DEVELOPING A SERVICE-ORIENTED COMPONENT FRAMEWORK FOR
A LANDSCAPE MODELING LANGUAGE

Ayoub Ait Lahcen

INRIA, 06902 Sophia Antipolis, France
Mohammed V University-Agdal, LRIT

Laboratory, 10090, Morocco
ayoub.ait_lahcen @inria.fr

Pascal Degenne, Danny Lo Seen
CIRAD, UMR TETIS
34398 Montpellier, France
pascal.degenne @cirad.fr
danny.lo_seen @cirad.fr

Didier Parigot
INRIA, 06902 Sophia Antipolis, France
Didier.Parigot@inria.fr

ABSTRACT

With modeling and simulation, it is possible to study how
a system works before trying to predict how it would be-
have in a variety of situations. However, when modeling
landscape processes, issues related to space, time and mul-
tiple scales need to be addressed. In order to investigate
these issues, a modeling platform based on a Domain Spe-
cific Language (DSL) has been developed. One of the main
technical challenges of this platform is the ability to build
applications with the capacity to themselves dynamically
adapt to their environment. In this paper, we present the ar-
guments and motivations behind the choice of the Service-
Oriented Computing (SOC) approach when implementing
the execution framework of the DSL. The modeling plat-
form is composed of a development environment based on
Eclipse IDE, a code generator, and an execution frame-
work. The execution framework, which is the focus of this
paper, must meet the constraints set by dynamic landscapes
modeling, while capitalizing on the possibilities offered by
the SOC approach.

KEY WORDS
service-oriented component framework, landscape applica-
tions, service orientation, landscape modeling, DSL

1 Introduction

The modeling of landscapes is useful for the analysis
of many important issues which society faces today
such as the degradation of natural ecosystems (loss of
biodiversity), the emergence and spread of new diseases
(changing environmental and climatic conditions), or the
uncontrolled urbanization and population migrations (deep
social transformations). Such questions, which treat many
interacting processes, hide a complexity that is difficult
to address otherwise than by modeling. In order to study
issues related to space, time and multiple scales, to which
the modeling of landscape processes are confronted, a
modeling language called Ocelet [1] was developed, and
is briefly presented hereafter. In this paper, we discuss in
more detail its dynamic execution framework.

In the present case, it is important that the execution
model takes into account the aspects of a distributed
execution in a ubiquitous environment. Moreover, this
type of highly dynamic application must adapt according
to its own evolution and change in its execution context.
But various business (the domain of landscape modeling)
and technical challenges (the management of dynamism
and service interactions) complicate the ability to develop
such application. In order to meet these constraints, we
choose an approach based on a component model [2] to
better separate the functional and non-functional aspects,
as well as on the service-oriented paradigm. The objective
of this paper is to address the above mentioned constraints.
It presents an open computing environment for the devel-
opment of applications in the landscape modeling domain.
The proposed service-oriented component framework
provides an extensibility mechanism allowing the clear
separation between the business logic and context-aware
service interactions.

In the next section we present background informa-
tion about two main aspects of the context in which this
work has been carried out: service oriented computing and
the modeling of landscapes and their dynamics. Section
3 is a brief description of the landscape modeling DSL
Ocelet. Section 4 is where our service-oriented component
execution model of the language is described. Finally a
case study illustrates the execution model in section 5.

2 Background
2.1 Service oriented computing

SOC [3] is a paradigm that uses services as fundamental
elements for developing applications. The main pur-
pose [4] of this approach is to introduce the minimum
dependencies between software bricks to promote their
reusability and their combination, in order to respond
quickly and at low cost to new business needs. This
reduction of dependence allows these different bricks to

evolve separately. SOC is based on three actors: i) the
Service Provider publishes a service on a Service Broker
and generates a description of the service which specifies
both the available operations and their invocation mode;
ii) the Service Broker contains references to services; and
iii) the Service Consumer discovers the services available
and their descriptions obtained by running a search. It then
establishes a connection with the provider and invokes the
service operations.

