Equational Semantics

Loic Correnson, Etienne Duris
Didier Parigot, Gilles Roussel

INRIA-Rocquencourt - Domaine de Voluceau
BP 105 F-78153 Le Chesnay Cedex
Phone: +33 1 39 63 55 46. Fax: +33 1 39 63 58 84

Loic.Correnson@inria.fr

Abstract

In the context of functional programming, semantic
methods are commonly used to drive program trans-
formations. However, classical semantic domains of-
ten rely on recursive objects which embed the control
flow of recursive functions. As a consequence, trans-
formations which have to modify the control flow are
difficult to define. We propose in this paper a new
semantic domain where the control flow is defined
implicitly, and thus can be modified. This new the-
oretical and practical framework allows to homoge-
neously define and extend powerful transformations
related to partial evaluation and deforestation.
Keywords: semantics, program transformation,
partial evaluation, deforestation.

1 Introduction

What about using semantics to transform functional
programs? A possible method consists in defining
mathematical objects and finding judicious theorems
to make correction proofs and to construct algorithms
which perform useful analyses and transformations.
Common frameworks use for instance A-calculus [9,
6], catamorphisms [3], hylomorphisms [5], folds [7]...
All of them share a similar global structure. Thus,
functional programs are abstracted in some mathe-
matical object P. The semantics of P is represented

by [P]; it allows programs to be compared and pro-
gram transformations to be proved.

In this context, transformations are performed on
P in order to obtain a new mathematical object P’
such that [P'] = [P]. To get benefit from the trans-
formations applied on P, the mathematical object P’
must be translated back into a new functional pro-
gram. For this purpose, it may be necessary to use
an operational-semantics []°? instead of the seman-
tics [J. Thus, for the A-calculus, there exists variants
of the B-reduction which yield operational semantics.
Notice that in practice the original semantics [] is not
completely equivalent to the operational one []°7.

Such a methodology has been already used to de-
fine partial evaluation and deforestation (which is a
kind of partial evaluation dealing with function com-
positions). For instance, the HYLO system [5] trans-
forms a functional program into hylomorphisms and
then perform partial evaluation and sometimes de-
forestation, thanks to many theorems (acid rain the-
orem, fusion law... [4]). Then, these new hylomor-
phisms could be translated back into functional pro-
grams.

However, frameworks we know share a surprising
constraint: the interpretation of functional programs
always relies on “functional” objects where recursive
structures or schemes are strongly preserved and can
not be easily modified. For instance, with A-calculus,
the recursive calls are defined in extenso in the struc-
ture of the A-terms. With hylomorphisms (and folds),

these recursion schemes are exactly pointed out by
functors which are used as transformation parame-
ters. Thus, a transformation can not freely restruc-
ture these recursive schemes.

We propose in this paper a new domain of abstrac-
tion for functional programs, which does not rely on
such “functional” objects. In our semantics [], the
control flow is neither defined nor fixed. The related
operational semantics []°P explicitly defines recursive
schemes and control flow. This later semantics can
be computed from the former, and allows to perform
backward translations into functional programs.

This paper presents an homogeneous framework to
define and extend classical program transformations
related to partial evaluation. Especially, the system
is quite powerful at transforming control flow and
recursive schemes of functional programs.

The paper is structured as follows. Section 2 fixes
notations for functional programs and their seman-
tics. In section 3, we introduce our mathematical
objects with an example, and then we precisely de-
fine them. They are named Equational Programs and
their Equational Semantics is defined in section 4.
Obtained results and powerful transformations are
then presented in section 5. The end of the paper is
about technical bases for all this framework: trans-
lation from functional programs is given in section 6,
operational semantics is presented in section 7 and
backward translation from equational programs into
functional ones is presented in section 8.

Notations: we will assume standard definitions for
sets and relations. We will also make use of the following
notations:

e when a set S is the singleton {s}, it is also denoted
by s without brackets.

o R =[R1;R2;...;Rn] is the relation defined by:

aRb<= aRia1R2 ... Rnb

R™ = [R;...;R] (with n occurrences of R).
e R is the transitive closure of R.

Ri1 + Rz is the relation R defined by

aRb & aR1b or aR2b

2 Functional Programs

In this section, we fix the functional programs we con-
sider. In few words, it is a standard functional lan-
guage with higher-order and pattern-matching. Nev-
ertheless, we will only consider well-typed programs,
regardless of which kind of type system is used. In
the definition of a user-defined data type, we will only
consider its constructor names. We just assume that
nothing goes wrong when running a well-typed pro-
gram with a classical operational semantics in call-
by-value style. Programs are defined according to
the following BNF definition :

FP let fx1...2p =€

let f x1...xn = fun
CYL.-.Ym —e| ...

z|fl(ee)

(cer...en)
(rei...en)

| n = fc
| n={r
In this definition, the (f) symbol means “arity of”.
Type-constructors of user-defined data types are de-
noted by ¢ (for instance, cons, nil, etc.). Primitive
values and operations (integers, etc.) are denoted by
w. Notice that this grammar is sufficient to define
higher-order functions, since partial applications are
possible. Expressions like fun — e which appear in
classical functional programs can be translated into
a new function name. For instance, the program

let horev x = match x with
cons a b ->
let k = horev b in
fun h -> (k (cons a h))

| nil => fun h -> h
is just syntactic sugar for the following one:

let horev = fun
cons a b > ((f1 a) (horev b))
| nil -> £2
let f1 a k h = (k (cons a h))
let f2 h = h

