A Generic Framework for Genericity

Loic CORRENSON, Etienne DURIS,
Didier PARIGOT and Gilles ROUSSEL

INRIA Rocquencourt - France.
Gilles Roussel is with Université de Marne-la-Vallée.

Abstract

Recently, generic programming becomes of a major inter-
est in several programming paradigms. A recurrent idea to
achieve genericity is to specify algorithms on their conve-
nient data structure, and to allow these specifications to be
instantiated onto a large number of neighboring data struc-
tures.

Polytypic programming, shapely types and generic at-
tribute grammars are generic programming methods related
to this approach. A framework for generic programming is
proposed to embed these methods. It consists in tools for
automatic generation of morphisms between data structures,
and for program composition.

Thanks to this compositional approach, the complete
specialization of generic programs could be advantageously
delegated to a general and powerful mechanism of “symbolic
composition”, which performs deforestation and partial eval-
uation.

1 Introduction

In several programming paradigms, generic programming is
being emerging. Although this concept is not new, generic-
ity currently raises a great interest in the programming and
software engineering community. In this area, one of the
recent issues is genericity according to the data structure.
When an algorithm is specified on a general data structure,
the notion of genericity appears with the possibility to reuse
it in several contexts, says, onto particular data structures.

A few years ago, Farrow et al. [7] devised a generic pro-
gramming notion for attribute grammars [10, 14]. This
genericity is based on the observation that any function f
defined by an attribute grammar on a type 7 could be in-
stantiated on a type 71. The only component needed, if it
exists, is a function m that implements a morphism between
terms of type 71 and terms of type 2. The composition of
this function m with the function f performs the instanti-
ation process. This approach has been revisited [11, 15, 2]
to enable automatic generation of the morphism m from
a simple specification of correspondence relation between
types. In this context, an efficient specialization process

Submitted to the 3rd ACM SIGPLAN International
Conference on Functional Programming (ICFP 98).

consists in applying a transformation that eliminates inter-
mediate data structures occurring in the composition. For
attribute grammars, Ganzinger and Giegerich solved this
general problem by introducing their descriptional composi-
tion algorithm [8, 1]. Using this technique, the construction
of the intermediate representation of type 7 is discarded
from the composition, and thus the original function f is
transposed and actually specialized onto the type 7;.

This problem of intermediate data structure elimination,
usually called deforestation [17], has been widely studied in
the functional programming community [12, 16, 13]. The
comparison between functional and attribute grammar de-
forestation methods [6, 4] led us to propose a powerful defor-
estation method for functional programs, the symbolic com-
position [5]', which is based on descriptional composition.

Since descriptional composition is an important compo-
nent of the attribute grammar genericity framework, we
have compared in [3] attribute grammar genericity with
polytypic programming [9]. These methods seems to be
complementary, and we propose in this article a general
framework for genericity. This framework is based on func-
tion composition, automatic morphism generation and a
general deforestation method.

The major benefit for this approach is to really separate
the application of a generic algorithm from the specializa-
tion of this instantiation. The first problem is solved by
morphism and composition, while the second is performed
by a general and powerful deforestation method. Automatic
morphism generation is still an open problem, even if meth-
ods already exist.

The paper is organized as follows. Section 2 presents the
general framework for genericity through the well-known ex-
ample of unification algorithm. Section 3 presents two dif-
ferent methods to automatically generate morphisms, while
section 4 illustrates the deforestation power for instantiation
and specialization purposes.

2 Framework for Genericity

Let us consider the general unification algorithm to illustrate
our framework. Recall that it consists in comparing two
terms t and t' that contains variables and in computing a
substitution o verifying (o t) = (o t'), if it exists. Although
this problem is general, a particular implementation of the
gener’al algorithm is required for each type of the terms ¢
and t'.

1This method deforests some functional programs for which exist-
ing functional methods fail.

To achieve genericity, we propose to specify it on the
following well-suited type term :

type term ¢ a = war a | const ¢ (list (term ¢ a))

Type c allows to distinguish the different constructors in
the term algebra, while type a allows to distinguish vari-
ables. Then, implementing the unification algorithm on this
type term is natural and it corresponds to classical algorith-
mic presentations. The advantage of this approach is to ease
the implementation and the readability of the generic spec-
ification. Indeed, everyone can understand the unification
algorithm specified on this type.