SOC is an academic initiative that aims at extending
service-oriented architecture (SOA) to manage and com-
pose services in a flexible manner and it is organized on
three levels:

e The first covers SOA with its minimum functions:
publication, discovery and binding services.

e The second is the dynamic services composition. It
is responsible for adapting the application at run-
time (adding new features; control the execution of
the component services and manage dataflow among
them; adapting to a new context).

e The third covers the management functions necessary
for the overall supervision of applications. It may per-
mit complete visibility into individual business trans-
actions, and deliver application status notifications.

The SOC paradigm allows the development of modular and
dynamic applications by supporting loose coupling and late
binding between the software bricks. However, these as-
pects and context-awareness are generally managed by the
programmer and are implemented in the business logic. In
section 4, we describe how the SOC concepts (except the
third level functionalities) can be integrated into a compo-
nent model to separate these aspects and the business logic.

2.2 Landscape modeling

Given the spatial, temporal and multi-scale issues raised,
the modeling of dynamic landscapes has to draw from a
variety of paradigms or formalisms - System Dynamics
(SD), Discrete Event (DE), Cellular Automata (CA),
Agent-Based (AB) and Geographic Information Systems
(GIS) [S5, 6, 7, 8]. While in GIS the challenge of properly
handling Time has been a subject of active research for
the last few decades [9, 10, 11, 12], the formalisms
that consider Time first (i.e. SD, DE) face the opposite
limitation with spatial information [13, 14]. Overall, these
issues are being studied in different research communities,
using various methodological approaches, as well as in
many other thematic areas (e.g. ecology, epidemiology
and urban dynamics).

The difficulties that modelers face when working
from conceptual models of dynamic landscapes to their
simulation on a computer also cannot be ignored. For

this reason, we have chosen to develop a DSL that would
allow domain experts to concentrate on the conceptual
model, while leaving to an associated software tool the
transformation of the model into an implementation that
runs on a computer. However, in this domain, spatial,
temporal and multi-scale issues are still actively being
studied. A DSL that can support research on modeling
processes in landscapes therefore needs to be flexible,
and especially so at the very basic level where landscape
features and their interactions are defined. Thus, strong
requirements are set on the DSL in terms of expressiveness
and ease of use.

An interesting parallel can be made between, on one
hand, software components and services within SOA, and
on the other, landscape entities and their interactions that
need to be modeled. Interacting features in a landscape
in many aspects behave like communicating software
components, and it is not surprising that many notions
used when modeling processes occurring in landscapes,
such as dynamics, delays, events, fluctuations, response
or agent behavior, are also present in the SOC paradigm.
A DSL has therefore been developed for experimenting
the modeling of a variety of landscape situations that takes
advantage of the flexibility offered by component-service
programming.

3 The Ocelet Modeling Language

Ocelet is a landscape modeling language defined accord-
ing to design principles of a DSL [15]. It must provide the
modeling concepts adapted to the simulation of dynamic
evolution processes in the landscape. This modeling lan-
guage is instrumented by tools that are able to handle the
non-functional requirements with an automatic code gen-
eration. This generation offers greater ease to modelers in
the design and allows them to focus only on the functional
part of modeling. Around this language, a modeling frame-
work (see Figure 1) has been defined, composed of: i) an
environment for model building and analysis that is able to
verify that the specification written in Ocelet is correct ii)
a code generator, and iii) a dynamic execution framework
based on component-oriented programming approach [16].

3.1 Overview of Ocelet language

In this subsection, we briefly present the Ocelet language,
but a more complete description can be found in [1], with
more focus on landscape modeling aspects. Ocelet is de-
signed around five key concepts:

e Entity: Entities are the basic elements that can be
linked together to build a model. An entity may con-
tain other entities, and is then called a composite en-
tity. [Entities that do not contain other entities are
atomic entities.

e Service: A service is an operation defined by an entity
or relation; it has a name, parameters and a possible
result. There are two types of services: i) a service
provided is defined within an entity, and ii) a service
required is invoked within the entity and supplied by
another.

e Relation: A relation is a connection between two or
more entities that provide and require compatible ser-
vices. It defines the nature of interactions between
these entities and provides services for the activation
of those interactions.

e Scenario: A scenario is a sequence of actions com-
posed of service calls or relation expressions within a
composite entity. A scenario is activated for a period
of time. Therefore the scenario expresses the spatial
and temporal internal behavior of a composite entity.

e Datafacer: A datafacer is an atomic entity special-
ized in data access. The datafacer provides different
mechanisms for data persistence.