For pure recursive functions, conditional expres-
sions are replaced by pattern-matching on true and
false, as in the following definition of the function
factorial:

let fact n = f n (< 0 n)
let £ n = fun

true -> (¥ n (fact (- n 1))
| false -> 1

We consider a standard operational semantics for
FP, in the call-by-value style. It is defined by a rela-
tion —, where v is an environment which associates
variables to values (the empty environment is denoted
by e; the association of z to v in 7 is denoted by

~(z : v)). Values are classically defined by the fol-
lowing BNF grammar:
v ou= (fpur...vp)
| (cvr...vn)
|

We denote by f, the function f partially applied to
exactly p arguments, in order to be consistent with
further definitions. For primitives, we will suppose
that a rewriting rule > is available, such that for in-
stance (+ 1 2) > (3). The operational semantics for
FP is then defined figure 1.

-
(61 62)—>7v<:>

er =y (fp v1...vp)
ez —qy v
(Fforrv1-..vp ') >0

o (favi...vn) myv&
(let fz1...zn =€) € FP
v =v(@r t vk)k<n
€=y v

or

(let fz1...2p—1 =fun
CYL-..Ym — €| ...) E FP
vp = (C Wi ... Wm)
’Y’ =y(xr : V&) h<n (¥ : wi)igm
BC—LYIU

o (cer...en) oy (cv1...0n) &
(Vi)ei—n,m

o (mer...en) oy V&
(Vi) e; —+ v;
(mv1...v0)Dw

Figure 1: Operational Semantics of FP

3 Equational Programs

3.1 An intuitive presentation

Consider the following program:

let length = fun
cons a b -> (+ 1 (length b))
| nil -> 0

We can have, as an example, the following execu-
tion (here, = gives intermediate steps for —.):

length (cons 5 (cons 6 nil)) =
(+ 1 (length (cons 6 nil))) =
(+ 1 (+ 1 (length nil))) =
(+1(+10)=2

Now let us denote each list by a variable z, and
the result of the function length on z by the vari-
able z.length (length will be called an attribute on
x). Intuitively, this implies the following equations:

(Vx) x = (cons a b) =

z.length = (+ 1 b.length) (1)
(Vz) z = (nil) =
z.length =0 (2)

When the variable z is associated to a term like
(cons t1 t2), we use by convention the variables z.1
and z.2 to respectively denote the sub-terms ¢; and
to. In this context, the previous execution could be
represented by the following list of statements, where
z, .2, and x.2.2 could be thought as variable names:

x = (cons 5 (cons 6 nil))
z.length = (+ 1 z.2.length)

x.2 = (cons 6 nil)
z.2.length = (+ 1 2.2.2.length)
z.2.2 = (nal)

z.2.2.length =20

z.2.length =(+10)

x.length =(+1(+10)
z.length =2

Remark that the two equations (1) and (2) look like
closely to the functional program, and that the above
list of statements satisfies them. When a function
uses parameters, such a comparison is still possible.
For instance, the program

let rev h = fun
cons a b -> rev b (cons a h)
| nil -> h

is associated to the following equations where, for
any list denoted by the variable x, the parameter h
is denoted by the variable z.rev_h and the result of
the function rev is denoted by the variable x.rev:

(V) x = (cons y z) = x.rev = z.1ev
(Vz) z = (cons y z) = z.rev_h = (cons y x.rev_h)
(Vz) z = (nil) = xz.rev =z.rev_h

Thus, a set of equations seems to be sufficient to
describe the values computed by a functional pro-
gram on list-like structures. But what about pure re-
cursive functions, like factorial, or higher-order ones?
The problem relies on partial application, namely, on
expressions like (e; ey).

In such situations, we propose to associate a fresh
variable x to the expression e;. Then the variable
x.arg is associated to ez, and z.call to the (partial)
application (e; e).

For instance, consider the function definition
let £ a b = (+ a b). The function £ could be par-
tially applied, thus we need the following equations
related to arg and call:

(Vz) z = (fo) = z.call = (fi z.arg)
Vz)z=(fiy) = =z.call=(+y z.arg)

Here, the constructors fy and f; are used to repre-
sent functional values such as (fy) and (f; vy), that
is, the different partial applications on the function f.
The equations defining variable z.call from x.arg are
consistent with the definition of (e; e2) — v given
in figure 1.

Thus, it seems possible to represent programs by
a set of equations. Of course, we have to formalize
such a translation, and to prove a semantic equiva-
lence between the two representations. This is the
aim of the paper, and we will start with a defini-
tion of what is an equational program. The section 4
gives its semantics, and we will present in section 6 a
translation from functional programs into equational
ones.

3.2 Definitions

The following definitions are mutually recursive and
must be considered all together.

Terms: Terms are built using constructors or prim-
itives with variables or sub-terms as parameters.
There is no function call. The set of the variables
appearing in a term t is denoted by Vars(t).

Values: a value v is a term which contains no vari-
able, i.e. Vars(v) = 0.

Variables: They name or represent terms. A vari-
able can have several forms:

e a simple name (an identifier).

e z.k (k is an integer) represents the k-th sub-term
of (the term represented by) the variable z.

e 2.0 (a is an attribute name) represents the at-
tribute a attached to the variable z.

e z.L; (k is an integer) represents the k-th local
variable associated to the variable .

The form z.Lj is just a way to make a new vari-
able name which is associated to the only variable z
and could be used as a fresh local variable to name
intermediate or dynamic computations.