Let unify be the unification function. In order to use
unification in practice, this unification function has to be
composed with a morphism which instantiates the algorithm
on a particular type. Suppose that unification is needed
on a given type 7. This implies that some morphism M
from type 7 to type term exists and can be implemented
in a function m. Since the unification gives a substitution
which associates values of type term to variables, the inverse
morphism m ™! is needed to translate back the result. The
unification on 7 is instantiated by :

unify_r t t =1let o = unify (m t) (m ¢') in Az.(m~ ' (o z))

Then a classical deforestation method can be applied.
After the deforestation of function wunify_r, the intermedi-
ate values of type term are no longer constructed and the
functions m and m~" are no longer used. Let g be the func-
tion unify deforested with m and m™", the function unify_r
becomes::

unify Tt t' =let o =g t t' in Az.(0’ z)

Another approach to this unification problem could be
found in polytypic programming with PolyP [9].

In the example above, two parts appear. The first one is
a coupling process that produces a morphism between two
types. This morphism is a function that translates a value
into an intermediate representation; it could be composed
with any program working on this intermediate represen-
tation. The second part applies a deforestation method in
order to specialize such compositions into an instantiated
algorithm. Consequently, the compositional framework for
genericity is based on the three following key points:

Generic programming is achieved by functions composi-
tion. These functions are divided into two kinds. These
of the first kind (e.g. unify) implement generic algo-
rithms on a convenient type. Functions of the second
kind (e.g. m and m™") implement translations between
neighboring types.

Morphism specification provides the actual genericity.
Since it describes the translation between two types,
it also gives the way to perform the algorithm instan-
tiation. Most of morphisms involved in the composi-
tions could be automatically derived, thanks to small
specification in simple meta-languages. These meta-
languages should not be super-languages of the origi-
nal programming language used, in order to be reusable
and quickly developed. Nevertheless, these morphisms
could also be hand-written. Moreover, succesive mor-
phisms can be composed.

Specialization process performs the actual instantiation.
The specified compositions have to be improved. In
fact, each generic function has to be customized with
respect to its composition context. Rather than apply-
ing an ad-hoc method for each particular generic sys-
tem, it is worthwhile to use a general deforestation or
fusion method, that symbolically performs at one and
the same time composition, elimination of intermediate
values and partial evaluation.

Let M be the morphism specification, C the morphism
generation algorithm, alg the “generic” algorithm, m the
morphism function generated, alg,, the expected instanci-
ated algorithm, and I the programming environment. Then
the framework for genericity is abstracted by the following
figure:

deforestation
=

M,TSm
alg, M,T" = algom

algom alg
alg om = alg,,

where o is the standard composition in the original language,
and deforestation is a method like HYLO [13], or Symbolic
Composition [5].

3 Morphism Generation

In this section, two case studies of automatic morphism gen-
eration are presented. The first one was inspired by poly-
typic programming [9], but has been totally revisited to
match with our generic framework. The second case study
was inspired by attribute grammar genericity [11, 15, 2],
and is an illustration of cross-fertilization from different
paradigms. For clarity, technical details and algorithm
sketches are presented in annex A.

3.1 Compositional approach of polytypic program-
ming

Classically, in functional languages, functions are specified
for a single given (polymorphic) type. However, most func-
tions could be abstracted from any type. For example, the
number of leaves in a tree and the length of a list are speci-
fied by very similar functions.

To implement such generic functions, it is necessary to
specify them on a type that can represent the structure of
any value of any (polymorphic) type. We then propose the
following type Poly:

type Polycoa = Sum c (Poly ¢ o a)

| Prod (Poly ¢ o a) (Poly ¢ o a)
| Para

|

Obj o

The type Poly is parameterized with three type variables.
Let 7 be a given type. Intuitively, ¢ is a type that identify
the constructors of 7, o is a type that identify other types
that could appear in 7 (e.g. boolean, integer, etc.), and a is
the polymorphic variable of type 7. Thus, the classical type
list

type list a = nil | cons a (list a)

can be represented by the type (Poly c_list o_list a) where:

type c_list = list_cons | list_nil
type o_list = list_empty

An interesting point is that type Poly is defined in the
original functional language and does not require any spe-
cial notation. The translation from type list to type Poly
(resp. the backward translation) is performed by the func-
tion out_list (resp. inn_list):

out_list £ = match z with
cons a b — (Sum list_cons (Prod (Par a) (out_list b)))
nil — (Sum list_nil (Obj list_empty))

inn_list p = match p with
Sum list_cons (Prod (Par a) v) — (cons a (inn_list 7))
Sum list_nil (Obj list_empty) — (nil)
_— raise "not a list”