Other concepts such as properties, attributes and arguments
are also used, but they do not require specific descriptions.
The relation concept allows a connection between two en-
tities where the semantics are described by the services of
the relation. In Section 5, the example of a predation re-
lation between predator and prey shows that the logic of
this connection is contained in the relation itself. This is
important for these relationships to be reusable.

4 A dynamic service execution framework
4.1 Opverall architecture

It is expected that under certain circumstances, applica-
tions created with Ocelet would need to run in distributed
mode, in a ubiquitous environment.

In this context Ocelet entities must be able to com-
municate with each other through the network. In addition
they must be able to adapt according to their own evolution
and context. We say that the application (architecture) is
dynamic [15, 17] . To meet these constraints, we adopted a
component approach that comes from our service-oriented
architecture [16, 18, 19]. More specifically, the execution
environment of Ocelet is based on this approach. For each
component, a file describing the service (provided and
required) is used in order to automatically manage the
context-aware service interactions.

The principle is to produce for each Ocelet concept
(Entity, Relation, Scenario and Datafacer) a corresponding
component. Specifically, each concept is translated into
two files that will help build that corresponding com-
ponent. The first file contains only the business code
extracted from the definitions of Ocelet services. The

second contains a description of the services provided or
required by the concept. The component will only use
the services of this file to communicate to the outside.
According to the description file of the service, the com-
ponent generator will produce non-functional code which
will manage external communications based on sending
or receiving messages synchronously or asynchronously.
During the execution, a particular component runs by
default. This component, called Component Manager
(CM) (see Figure 2), supports the creation of components
and establishes connections between them. To make the
connection between two components, the Component
Manager uses two service description files to match the
required and provided services for both components. This
matching works both ways.

After the connection process, the two components in-
teract with each other directly without going through the
Component Manager. The advantage of this environment
is the dynamic aspect of the connections between com-
ponents. In fact, during execution, each component can
request to be connected to another component, if it wishes.
The assembly of components for a given application is
not necessarily known at the start of a simulation and
may change dynamically over time. The components are
autonomous and independent. The concept of composite
component (containing a set of component) is present in
this architecture.

We believe that this architecture makes possible the
development of ubiquitous applications. Developing such
application on top of a service-oriented component model
enables the management of the dynamic context execution.
The functional and non-functional aspects are separate.
Thus coding becomes easy to every application developers.
The next subsections presents different aspects of this
architecture in more details.

4.2 Service-oriented component framework

As presented in [20], service-oriented component model
help developers to build SOC applications. The motivation
to use components to build applications comes forth from
the necessity to separate SOC aspects and non-functional
requirements from the business logic. To design and im-
plement complex applications, one must take into account
standards, code distribution, deployment of components
and reuse of business logic. To cope with these changes,
applications need to be more open, adaptable and capable
of evolving. We present in this section a service-oriented
component framework based on generators associated with
domain-specific languages for component and deployment
description.