Attributes: There are two sets of attributes, Res
for attributes which represent the results of a com-
putation, and Prm for those which represent the pa-
rameters of a computation. Then, with p € Prm
and r € Res, the variable x.r represents the result of
computing the attribute r on = when the attribute p
is equal to the term represented by z.p.

Statements: A statement is an oriented equation
of the form x = ¢, where the left-hand-side is re-
stricted to be a variable. A system X is a set of
statements.

Equations and Program: A program is defined
by a set of equations, which are restricted to be of
the following form:

Ve)z=(cy1--.Ym)=> 2=t

where the statement z = ¢ may refers to x and
Y1.--Ym- Thus, we will use the shortcut notation
¢ — z = t where the variable z is replaced by the
special identifier & and y; ...ym by a.1l...a.m. For
instance, the equational program associated with the
function rev is:

— a.rev = a.2.rev
— a.2.rev_h = (cons a.1 a.rev_h)
— a.rev = a.rev_h

cons
cons
nal

These definitions are summarized in figure 2.

P = (c— stmt)*
stmt = x =t
x = al|zk|za]|zLg
t =
| (cti...tn) m=tc
| (rt1i...tn) m=t{r
b)) = stmt”

Figure 2: Equational Programs

4 Equational Semantics

We define here a semantics for a given equational
program P. The intuitive idea consists in computing
output-statements ¥ o, from input-statements Xj,,
by adding new statements such that the equations of
the program P remain satisfied.

4.1 Substitutions

Two kinds of substitutions are involved here. The
first one, denoted by [z := t], replaces each whole
occurrence of the variable z with the term ¢. Thus,
we have: (+ 1z)[z:=t] = (+1¢), but (+ 1 z.a)[z :=
t] = (+ 1 z.a) since z.a is not a whole occurrence of
x.

The second kind of substitution, denoted by [z],
replaces the special identifier a by = everywhere
it appears, even inside variables. Thus, we have
(+1a)z] =(+1x), and (+ 1 a.a)fz] = (+ 1 z.a).

4.2 Derivations

A step is a relation denoted by —p, such that ¥ —p
¥’ holds if and only if one of the following properties
holds!:

e the sub-term property, which deals with sub-term
variables, holds when z = (¢ #1...t,) € ¥ and
Y =Y U{z.k =1t}

e the substitution property holds when z =t € X,
y=t' €eTand ¥ =X U{z=tly:=1t]}

e primitive operations are handled by the primi-
tive property which holds when z =t € X, t t/
and ¥ =X U{z=t'}.

e Finally, the instantiation property deals with ap-
plying an equation of the program P. This prop-
erty holds when z = (c t1...t,) € ¥ and when
there exists an equation of the form ¢ —» y = ¢
in P, and when ¥' = ¥ U {y[z] = ¢[z]}. In this
special case, the fact ¥ —p ¥’ is also denoted by
¥ Y=%" 3 when the instantiated equation should
be pointed out.

Remark that if the instantiation property is not used,
the relation —p could be replaced by —y.
The relation =p (resp. =7) is defined from —,

(resp. —%) by:

T=2pY & T Y and ¥ ¥

Intuitively, ¥ =p ¥’ means that there exists a
derivation from ¥ which produces at least the equa-
tions ¥'. For instance, consider the following pro-
gram P:

cons
nil

- al=(+1a2l)
- a.l=(0)

1To make short-cuts, each “free” variable which appears
in these definition is supposed to be universally quantified
(Vx...).

Possible derivations lead to:

{a=(cons 1L nil)} =p {a.2=(nil)}
” =>p {a2.l=(0)}
” =p {al=(+1a2l)}
» =p {ad=(1)}
Theorem 4.1 =p is monotonic, that is, if

(Vi) B =p T, then (U;Z5) =» (U;T). As a
direct consequence, =p is confluent, though it is
often non-terminal.

Theorem 4.2 =p has a sub-term property, that is,
Y =p ¥ if and only if (V) X[z] =>p T'[x].

4.3 Semantics

We are interested in using equational programs to
perform program transformations. So we need a se-
mantics which only consider what are the values com-
puted by a program, not how they are computed.
Consider the system Xy, = {a = v}, where v is a
value (ie. a term with no variable). Any derivation
from X.p, is a trace of an execution of the program P
on the value v. The resulting values are statements
of the form a.r = v, where r € Res. An interesting
semantics associated to P should not consider any
complete derivation, but only the values v and v,..

More precisely, the semantics of an equational pro-
gram P is defined according to a pair (P, R), where
P is set of parameter attributes, and R a set of re-
sult ones. If P = {p1...pp} C Prm and R =
{r1...rm} C Res, the semantics of P according to
(P, R) is denoted by [P]p,r and is the relation be-
tween tuples of values defined by:

(v,v1...vn) [Plpr (w1 - wm)
R4
a=v ari=w
_ 1= wy
apr="0 =p
QT =W
o.pp = Up m m

Thus two programs P and P’ are equivalent if and
only if their semantics are equal (using the standard

equality on relations) for all pairs (P, R). With such
a definition, if P and P’ are equivalent, they may
use completely different derivations, but they must
compute the same values.

5 Results

According to section 3, it seems that a transformation
exists from functional programs to equational ones.
Though this translation could be defined easily for
some special cases, the most general translation must
take into account higher-order, non-linear algorithms,
etc. Thus, the translation must follow the operational
semantics of the functional program to translate.