These two morphisms out_r and inn_r can be automati-
cally generated from every type 7. Mutually recursive types
and type compositions can also be automatically abstracted
by morphism composition. Details can be found in annex
A.

Then a function that is independent from any type, but
that depends on the data structure of its variable can be
specified on type Poly. For instance, consider the functions
size and flatten ; they respectively calculate the number of
Par occurrences in a value of type Poly, and their list :

size £ = match z with

Sum cy — (size y)

Prod y y' — (size y) + (size y')
Par y -1

0bj 2 —0

flatten z h =match z with

Sum ¢y — (flatten y h)

Prod y y' — (flatten y (flatten y' h))
Par y — (cons y h)

0bj 2z — h

Then, functions that compute the size and the leaves list
on type tree (binary trees) and type list are obtained by the
following compositions :

type tree a = leaf a | node (tree a) (tree a)
size_list t = (size (out_list t))

flatten_list t h = (flatten (out_list t) h)
size_tree t = (size (out_tree t))

flatten_tree t h = (flatten (out_tree t) h)

Applying deforestation will eliminate the construction of
the intermediate value of type Poly, and will lead to the
expected functions. For instance, for the type tree, defor-
estation leads to:

size_tree t = match ¢t with
node a b — (size_tree a) + (size_tree b)
leaf n — 1
flatten_tree t h = match t with
node a b — (flatten_tree o (flatten_tree b h))
leaf n — (cons n h)

The main advantage of type Poly is that a bijective mor-
phism can be automatically derived from any (polymorphic)
type. But this type is not the most natural to implement
many algorithms. Actually, many algorithms need seman-
tic information on values that are not necessary explicited
by the structure of the type. For instance, it is difficult for
the unification algorithm, to determine what and where are
variables in the type Poly.

3.2 Correspondence relation

Previous section shows one way to generate a bijective mor-
phism between any type 7 and type Poly. This section pro-
poses another method to generate morphism between data-
structures. The aim is to infer a — not necessarily bijective —
morphism between two arbitrary types. Consider the follow-
ing type representing a binary tree with one or two integers
at each node:

type clumsytree =
node elements clumsytree clumsytree | nothing
type elements = one int | two int int

Now, consider the type 7:

type T a = leaf
| node; @ (1T a) (7)
| nodes a @ (7 @) (7 @)

A morphism between type clumsyiree and type 7 can be
implemented with the following function:

let couplage t = match ¢t with
node (one a1) t; t2 —
(node; a1 (couplage t1) (couplage t2))
node (two a; ag) t; ts —
(node2 a1 as (couplage t1) (couplage t2))
nothing — leaf

Two properties are verified by this morphism: type
clumsytree is associated to (7 «), and type int is associ-
ated to a. It is possible to denote these two properties by
the following relation :

Cor(tree a) = {clumsytree}
Cor(a) = {int}

Such a relation is called a correspondence relation be-
tween types clumsytree and 7.

The aim is now to automatically derive the function
couplage from a given correspondence relation. In [11] we
propose such an inference algorithm for attribute grammars.
It is easy to translate it into functional programming, as de-
scribed in annex B.

The basic idea of this algorithm is to associate a sub-
term of type clumsytree to a sub-term of type 7. Thus, the
algorithm yields the following associations :

e the term (node (one a1) t; t2) must be associated to a
term of type 7, composed with a tuple of type (a, 7, 7).
So it is associated to the term (nodel a} t] t5).

e the term (node (two a: a2) t: t2) must be associated
to a term of type 7, composed with a tuple of
type (a,a,7,7). So it is associated to the term
(node2 a} aj t) t3).

e the term (nothing) corresponds to a term of type 7 com-
posed with nothing else. So it is associated to (leaf).