The principal goal of this framework is to propose a
tool which demonstrates that, with new development
methods, it is possible to produce more quickly open and

Model building
with Ocelet

Code generation

Service execution
environment

Textual Syntactic

g0

Intermediate

t
¢ m N cnde
Graphic ¢ generation

()

Non-functional
aspect management

.class
files

-

Service
orchestration

14

/

4 4
Eclipse Plugin:
Editor

L

Eclipse Plugin:
Generator

Service-Oriented)
Architecture

7

Eclipse Plateform

) 3 & o

Tiers Tiers Tiers

Figure 1. The Ocelet modeling and simulation framework (from Degenne et al. 2009).

adaptable applications compared with the classical devel-
opment methods. The implementation is based on service
exchange and is adapted to the design of applications. It
provides the ability to generate non-functional code. The
generator handles the generation of the application, pro-
viding the glue to enable it to work on a specific platform,
according to the context of use. If the platform or the
underlying technology evolves, only the generator would
be updated, it is not necessary to update the business logic
that represents the domain specific expertise. The design
of this model is based on: i) the component description,
named CDML and ii) the deployment description, named
World.

4.2.1 The component description (CDML)

We have defined an abstract Component Description Meta
Language i.e. independent from any component technol-

ogy:

e To extend the classical method-call. In this way, the
runtime environment can be taken into account with-
out any modification to the business logic.

e To extend the notion of interface. The provided and
required services can be described and discovered,
and the interface can dynamically be adapted.

e To add meta-information to a component. This is a
generic approach to record information dealing with
several concerns such as deployment management,
component behavior or other SOC aspects.

When these mechanisms are included, it is possible to
build applications with only the required components and
to simplify the interconnections with external tools. From
a component model instance, a generator can automatically

produce the non-functional code, that is to say the con-
tainer that hides all the communication and interconnec-
tion mechanisms (like the transformation of a method call
by a sending message), the management of a queue of re-
ceived messages, and the broadcasting of a message toward
the connected components. These mechanisms are totally
transparent for the designer of an application. Addition-
ally, it is easy to adapt the architecture in order to introduce
a new communication protocol.

4.2.2 The deployment description (World)

The deployment description file is used to describe the ini-
tial state of a simulation. It contains a description of the
components and connections that have to be created by the
Component Manager before starting the application. Of
course after that, some components can ask to be connected
with each other dynamically as explained in the next sub-
section. An instance is identified by the couple (name of the
component, name of the instance). For example in Figure
2, the instance (cmpl, cmpl-1) corresponds to an instance
of component cmpl.

<world:>
<connectTo id src="ComponentsManager"

type_dest="cmpl" id_dest="cmpl-1" />

<connectTo type_src="cmpl"” id src="cmpl-1"
type_dest="cmpZ2" id_dest="cmp2-1" />

<connectTo type_src="cmpl"” id src="cmpl-1"
type_dest="cmpZ" id_dest="cmpZ-Z" />

</world>

Figure 2. An example of the deployment description.

4.2.3 The Components Manager (CM)

The Components Manager loads packages of components
and creates the instances according to the deployment de-
scription file and eventually to the interactive request of
users (via the graphical user interface). It stores all the
loaded packages and the created instances. In particular,
The Components Manager offers the service connectTo to
connect two components. This service also allows the cre-
ation of the components if they do not yet exist. To es-
tablish connections, the manager uses the descriptions of
components based on their names, output connectors (vs.
input) are connected with the input connectors (vs. output)
of other component. When connected, the two component
instances interact with each other directly without going
through the manager. Connection management, which in-
cludes creation or destruction of connection, occurs when
the Components Manager receives notifications announc-
ing changes in the component registry. These mechanisms
allow an application to be made of interconnected com-
ponent instances that can adapt dynamically with respect
to availability. In fact, the Components Manager monitors
the execution context and acts on the component by man-
aging its connection policy. In distributed mode, to know

[Component Manager]

ISP ==--..____ Component

Y |Functional code
"""""

Provided interface

Required Interface

Figure 3. Connection between instances of components.

whether an instance is already created, the CM should not
be limited to local search. If the instance does not exist
locally then the CM should also extend the search to all
connected CMs. For a better modularity and information
management, the CM delegates the management of compo-
nents and instances tables to components modules for each
communication mode (local or distributed). The CM has a
policy to choose the component module that will make the
effective connection. For example, a policy will favor local
connections over distributed connections. Moreover, the
CM structure allows to instantiate different policies by us-
ing the Command design pattern [21]. The request to con-
nect components modules is done in two steps. In the first
step, the CM interrogates all active components modules
on the presence or not of the instance of the destination.
Each component module responds asynchronously to the
CM. When the CM is in possession of all responses (even

negative) then in the second step, it selects according to
its policy the component module that handles the effective
connection. If in the first step, there is no positive response,
the connection request is put on hold until the CM receives
a notification, such as a component has been started or dis-
covered.