The result is, of course, that such a translation
exists and is well defined according to both func-
tional and equational semantics. Moreover, the in-
verse translation exists, and is also correct. The first
one is precisely defined in section 6, and the second
one is defined in sections 7 and 8.

Actually, these two translations are not difficult
to implement, and thus it is possible to convert pro-
grams from and toward their functional or equational
point of view. This allows interesting operations since
there exists powerful transformations for equational
programs. In this section, we want to point out some
of them. To understand how these transformations
get benefit from the equational point of view, let us
start with few remarks.

The translation from an equational program P into
a functional program FP computes the functions that
could be defined according to the available equations
in P. Thus, transformations are no more restricted
by any fixed recursion scheme. Moreover, it is possi-
ble to freely add new equations which are consistent
with the semantics of P. These additions may not
participate to any “function” recursion. The transla-
tion from P into FP will decide which equations have
to be taken into account to define functions.

The end of this section is a very short presenta-
tion of the transformations that could be defined on
equational programs. Actually, all of them have been
implemented in a completely systematic transforma-
tion system. Our implementation takes a functional
program, translates it in an equational one, trans-

forms it, and then produces back a new functional
program.

5.1 Tupling

A tupling transformation is defined by computing “si-
multaneously” the results of two (or more) functions
on one common argument: let £ x y1 y2 = ((f1
x y1),(£f2 x y2)). Many simplifications could be
performed by such a transformation.

In the equational context, tupling transformation
is automatically performed whenever it is possible. It
is not a real transformation for equational programs,
but rather a direct result obtained by computing its
operational semantics.

5.2 Partial Evaluation

Thanks to the theorems 4.1 and 4.2, partial evalua-
tion is easy to define. Consider the following relation:

{a=(cal..an)}=pX

Then, X[z] is a set of statements deduced from any
variable z such that x = (¢ t;...t,). Then it is possible
to prove that adding the equations ¢ — ¥ to P is
consistent with its semantics. Now, computing the
operational semantics for P will automatically get
benefit from these new equations. The final result
obtained is a partial evaluation of P. For this method
of partial evaluation, the only problem of termination
comes from functional programs that infinitely loops.

5.3 Approximative dependences

The operational semantics of an equational program
P points out some dependences between parameter
attributes and result ones. Thus, in the relation
[Plp,r, the attributes in R depend on those of P.
Fortunately, it is easy to compute an approximation
of these dependences, denoted Dep. We expect that
if the result attribute » may depends on the param-
eter attribute p, then p € Dep(r). This approxima-
tion is computed by looking for every equations which
may participate to the computation of the attribute

r, and by collecting every parameter attributes in-
volved. This analysis will be very useful for further
transformations.

5.4 Specialization

The specialization of a function f is, for example,
a new function g such that g x = (£ K x) where
K is a constant (a value). Sometimes, introducing
such a function g allows to perform simplifications.
In equational programs, a specialization is defined in
two parts. Let p be a parameter attribute and K
a constant, a new attribute r' is defined for every
result attribute r such that p € Dep(r). As the first
step, the definition of ¥ —p X' is extended by the
case where ¥ = XU {zr =zr'}ifzp =K € X.
As the second step, we add new equations for each
constructor ¢, namely:

¢ — a.r =a.Lpy.r
c—a.Lnp =ap (Vp' €Dep(r) — {p})
c—oa.Lpp=K

The local variable a.L,, is supposed to be fresh.
The specialization is then automatically performed
by partial evaluation.

5.5 Deforestation

The deforestation is an extension of the specializa-
tion dealing with function compositions. In func-
tional terms, it consists in defining a function h such
thath x = £ (g x). There are well known methods
to simplify function compositions, but they are not
powerful enough, especially in the presence of param-
eters. In most cases, the problems come from the dif-
ficulty to change the recursion scheme of a function
in the context of standard semantics for functional
programs. In the context of equational programs,
recursive schemes are computed from equations, so
the problem is simpler. Actually, the composition
of two attributes can be defined in a way similar to
specialization, by introducing new attributes and by
extending the relation —p. The deforestation works
well, even through parameters, as illustrated by the
following examples.

The definition of deforestation depends on the kind
— result or parameter — of the involved attributes.

Result-deforestation: Suppose that r and s are
two result attributes, with Dep(r) = {p1...p,} and
Dep(s) ={q1 ---q¢m}- Then, the composition of r and
s will be defined by a new result attribute s’, and from
the new parameter attributes ¢j . ..g.,. Their defini-
tion yields new equations, for each involved construc-

tor ¢:
!
c— a.r =a.Lj.s

!
¢ — a.Lijpe.qj = a.q;
¢ — a.Lje = a.r

The local variable «..L;,. is supposed to be fresh. In
parallel, when x = y.s € ¥, a new property extends
Y —p ¥ where ¥’ =X U X, and

2= {

Parameter-deforestation: To deforest through
parameters, the solution is similar. Suppose the re-
sult attribute r is computed on a parameter attribute
p, with Dep(r) = {p1...pn}. Then the new result
attributes are 7| ...r), and the new parameter at-
tribute is p'. They are defined by the following equa-
tions, for each constructor ¢ where a variable z.p is

involved:

z.s =y.r'
Yq; = 2.

c—2.p =x.Lige.r
¢ — x.Lige.pi = T.7}
c— x.Lige =x.p

The local variable a.L;,. is supposed to be fresh. In
parallel, when x = y.p € X, a new property extends
Y —p ¥, where ¥ =X U X, and

5 -{

5.6 Examples

z.r =y.p'
Y.y = x.p;i

All these examples come from the implementation of
our system. It is available on the web?.