Then, from such an association, it is very easy to gener-
ate the expected function couplage. Sometimes, more com-
plex associations have to be defined.

In [11], we show that it is not always possible to find the
associations, and we characterize these situations. A typical
example is:

} type a=c; n
typen=cennl|csb
type b=...

Cor(a')
Cor(d")

a

b}

I
~

The problem is due to the fact that a can “derive” into
an infinity of n which are not associated to anything by
the correspondence relation. Moreover, in [11], we try to
associate a term with a constructor instead of with a sub-
term. The general problem of “parsing” the leaves of a term
like (node (one a;) t; t2) with the constructors of a given
type remains opened.

Once again, this method fails when semantic information
on types have to be taken into account in order to generate
the morphism. Moreover, the morphism is often not bijec-
tive.

Even if none of the two previously exposed methods are
powerful enough to infer almost expected morphisms, they
could yet be considered as tools to construct complex mor-
phisms by composition of several simple ones.

4 Deforestation

This section illustrates the power of deforestation in order
to specialize instanciations of a “generic” program. After
giving notations for the unification example, we show some
critical steps of the complete deforestation process, for our
deforestation method, namely the symbolic composition [5].

Unification example: recall that a well suited type for
this problem is:

type term ¢ a = war a | const ¢ (list (term ¢ a))

Suppose now that the unification algorithm is standardly
written for this simple type:

unify : (term ¢ a) — (term ¢ a) — (a — (term ¢ a))

The expression (unify t t') returns the substitution s if
t and t' are equals modulo s. The substitution s is given
as a function from variables to terms. If the substitution
does not exist, the function raises the exception No_unif.
The kernel of unification algorithm is implemented by the
function wuni:

uni s t t' =match (¢,¢') with
(var z , var ') — if £ = z' then s else (link s z t')
(-, var z') — (link s =’ t)
(const c It , const ¢’ It') —
if ¢ = ¢' then
foldr (M(a,a').Ar.(uni r a a')) s (zip It It")
else
raise No_unif

where (link s z t) adds the substitution £ = ¢t to s if pos-
sible, and raises the exception No_unif otherwise. We then
have:

unify t t' = (uni empty t t')

where empty is the empty substitution.

Now, to perform genericity, we have to specify for every
type 7 a morphism from 7 to term. Since the unification re-
turns a substitution, it is important to work with a bijective
morphism. The function all_unify instantiates wunify with
such a morphism defined by the functions in : term — tree
and out : tree — term.

(all_unify in out) t t' =
let s = (unify (out t) (out t')) in Az.(in (s z))

To instantiate the unification algorithm on trees where
leaves are the variables, the two following morphisms are
used :

tree_to_term t = match ¢ with
node a b —
(const 1 [tree_to_term a ; (tree_to_term b)])
leaf n — (var n)
term_to_tree t = match ¢ with
const 1 [a;b] —
(node (term_to_tree a) (term_to_tree b))
var n — (leaf n)
_— raise "not a tree!”

Then, unification on trees is specified by:
unify_tree t t = (all_unify term_to_tree tree_to_term) t t'

The aim is now to transform this instantiation specifica-
tion — the only one the programmer has to write — into a
more specialized function.

Applying deforestation: the first step consists in spe-
cializing the definition of unify_tree :

unify_tree t t' =
let s = (uni empty (tree_to_term t) (tree_to_term t'))
in Az.(term_to_tree (s z))

Next, the composition of uni and tree_to_term is defor-
ested into the function uni;. In this function, many simpli-
fications have been performed, especially the partial evalu-
ation of the function foldr:

uni; s t t' =match (¢,t') with
(leaf © , leaf z') —
if £ = 7' then s else (link s z (tree_to_term t'))
(-, leaf z') — (link s ' (tree_to_term t))
(node a b, node a' b') — (uni; (uni; s b d') a a')