4.3 Implementation

This approach has been fully integrated into the Eclipse
environment [22] and implemented on top of OSGi [23].
Eclipse is built around a very small extensible runtime core
and its functionality, (including compilers, workbench, and
support tools) consists of plug-ins that can be managed
separately. It allowed us to integrate the Ocelet editor
and generator plug-ins efficiently. The OSGi service
platform provides a computing environment for appli-
cations, called bundles, to dynamically deploy services
in a centralized environment. It is also a small layer
that allows multiple components to efficiently cooperate
in a single Java Virtual Machine (JVM) by managing
aspects of local service deployment, but leaves service de-
pendency management as a task for component developers.

At the start of execution, the OSGi platform is launched
and the Components Manager (bundle) is started by
default. In this context, two OSGi services are used and
published. The first one, called ContainerService, allows
publishing the CDML when a component (bundle) is
started. The CM then adds that started component to its
table of available components. The second one, called,
ContainerProxy, allows publishing the component instance
when it is created. The CM then adds that new instance to
its table of created instances. The CM can then manage
the execution as described in section 4.2.3 in a shielded
environment and the components can reuse and cooperate,
unlike other classic Java application environments. More-
over, installing a new bundle, registering a new service, or
updating an existing component does not need a restart of
the JVM. The concerned components are notified of the
new state and adapt as a consequence.

This framework constitutes an extension of the SmartTools
software factory [18, 19].

4.4 Advantages of the proposed Environment

This execution environment provides the possibility of
separating the functional and non-functional aspects (par-
allelism, communication protocol, sending and receiving
messages ...) in a simple way. In fact, the modeler of the
application does not need to know how the non-functional
code is implemented and it can be written directly with the
Ocelet syntax.

Communication between different components is based
on an exchange of messages completely transparent to

service updatePredator() {

}

service updatePrey() {

relation Predation (Predator, Prey) {
reguires property number Predator.nbrPopulation;
requires property number Prey.nbrPopulation;
requires service Predator.updatePopulation (number) ;
requires service Prey.updatePopulation (number);

Predator.updatePopulation (delta * Predator.nbrPopulation ¥
Prey.nbrPopulation * dt);

Prey.updatePopulation(-{ beta * Predator.nbrPopulation *
Prey.nbrPopulation * dt));

Figure 4. Predation relation written in Ocelet.

the modeler. This communication can be synchronous
or asynchronous according to his need. As the execution
environment associated with each component is a light
process (Thread), an implicit parallel execution is possible.

Encapsulation of Ocelet elements in components al-
lows the reuse of these elements in other models, as the
interaction of an element with other Ocelet elements
depends only of the services it requires and provides.

5 Application

This section presents an execution scenario illustrating
some requirements of landscape modeling. The well-
known prey-predator model introduced by Lotka (1925)
and Volterra (1926) [24, 25, 26] presented highlights the
needs in terms of dynamicity and service interaction. The
model is based on a system of non linear differential equa-
tions frequently used to describe the dynamics of ecologi-
cal systems in which two species interact and evolve during
time, one a predator and one its prey:

{ @ =(a—Fy) 0
at = y.(=y + dz)

where

o is an expression of the birth rate in the prey population
[is the death rate of prey due to predation

v represents the natural death rate in the population of
predators

0 is the rate of predator population growth per prey con-
sumed

Using Ocelet, two entities (Rabbits for preys and Foxes for
predators) and one relation (the Predation relation) are de-
fined; the time flow of the system is also described in a sce-
nario (the Evolve scenario). Ocelet is designed to promote
separation of concerns and in the present case the system
of equations is split into the following parts:

e The birth rate of prey is calculated by the Rabbits en-
tity through a birth service.

e The natural death of predator is calculated by the
Foxes entity through a natural_death service.

o The death rate of prey due to predation and the growth
of predator population due to predation have a mean-
ing only if preys and predators meet in a model. They
are hence calculated in the Predation relation by two
respective services, updatePrey and updatePredator.