2http://www-rocq.inria.fr/~correnso/agdoc/

Reversed flatten: the function f given in figure 3
takes a binary tree, flattens its leaves, and then re-
verses the obtained list. After four steps of defor-
estation, the program in figure 4 is obtained. One
can observe that it is a variant of the function flat
where the tree is flattened in the reversed direction.
So, our analysis and deforestation methods are able
to completely modify the control flow of a recursive
function.

Inefficient composition: figure 5 presents the
function append which appends two lists, and the
function f which appends three lists. Actually,
the expression (append (append x y) z) should be
translated into (append x (append y z)) to avoid
one duplication of each list x and y. Deforestation
performs the transformation automatically as shown
in figure 6.

Removing continuations: As a last example, we
transform the reverse function written with a contin-
uation, given in figure 7. The data deforested is the
continuation. The result in figure 8 is equal to the
standard function rev with accumulator. This result
shows the power of dealing with a system which does
not include function calls. In equational semantics,
functional values are encoded like other values, and
thus, they could be treated in a same way. Here , the
elimination of the continuation is performed by the
standard deforestation for equational programs.

6 Translation

In this section, we will see how to translate a func-
tional program into an equational program. This
translation works by a simple encoding of the op-
erational semantics of functional programs given in
section 2.

First of all, there is a total isomorphism be-
tween values of functional programming semantics
and equational semantics ones. This is just a conven-
tion, but it simplifies the translation. Since there is
no function in equational programs, we have to define
a new constructor for each partially applied function.
Thus, the functional value (f, v1...vp) is also a value

let flat x h = match x with
node a b -> flat a (flat b h)

| leaf n -> cons n h

let flatten x = flat x nil

let £ x = reverse (flatten x)

Figure 3: flatten and reverse

let fpfun_2 =
fun t_38 -> (
fun t_39 -> (match t_38 with
| nil -> t_39
| cons t_41 t_42 ->
((cons t_41) ((fpfun_2 t_42) t_39))
D)

let f =
fun t_16 -> (
fun t_17 -> (
fun t_15 -> (
((fpfun_2 t_16) ((append t_17) t_15))
»)

let f =
fun t_27 -> (((fpfun_1 t_27) nil))

let fpfun_1 =
fun t_42 -> (
fun t_43 -> (match t_42 with
| node t_44 t_45 ->
((fpfun_1 t_45) ((fpfun_1 t_44) t_43))
| leaf t_51 -> ((cons t_51) t_43)
)))

Figure 6: Better composition with append

let revho x = match x with
cons a b ->
let k = (revho b) in
(fun h -> k (cons a h))
| nil -> (fun h -> h)

let reverse x = ((revho x) nil)

Figure 4: flatten and reverse deforested

Figure 7: reverse with higher order

let append x y = match x with
cons a b -> cons a (append b y)
| nil > y
let £ x y z = (append (append x y) z)

Figure 5: Wrong composition with append

let fpfun_1 =
fun t_11 -> (
fun t_12 —-> (match t_11 with
| nil -> t_12
| cons t_14 t_15 ->
((fpfun_1 t_15) ((cons t_14) t_12))
))

let reverse =
fun t_3 -> (((fpfun_1 t_3) nil))

Figure 8: reverse with h.o. deforested

in equational semantics by considering f, as a classi-
cal constructor. Notice that this choice is consistent
with the fact that functions are considered as values
in functional programming.

The main concept driving the translation consists
in the management of functions and applications, and
relies on the following theorem :

Theorem 6.1 If (v;);<3 are values, then:
(vl 1)2) —e V3 & (017’02) [[P]] arg,call (U3)

where [P] is the semantics of the equational pro-
gram P translated from FP.

Consider a functional program FP. For each func-
tion definition, the function [] defined in figure 9
computes a piece of the expected equational pro-
gram P. Pieces of equational programs are denoted
by II, and the notation II = ¢ — X means that
II ={c—2=t|z=1te¢e X} The expression
[e] z,v, defined in figure 10, computes a set of
statements such that:

Theorem 6.2

e, v X=p {z=10}
with: E¥=[e] z,vy

Thus, for instance, the definition of the function
rev is translated into:

revg — a.call = (revy a.arg)
revy — a.cell = a.Li.rev_call
? — a.Li.revy = a.l
” — a.L1 = a.arg
cons — a.rev_call = a.La.call
? — a.Ly.arg = a.2
i — a.Ls = a.Ls.call
7 — a.Ls.arg = (cons a.Ly a.Ls)
” — a.Ls = (revo)
” — a.Ly=a.l
” — «a.Ls = a.rev_h)
nil — a.rev_call = a.rev_h

After partial evaluation and renaming of local vari-
ables, the following equational program is obtained:

[let f zi..xn =¢] =
ou{f. - %}
where :
I =, Closure(f,k)
v = (zk : @.k)k<n(Tn : a.arg)
Y = [e] a.call,y
[let f z1..xp = fun
CYLYm — €| ...] =
nuir'u(YIL)
where :
I =J,,, Closure(f,k)
Y= (xk : a.k)kgn
m = new_local_nbr()
o= fot1 — {
a.call = a.Ly,.f_call
&L .f 2 = .k
a.Ly, = a.arg

k<n

Yo = (xk : o.f Tk)k<n
(Ve) ve =0(yj : @.f)j<m
(Ve) I = ¢ — [ec] a.f-call, .
Closure(f, k) = fr — {
a.call = (fr+1 a.l...a.k a.arg)
}