Now the composition of link and tree_to_term is defor-
ested into the function link;. Thus, the function uni; is
updated into uniz, and this leads to:

unify_tree t t' =
let s = (uniz empty t t') in Az.(term_to_tree (s z))

unis § t t' = match (t,t') with
(leaf © , leaf z') —
if £ =z’ then s else (link; s z t')
(-, leaf z') — (link; s ' t))
(node a b, node a' b') — (uniz (uniz s b b') a a')

At this point, the substitution s still associates variables
to terms, and not variables to trees. But further deforesta-
tion is possible, and the function unis will pre-calculate the
composition of s with term_to_tree. At the end of the entire
process, substitutions are physically constructed (in a list
for instance). Then the substitution s is discarded and re-
placed by s1, computed by the function uni;. Consequently,
the empty substitution is replaced by empty;. This leads to:

unify_tree t t' =
let s; = (uniy empty; t t') in Az.(s; 2)

uniy s; t t' = match (¢,¢') with
(leaf =, leaf z') —
if £ = 1’ then s else (links s; z t')
(-, leaf z') — (links s; z' t))
(node a b, node a' b') — (uni; (uni; s b b') a a')

This deforestation process seems to be complex, but it
only consists in multiple application of few rules. More-
over these simple rules are expressed independently from
any functional language. We are using an attribute gram-
mar based formalism enriched by dynamic constructions in
order to take into account composition and partial evalua-
tion into one single transformation, called symbolic compo-
sition. Thus, deforestation is the key tool to achieve gener-
icity by composition, since a unique framework is available
independently from any programming language.

5 Conclusion

This article presents a general concept of generic program-
ming, which is independent of any programming language.
Instead of bringing different approaches into conflict, it
expects large cross-fertilizations between different generic
methods. Each of them has advantages and limitations, and
offers different — and complementary — kinds of genericity.

In order to ease the cross-fertilizations it seems worth-
while to separate morphism specification from algorithm in-
stantiation and specialization. Then, symbolic composition
— or other deforestation method — is the basic tool which
enables the specialization of an algorithm to be performed
over new structures via morphisms specifications. As soon
as a deforestation method is available, many ways to achieve
genericity can be developed quickly, easily and efficiently.

Besides, there exists certainly other generic program-
ming and specializing methods that should be considered.
From our point of view, it will be interesting to carry out
some unified way to specify morphisms and to exhibit fam-
ilies of automatic or semi-automatic methods to generate
these morphisms.

References

[1] John Boyland and Susan L. Graham. Composing tree
attributions. In 21st ACM Symp. on Principles of Pro-
gramming Languages, pages 375-388, Portland, Ore-
gon, January 1994. ACM Press.

[2] Loic Correnson. Généricité dans les grammaires at-
tribuées. Rapport de stage d’option, Ecole Polytech-
nique, 1996.

3] Loic Correnson. Programmation polytypique avec les
&
grammaires attribuées. Rapport de DEA, Université de
Paris VII, September 1997.

[4] Loic Correnson, Etienne Duris, Didier Parigot, and
Gilles Roussel. Attribute grammars and functional pro-
gramming deforestation. In Fourth International Static
Analysis Symposium — Poster Session, Paris, France,
September 1997.

[5] Loic Correnson, Etienne Duris, Didier Parigot, and
Gilles Roussel. Symbolic composition. Technical Re-
port 3348, INRIA, January 1998.

[6] Etienne Duris, Didier Parigot, Gilles Roussel, and Mar-
tin Jourdan. Attribute grammars and folds: Generic
control operators. Rapport de recherche 2957, INRIA,
August 1996.

[7] Rodney Farrow, Thomas J. Marlowe, and Daniel M.
Yellin. Composable attribute grammars: Support for
modularity in translator design and implementation.
In 19th ACM Symp. on Principles of Programming
Languages, pages 223-234, Albuquerque, NM, January
1992. ACM press.

[8] Harald Ganzinger and Robert Giegerich. Attribute
coupled grammars. In ACM SIGPLAN ’8} Symp. on
Compiler Construction, pages 157-170, Montréal, June
1984. Published as ACM SIGPLAN Notices, 19(6).

[9] P. Jansson and J. Jeuring. PolyP - a polytypic pro-
gramming language extension. In 24th ACM Symp. on
Principles of Programming Languages, 1997.