The relation provides a connection mechanism relying on
a specific component called relation. When two entities
are connected by the predation relation, the corresponding
relation component acts as an interposition object by
providing the updatePrey and updatePredator services.
This relation component allows to enrich the connected
components without requiring changes in them. The
relations therefore offer better decoupling between the
business code (inside components) and the connection
code (inside relations). It is important to note that the
separation between business and connection codes allows
to reuse already developed relations, entities, scenarios and
datafacers to build new models. Figure 4 shows the Ocelet
code of the predation relation that models the death rate of
prey due to predation (—z.(.y) and the growth of predator
population due to predation (y.0.x) expressions.

This model is implemented above our service-oriented
component framework. In fact, for each Ocelet concept
entity (Rabbits, Foxes), relation (Predation) and scenario
(Evolve) that the modeler uses to specify the business
logic (using an Eclipse plug-in editor developed for this
need), Java class files implementing the business code
and CDML files describing the service (provided and
required) are generated as depicted in Figure 1. A World
file describing the initial state of the application is also

Population

0 10 20 30

40

50 60 70 30 90 100

Time

Figure 5. A simulation of the Lotka-Volterra model developed with Ocelet

generated. The component generator will then create a
container for every entity, relation and scenario. Each
container encapsulates the business code and the service
description. Thus, we get components ready to be used
or archived in the Java ARchive (JAR) files. The World
file can then be used by the Components Manager to load
the packages of components, create the instances, and
wait a signal from the graphical user interface to start
the simulation. The interaction between predators and
preys in the Lotka-Volterra model is therefore transformed
into a dynamic service interaction between components
in a manner completely transparent to the modeler.
The results of this interaction are shown in Figure 5
(a=10.1; 8 =0.01;y = 0.05;§ = 0.001).

Although this illustrative example may appear sim-
ple, the principal aim is to demonstrate how to introduce
simplification when building an application that supports
dynamism, in landscape processes modeling. Hence
modelers can benefit from these mechanisms to create
more complex applications.

6 Conclusion

Applications for landscape modeling and simulation are
often difficult to build. In fact, developers must at the same
time handle the domain constraints and the non-functional
requirements in addition to their business logic. In this
paper, we present our approach to meet those needs relying
on service-oriented computing. Traditional component
approaches simplified software system development by
allowing developers to create software bricks without
taking into account the functional aspect and are generaly
limited to the application architecture. Here, our approach

uses components as well as service-oriented concepts
throughout the development process (from design to
execution). This requirement was specifically imposed in
our case by the domain context of landscape modeling.

This paper focuses more on the needs in terms of ex-
ecution than on the concepts of landscape modeling
introduced in Ocelet [1]. The originality of the execution
service-oriented component framework is to provide to
the modeler an environment that supports mechanisms for
dynamic extension and a distributed execution.

Finally, this environment is extensible: the Compo-
nent Generator may be enriched with new features to
follow the evolution of Ocelet. More precisely, we are
currently investigating a way to enhance the Component
Description Meta Language with a semantic description
of a components functionality which expresses behavior.
This description should ensure a correct composition of
Ocelet entities and identify an entity with the appropriate
semantics for the purpose of cohabitation of several
Landscape-context applications.

7 Acknowledgments

This work was supported (in part) by the Agence Na-
tionale de la Recherche (ANR) under Project No. ANR-
07-BLAN-0121 (STAMP: Modelling dynamic landscapes
with Spatial, Temporal And Multi-scale Primitives).

8 References

[1] P. Degenne, D. Lo Seen, D. Parigot, R. Forax,
A. Tran, A. Ait Lahcen, O. Cure, and R. Jeansoulin,

Design of a domain specific language for modelling pro-
cesses in landscapes, Ecological Modelling, In press, 2009.