Figure 9: Translation: functions

[z]y,y={y=~(=)}
[f1y,y={y=(fo)}
[(ere2)]y,y=
i<2 X
where :
m = new_local _nbr()
3o = {y = a.Ln.call}
3 = [e1] @.Lim,vy
¥y = [e2] @.Lpm.arg,y
[(cer...en)] y,v=
{y=(cyLm,...y.Lm,)}UUZ)
where :
(Vi) m; = new_local_nbr()

(Vi) X = [es] y-Lms,y

10

Figure 10: Translation: expressions

revo — a.call = (revi a.arg)
revy, — «a.call = a.Li.rev_call
? — a.Li.revp = .1
7 — a.Li =a.arg
cons — a.rev_call = a.2.rev_call
7 — «a.2.rev_h = (cons a.1l a.rev_h)
nil — a.rev_call = a.rev_h

7 Strategies

In contrast with the section 4, this section concerns
the recursive structure of the derivations. The aim
is to construct canonical derivations for the relation
[Ple,r-

We will say that a system X defines a variable z if
and only if there exists a value v such that z = v €
3. By extension, we will say that ¥ defines a set of
attributes A on a variable z if and only if ¥ defines
the variable z and all the variables z.a where a € A.

7.1 An example

Consider the following program P:

cons — or=qa.2r (egn,)
cons — a.2.p=(cons a.l a.p) (eqny)
nml — ar=ap (egng)

These three equations have been denoted by egn; to
simplify notations. Actually, for any list [the follow-
ing statement holds:

(1, nil) [P]p, (")

where ' is the list | reversed. Recall that such
a statement means that there exists a derivation
Yin =p Xout where ¥, defines p on o and X,y
defines r on «. In this section, we want to find the
structure of a possible derivation for X;, =p Xous-
We need here new notations. In the section 4.2, we

have denoted by Y=4 the instantiation of the equa-
tion y = ¢ on the variable z. In the same way, we

T T

will denote by “53” a derivation which allow to define

11

z.r from z.p. More precisely, for all system ¥ which
defines p on z and ¥ "5” ¥/, then ¥’ defines r on z.

So, let us start with a derivation X, —% ¥'. From
the definition of (—p), we can observe that its (—g)
part is not able to introduce a variable a.r on the left
side of an equation. Thus at least one equation of P
has been instantiated on «. This requires that either
a = (cons v, v2) or a = (nil). Then, it is possible to
inductively construct "3 as follows:

e Either o = (nil): it is possible to use the deriva-
eqng,o
—

tion (), thus applying the equation associ-
ated to nil in the program P. Then (=p) will
perform all the sub-term, substitution and prim-
itive derivations to produce a system Y’ which
defines r on «, without using any other equa-
tion of P. More generally, using the theorem 4.2

leads to the expected derivation for z = (nil):

eqng,T

—

p,r7w
-_— = z ;

nil —

=]

Or a = (cons v1 v2): The strategy consists here

in recursively applying the derivation * D92 As
a first step, we get a system which defines p on

eqnq,a
—

a.2 thanks to the derivation , followed by
=y to perform substitution, sub-term and prim-
itive derivations. Then we use the derivation
PIg? g get a system which defines r on .2,
and we end the process by applying P fol-
lowed by =4 to get a system which defines r on
a. More generally, using the theorem 4.2 leads
to:

eqnqy,T
[=75

Thus, a possible definition of the expected deriva-
tion is the inductive definition:

p,T,x.2 €eqnq,T
;5T .

0>)

p,Tz
TP o
cons

=]

g4

p,'f‘,-’ﬂ_ x
='=d nil

cons + d
With this definition, for every system X; which
defines p on z, and X5 which defines r on z, the

following statement holds?:

3The proof for such a statement is made by induction on
the length of the derivation =-p, and then by case-analysis on
the equations of P that have been applied to . The proof
largely makes use of the two theorems 4.1 and 4.2.

psTT

21 =>Pp 22<:>21 = 22
As a short cut, we summarize all these properties
by the following notations, which define an opera-
tional semantics for P:

[P]°? = { (p,r, cons, seq1) (p,r,nil, seqs) }

where:

seq1
seqa

[egny; p,rya.2; eqny]
[egn;]

7.2 Operational Semantics

In this section we refine the definitions above. An
elementary derivation step s is either an equation y =
t of the program P, or a triplet (P, R,y). A sequence
seq is a concatenation [s1;...; $p] of steps. A strategy
S is a set of tuples (P, R, ¢, s), where P C Prm and
R C Res are two sets of attributes, ¢ is a constructor,
and s is a sequence.

. .. _PRu,
From a strategy S, the derivation % is defined
recursively by:

P,R,x

Y os ¥ & z=(c...)€X
and (P',R,c,seq) €S P'CP
and ¥ 9y

IR 31 & seq = [815---; 8n)
and ¥ % ... =y

el 3l & nVhTwy

s PEYr s o w2 PR

A strategy S is an operational semantics for P if
and only if, for every system X p defining P on z,
and every system X g defining R on z, the following
holds: PRa

Yp=>pYXp & Xp 55 Xg
We denote such a statement by [P]°? = S, and we
have the following property:

(v,v1...00) [PIZR (wi...wm)
=4
a=v
a.ry = Wy
a.pr =1 P,R,x
—3s -
. arym =W
Q.Pp = Un " "

12

Notice the difference with the definition of [P]:

(v,v1...vn) [Plpr (w1 ... wp)
<
a=v ar, =w
_ T =Wy
apr="u =p
QT =W
Q.Pp = Un m "

While [P] gives no information about the structure
of the derivation =>p involved in this (denotational 7)
semantics, [P]°? exhibits a derivation with a fixed
scheme of recursion.