[10] Donald E. Knuth. Semantics of context-free lan-
guages. Mathematical Systems Theory, 2(2):127-145,
June 1968. Correction: Mathematical Systems Theory
5, 1, pp. 95-96 (March 1971).

[11] Carole Le Bellec, Martin Jourdan, Didier Parigot, and
Gilles Roussel. Specification and Implementation of
Grammar Coupling Using Attribute Grammars. In
Maurice Bruynooghe and Jaan Penjam, editors, Pro-
gramming Language Implementation and Logic Pro-
gramming (PLILP ’93), volume 714 of Lect. Notes
in Comp. Sci., pages 123-136, Tallinn, August 1993.
Springer-Verlag.

[12] E. Meijer, M. M. Fokkinga, and R. Paterson. Func-
tional programming with bananas, lenses, envelopes
and barbed wire. In Conf. on Functional Programming
and Computer Architecture (FPCA’91), volume 523 of
Lect. Notes in Comp. Sci., pages 124-144, Cambridge,
September 1991. Springer-Verlag.

[13] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A cal-
culational fusion system HYLO. In In Proc. IFIP TC
2 Working Conference on Algorithmic Languages and
Calculi, Le Bischenberg, France, February 1997.

[14] Jukka Paakki. Attribute grammar paradigms — A
high-level methodology in language implementation.
ACM Computing Surveys, 27(2):196-255, June 1995.

[15] Gilles Roussel. Algorithmes de base pour la modularité
et la réutilisabilité des grammaires atiribuées. PhD the-
sis, Département d’'Informatique, Université de Paris 6,
March 1994.

[16] Tim Sheard and Leonidas Fegaras. A fold for all sea-
sons. In Conf. on Functional Programming and Com-
puter Architecture (FPCA’93), pages 233-242, Copen-
hagen, Denmark, June 1993. ACM Press.

[17] Philip Wadler. Deforestation: transforming programs
to eliminate trees. In Theoretical Computer Science,
volume 73, pages 231-248, 1990. (Special issue of se-
lected papers from 2’nd European Symposium on Pro-
gramming).

Annex A

Morphism generation for Poly

The following global-naming conventions are assumed:

Gsum is the type that represents the constructors of every
type 7. Thus, the constructor ¢ of type 7 is denoted by
the constructor 7_c of type Gsum.

Gop; is the type that represents values of any simple type
appearing in some type 7. For instance, if 7 contains
integers and booleans:

type Gov; = ...7T_int int | 7_bool bool . ..

out_t is the function that implements a morphism between
type 7 and type Poly; inn_7 is the reciprocal function.

Notice that all the morphisms have to be infered before
the generation of types Gsum and Gop;. But since type Poly
is a polymorphic type, this is not a problem for separate
compilation. Types are defined according to the following
grammar :

T u= c1p1|...|cCn pn constructors

p = « the polymorphic variable
| basic type
| (7 p) type composition
| pxp type product

Generation of out_7: The algorithm is defined by infer-
ence rules. Their general scheme is:

conditions
Thx,p=>t

where 7 is the current type, x is a term of type p, and ¢ is
the term z translated from type p to type Poly.
With these notations:

Thkz,a = (Parz) tFz,(ra) = (out z)

Tz pi = t; 1=1,2
Tk x,(p1*p2) = (let (z1,32) = 7 in (Prod t1 t2))

Thxz,0 = (0b) (72 7))

Ty, p=>1
Tk, (1" p) = (shift (Ay.t) (out_r' z))

The function shift is needed when type composition oc-
curs. Actually, to compute the morphism from (7 p) to Poly,
a solution is: first, compute the morphism from 7 to Poly;
second, compose this first morphism with the one from (7 «)
to (7 p). The second morphism is simply computed by the
function shift, where f is supposed to be a morphism from
p to Poly.

shift f © = match z with
(Par w) — (f v)
(Prod a b) — (Prod (shift f a) (shift f b))
(Sum ¢ u) — (Sum c (shift f u))
(0bj 0) — (Obj o)

The function out_t is derived with:

T=...lcepr...pn|-.-
Tz, pi = t;
out_T £ =match x with
(ek T1...22) —
(Sum (7_c) (Prod t; (Prod ts... tn)))

Generation of inn_7: Here, the inference rule notation
is:

__conditions _

T, o p =t t

where 7 is the current type and ¢ the function to apply
where Par values are expected — useful for type composi-
tions. For any type p, the algorithm generates the pattern ¢
of type Poly that represents a term of type p, and its back-
ward translation t' of type 7.