[2] C. Szyperski, Component Software : Beyond Object-
Oriented Programming (New York: ACM Press and
Addison-Wesley, 1998).

[3] M.P. Papazoglou and W. Heuvel, Service oriented
computing, Communications of the ACM, 46(10), 2003,
25-28.

[4] M. N Huhns and M. P Singh, Service oriented
computing : Key concepts and principles, IEEE Internet
Computing, 9, 2005, 75-81.

[5] PA. Burrough and R.A. Mcdonnell, Principles of
Geographical Information Systems (Oxford University
Press, USA, 1998).

[6] A. Borshchev and A. Filippov, From system dy-
namics and discrete event to practical agent based
modeling: reasons, techniques, tools, In Proceedings of
the 22nd International Conference of the System Dynamics
Society, Oxford, England, 2004.

[7]1 F. Bousquet and C. Le Page, Multi-agent simula-
tions and ecosystem management: a review, Ecological
Modelling, 176(3-4), 2004, 313-332.

[8] C. Ratze, F. Gillet, J.P. Muller, and K. Stoffel,
Simulation modelling of ecological hierarchies in con-

structive dynamical systems, Ecological Complexity, 4,
2007, 13-25.

[9] G. Langran, Time in Geographic Information Sys-
tems (London: Taylor and Francis, 1992).

[10] D.J. Peuquet, Its about time: A conceptual framework
for the representation of temporal dynamics in geographic
information systems, Annals of the Association of Ameri-
can Geographers, 84(3), 1994, 441- 461.

[11] M. Yuan, Use of a three-domain repesentation
to enhance gis support for complex spatiotemporal queries,
Transactions in GIS, 3, 1999, 137-159.

[12] C. Parent, S. Spaccapietra, and E. Zimanyi, Con-
ceptual modelling for traditional and spatio-temporal
applications: The MADS approach, (Springer-Verlag
Berlin Heidelberg, 2006).

[13] M.E. Goodchild, Geographical data modeling,
Comput. Geosci., 18(4), 1992, 401-408.

[14] D.J. Peuquet, Making space for time: Issues in
space-time data representation, In DEXA 99: Proceedings
of the 10th International Workshop on Database and

Expert Systems Applications, Washington, DC, USA,
1999, 404.

[15] M. Mernik, J. Heering, and A. M Sloane, When
and how to develop domain-specific languages, ACM
Computing Surveys, 37(4), 2005, 316-344.

[16] C. Courbis, P. Degenne, A. Fau, and D. Parigot,
Un modele abstrait de composants adaptables, revue TSI,
Composants et adaptabilite, 23(2), 2004, 231-252.

[17] PK McKinley, S.S. Masoud, E. P Kasten, and
B.H.C. Cheng, Composing adaptive software, IEEE
Computer, 37(7), 2004, 56-64.

[18] D. Parigot, Towards domain-driven development:
the smarttools software factory, In OOPSLA 04: Com-
panion to the 19th annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and
applications, 2004, 37-38.

[19] D. Parigot, Smarttools software factory, EclispeCon
08, 2008.

[20] J. Liu, J. He and Z. Liu, A strategy for service
realization in service-oriented design, Science in China
Series F: Information Sciences, 49(6), 2006, 864-884.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of reusable object-oriented
software (Addison-Wesley Publishing, 1995).

[22] The Eclipse Foundation, Eclipse Platform Tech-
nical Overview, 2003.

[23] OSGi Alliance, OSGi Service Platform Core
Specification, release 4 edition, 2005.

[24] V. Volterra,Fluctuations in the abundance of a
species considered mathematically, Nature, 118, 1926,
558-560.

[25] AJ. Lotka, Elements of Physical Biology (Balti-
more, MD: Williams and Wilkins, 1926).

[26] J.D. Murray, Mathematical Biology: I: An intro-
duction (New York: Springer, 2002).