7.3 Construction of [P]”

This section presents the algorithm which find such
an operational semantics for a given equational pro-
gram P. Actually, we want to translate [P] into
[P]°P. The kernel of the algorithm is a fixpoint com-
putation of a well suited strategy, denoted by Sy .

We introduce the following logical formula H with
two parameters, an integer n and a strategy S :

H(n,S) <
Y(P,R), Sp =0 Spe Sp 5% Ng

The fixpoint computation involves a function Nezt,
and an order-relation () such that the following the-
orem holds:

Theorem 7.1

(Vn) H(n,S) = H(n + 1,8 U Next(S))
S C 8" = Next(S) C Next(S')
(380) So C Nem't(Sg)

Then it is easy to prove that the greatest fixpoint
of Next exists and, denoting it by Sy, the following
holds:

Theorem 7.2
Soo = fix Next Sy
(Vn) H(n,Sw) and [P]? =S

The function Nezt is long and complex to define
precisely. The next section provides guidelines to un-
derstand its complete definition.

7.4 The function Next

In spite of a long definition, the construction of the
Nezt function is intuitive, and consists in exploring
what a strategy could consist of. The extended def-
inition is reported in figure 11, and is only the for-
malization of what we presented in the introducing
example. This section just provides guidelines (in
small font) to understand the role of the different
components involved in these definitions.

The Nezt function computes strategies independently
for each constructor through the function Pool. Actually,

we must ensure that a derivation 1113;0 will be available for
all the constructors involved to compute the attributes in
R. This set of constructors is denoted by 7r. The pred-
icate implemented (P, R,S) tests if a strategy is available
for the pair (P, R) in S for each constructor in 7&.

The function Pool(c,S) computes all available strate-
gies when a = (¢ v1...vn) and when the recursive deriva-
tions are taken from S. By a fixpoint algorithm, this func-
tion computes a set of tuples (D, seq, P, R), where D is a
set of variables, seq a sequence of steps, P and R two sets
of attributes. The invariant property maintained at each
iteration of the fixpoint computation is the following. For
each tuple (D, seq, P, R), seq is a derivation such that:
Let ¥ be a system which defines P on «, and where
a = (c...). Suppose that applying the sequence seq on X
leads to the system X', that is: ¥ “35 X'. Then, this sys-
tem X' defines R on «, and it defines also all the variables
in the set D.

Each iteration of this fixpoint algorithm is computed
by the function Infer(c,S)(F) which adds new steps to
the sequences seq inside tuples (D, seq, P, R) € E, main-
taining the invariant property above.

The other functions compute auxiliary results. Thus
need(s) and prod(s) respectively computes the variables
that are needed to be defined before applying the step s,
and those which are produced after this step.

The Nezt function has a greatest fixpoint, with the
following order [on strategies:

SCS' & (YP,P,R)
< implemented(P', R,S")

and implemented(P, R, S)
An good starting strategy So to initialize the fixpoint
computation is the following one:

) =PCP

13

So = {(0,7‘,0, []) | CETp, TE Res}

This strategy ensures that the next function could find
at least one strategy for each result-attribute. It is not
possible to start with an empty strategy, because the fix-
point would be empty.

The algorithm provided here is well-suited to make
proofs, but is completely inefficient in practice. A naive
implementation of the Nezt function leads to a terrific
exponential algorithm. Essentially this complexity comes
from the permutations allowed by the confluence theo-
rem 4.1, and from the large amount of possible pairs
(P, R) to consider. Our implementation improves this al-
gorithm in order to take into account these permutations,
and to control and limit the number of pairs (P, R) to be
considered.

eNest(S) = { (P, R,c,seq) | P=({P' |
(3P" c P") (., seq, P",R) € Pool(c,S)
and V¢' € 1R,
(FP" c P (,,_,P",R) € Pool(c',S)
}
erp={c|Vr€RItc—ar=teP}
eimplemented (P, R,S) < V¢ € 1g
(3P'cP) (.- P ,R)€ Pool(c,S)
*Pool(c,S) = fix (Infer(c,S)) {(De,[],0,0)}
with D, = {a; a.1;...;a.n}, n ={c
eInfer(c,S)(E) = EU{Add(s,e) |e€ E
and defined(s,e) and callable(s,S)}
e Add(s, (D, seq, P, R)) = (
D U prod(s), [seg; 5],
P U (need(s) N {a.p | p € Prm}),
RU (prod(s) N {a.r | r € Res})
edefined(s, (D, -,) &
needs(s) C DU {a.p | p € Prm}
ecallable((z = t),S) & true
ecallable((P, R, z),S) < implemented(P, R,S)
eneed(z =t) = Vars(t)
eneed(P,R,z) ={z} U{z.p | p € P}
eprod(z =t) = {z}
eprod(P,R,z) = {z.r | r € R}

)

Figure 11: The function Next

8 Backward Translation

This section gives guidelines about the translation
from the operational semantics of an equational pro-
gram (i.e. a strategy) into a new functional program.