Tobka =t (pt) Tk (ra) =t (outT i)

T, ok = (0bj (T2t u)),u

Thpi = titi =12
T, F (p1 % p2) = (Prod t; ts),(t),1t})

1 y =match y with
T,k p = t,t 1 new name t—t

. n
_— raise “error

T, o (7" p) = =z, (unshift_m' ¢)
Then:
T:|cl pzlp; [...
e b pi = Pyt

unshift T ¢ £ = match r with 4 _
(Sum (7-ci) (Prod pi...ps)) — (ci t; ... 1)

And finally :

parshift * = match ¢ with
(Par) — z | - — raise “error”
inn_t z = (unshift_T parshift z)

Example

To illustrate how type composition is processed, let us con-
sider the following example:

type flower a = rose int a (tree (flower a)))

It leads to:

type Gos; = flower_int int | ...
type Geons = flower_rose | tree_node | tree_leaf | ...
out_flower z = match z with
rose a b ¢ — (Sum (flower_rose) (Prod
(flower_int a)
(Prod (Par b) (shift out_flower (out_tree z))))
inn_flower z = unshift_flower parshift ©
unshift_flower f £ = match z with
Sum flower_rose (Prod (flower_int a) (Prod p 1)) —
(rose a (f p) (unshift_tree inn_flower r))

Annex B

Correspondence relations

Let Cor be a correspondence relation from type 71 to type
72. We define the following objects :

Components: each type consists of several components.
Each constructor, each argument of a constructor and
each occurrence of a (sub-)type are components. The
correspondence relation links components from type 7
to components from type 2.

Key component : a component is a key one if it is linked
by the correspondence relation.

Neutral component : a component is a neutral one if it
contains a key or neutral sub-component.

Dead component : a component that contains neither key
nor neutral is dead.

Then, from a correspondence relation, it is possible to tag
each component of a type. This defines the Tag annotation.
For instance, with the previous exemple (c, 7 stands for the
i-th argument of constructor c):

Tag(nothing) = key (treess «)
Tag(one) = neutral (elements)
Tag(one, 1) = key ()

Tag(node) = key (treess c)
Tag(node, 1) = neutral (elements)
Tag(node, 2) = key (treess c)

etc.

To generate the morphism, it is necessary to look for
closed-terms. A closed term is a finite term, whose root
and leaves are tagged by key, and that contains only neu-
tral internal constructors (dead components are discarded).
For instance, (node (two a1 a2) ti1 t2) is closed. But
(node ey t1 t2) is not closed, since e: is tagged by neutral.
And (node (one a1) (nothing) t2) is nor closed, since the
constructor nothing replaces an internal key component.

It is easy to generate the closed-terms by a transitive
closure (or fix-point) algorithm. The idea is to recursively
replace a neutral leaf of a non-closed term by any sub-term
of type 7. Of course, there exist conditions to insure the
termination of the algorithm. See [11] for more details.

Now, the notion of signature is needed. The signature
of a term is the list of its root and leaves key-tags. For
instance, with the previous example, the closed-terms and
their signature are:

node (one az) t1 te 7T —>T
node (two a; ag) t1 tp T T—>T
nothing : () > 7

Signature is extended to constructors of type 2. Thus,
the signature of the constructor node; is the same as of the
closed term (node (one ai) t; t2) one. Then, each closed-
term of type 71 is associated with one constructor of type
75 that has the same signature. With the previous example,
the following association is obtained :

node (one ai) t1 t2 = nodey
node (two a; az) t1 te = nodes
nothing = leaf

From this association, the couplage function is easily in-
ferred. Of course, many improvements could be done about
correspondence relations. In the last step of the algorithm,
the problem to solve is how to associate a closed tree of
type 71 to some value of type 72. The solution proposed
here is quite simple by associating signatures to construc-
tors. Commutativity, associativity, parsing may be taking
into account to find more complex associations.

