improves the readability of the AGs, especially for code-generation-like ap-
plications. But the single most beneficial feature of OLGA is its constructs for modularity:
presently there are about 30,000 lines of OLGA, asz and atc code in the system, summa-
rized in Table 1 (these exclude the ppat subsystem, the files processed by SYNTAX, and



# # lines

files || min. | max. | total ave.
AGs 7| 3541 3,212 | 10,118 | 1,445
AASes 8 8 381 779 97
decl. mod. 15 28 391 | 2,891 193
def. mod. 15 55 | 3,188 | 13,404 894
atc 4 60 | 2,089 | 2,575 644
total 49 8 | 3,212 | 29,767 607

Table 1: Source files in the FNC-2 system

the C files). As can be seen, the files are rather small and hence very readable. Even the
3,212-lines AG (the OLGA static semantics checker) is easy to understand because it is
split in two phases (name analysis and type checking) which address only one problem.
We would have had much greater problems if we had had to specify the FNC-2 system in
a single AG. Furthermore, separate compilation comes with (true) modularity, and this
saves much time in the development process.

We pushed the usage of AGs and modularity very far. For instance, the ppat subsystem
is composed of 9 files, including one bootstrapped file and one reused from FNC-2 itself,
and the pretty-printers it generates are composed of one actually generated file and 5 files
which are reused in every pretty-printer. Each one of them is hence rather small and easy
to read.

It is quite hard to measure the efficacy of a programming language, i.e. the relative
productivity of a programmer using this language. Let us however quote a single figure
regarding OLGA: the above-described 30,000 lines, together with other support files, were
written and tested by one man in not much more than one year.

7 Conclusion and Future Work

We presented in this paper the design, implementation and preliminary evaluation of the
new OLGA AG-description language. Even though the language may be improved and
FNC-2 is still under development, we are generally satisfied with both of them.

There are a number of constructs that qualify for possible inclusion into OLGA, most
notably: unification of the syntactic and semantic domains, as in SSL; functional types
and values, as in Linguist* and ML; multi-valued expressions, functions and semantic
rules, also as in Linguist.

Much remains to be done on the implementation of FNC-2. We have to implement all
of OLGA. We also have to improve the efficiency of the C implementation; the run-time
system of “Standard ML of New Jersey” [App89] is a rich mine of very good ideas in
this respect. Generally speaking, we have to study and implement well-known techniques
for efficient implementation of applicative languages on conventional architectures. It
is also planned to integrate FNC-2 with CENTAUR and the GIGAS system [Fra89] to
obtain a system with aims similar to those of the Synthesizer Generator but with greater

4The Linguist implementation of functional values seems fairly simple, so our arguments against them
may prove irrelevant.



performances and facilities.
When all of this is completed, FNC-2 will really be one of the very few production-
quality AG-processing systems in the world.
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