Though consisting in many steps, the translation is
not complex. During the first step, the strategy [P]°P
is reduced to a new strategy denoted by S such that
for each triplet (P, R, ¢) there is at most one sequence
seq such that (P, R, ¢, seq) € S. Selecting which se-
quence will be optimal is a difficult problem, but sim-
ple heuristics are sufficient to choose interesting sub-
optimal ones. Actually, we choose sequences with
few constructors (to save space), few non-evaluated
expressions (like y = z.r with z = (¢ ...)), few re-
cursive calls (to keep tupled functions rather than
non-tupled ones) and few compositions (to make de-
forestation)*.

The second step defines the functions to be created
in order to implement the strategies. For each pair
(P, R), since there is only one sequence seq per con-

structor ¢ in S, the relation Ii]i’gz can be implemented
by a pattern-matching function. This function has
one parameter per attribute in P, and returns a tu-
ple® with one value per attribute in R. Then, for each
sequence seq, a piece of code is generated.

To implement a sequence seq, the idea consists in
associating each variable in seq to a fresh local vari-
able of £. For instance, the strategy of the section 7.1
is implemented in the following way:

let £ x1 = fun
| cons y1 y2 ->

let z2 = (cons yl x1) in
let 23 = (f 22 y2) in
let z1 = z3 in
z1

| nil ->
let z1 = x1 in
z1

4 Actualy, we need an approximation for the complexity of
each sequence. We are sure that related abstract interpreta-
tions and static analysis may be used to improve this step.
Future works will investigate this possibility.

5Tt is easy to add tuples to functional programs as syntactic
sugar.

14

The association table for the variables is:

al:yl ap:xil
a2:y2 ar:zi

a.2.p:z2
a.2.r:z3

But for each variable which is used only once in
a sequence, the local variable is not necessary, and
its definition could be inlined. Thus, the following
function is generated:

let £ x1 = fun
| cons y1 y2 -> f (cons y1 x1) y2
| nil -> x1

From this basic scheme, there exists many varia-
tions. Thus, a constructor ¢ for which a unique pair
(P, R) is defined should be interpreted as a function-
closure construtor. Then, no pattern-matching is
needed, and a pure functional expression is gener-
ated. Special treatment is also performed for con-
structors which correspond to tuples. See the results
in section 5 to find examples.

9 Conclusion

Equational programs and semantics have been ded-
icated to perform program transformations in the
context of functional programming. However, this
frameworks does not rely on functional definitions,
such as functors, morphisms or A-calculus. Thus, the
control flow of a program is not embedded in any
fixed recursion scheme. Since the control flow is re-
constructed after applying program transformations,
it can be completely transformed. This provides sig-
nificant improvements to many program transforma-
tions, especially to partial evaluation and deforesta-
tion.

Another interest of this approach is that equational
semantics is not restricted to functional programs
and could be used to modelize other programming
paradigms. The key idea of such a semantics to sep-
arate, as far as possible, what is computed from how
it is computed. Such an idea should be used largely
to improve existing transformation methods.

This work comes from various interesting for-
malisms and programming paradigms. For many

years, we have been collecting the best of exist-
ing techniques, such as attribute grammar deforesta-
tion [1], folds and hylomorphisms fusion [2], type-
directed or calculational deforestation [6, 8, 7, 9]. But
these formalisms were too much different from each
others to be compared and to produce nice cross-
fertilization. This is why we try now to refund them
in a new theoretical and implementable framework.
Following this driving idea, the notion of equational
programs raised naturaly and equational semantics
was not far away.

References

[1] Loic Correnson, Etienne Duris, Didier Parigot,
and Gilles Roussel. Symbolic composition. Tech-
nical Report 3348, INRIA, January 1998.

[2] Leonidas Fegaras, Tim Sheard, and Tong Zhou.
Improving programs which recurse over multiple
inductive structures. In ACM SIGPLAN Work-
shop on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM’94), pages 21-32,

Orlando, Florida, June 1994.

John Launchbury and Tim Sheard. Warm fusion:
Deriving build-cata’s from recursive definitions.
In Conf. on Func. Prog. Languages and Computer
Architecture, pages 314-323, La Jolla, CA, USA,
1995. ACM Press.

3]

[4] E. Meijer, M. M. Fokkinga, and R. Paterson.
Functional programming with bananas, lenses,
envelopes and barbed wire. In Conf. on Func-
tional Programming and Computer Architecture
(FPCA’91), volume 523 of Lect. Notes in Comp.
Sci., pages 124-144, Cambridge, September 1991.

Springer-Verlag.

[5] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi.
A calculational fusion system HYLO. In Proc.
IFIP TC 2 Working Conference on Algorithmic
Languages and Calculi, Le Bischenberg, France,

February 1997.
[6]

Tim Sheard. A type-directed, on-line partial
evaluator for a polymorphic language. In ACM

15

[7]

[8]

[9]

SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation PEPM
’97. ACM press, 1997.

Tim Sheard and Leonidas Fegaras. A fold for all
seasons. In Conf. on Functional Programming and
Computer Architecture (FPCA’93), pages 233—
242, Copenhagen, Denmark, June 1993. ACM
Press.

Akihiko Takano and Erik Meijer. Shortcut de-
forestation in calculational form. In Conf. on
Func. Prog. Languages and Computer Architec-
ture, pages 306-313, La Jolla, CA, USA, 1995.
ACM Press.

Philip Wadler. Deforestation: Transforming Pro-
grams to Eliminate Trees. In Harald Ganzinger,
editor, FEuropean Symposium on Programming
(ESOP ’88), volume 300 of Lect. Notes in
Comp. Sci., pages 344-358, Nancy, March 1988.
Springer-Verlag.

