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Abstract

Recently, generic programming becomes of a major interest in several
programming paradigms. A recurrent idea to achieve genericity is to ab-
stract computations from their representative data structures. This allows
these generic specifications to be instantiated onto a large number of neigh-
boring data structures. Moreover the program can be adapted when the
data structures have to evolve.

Polytypic programming, adaptive programming and generic attribute
grammars are generic programming methods related to this approach.
Their comparison leads us to propose a common framework for generic
programming: automatic generation of programs that compute morphisms
between data structures, and program composition.

Thanks to this compositional approach, the complete specialization of
generic programs could be advantageously delegated to some powerful and
general deforestation method.

1 Introduction

In several programming paradigms, generic programming is being emerging.
When an algorithm is specified on a general data structure, the notion of gener-
icity appears by the possibility to reuse it in several contexts, says, onto par-
ticular data structures. Although this concept is not new, genericity currently
raises a great interest in the programming and software engineering community.

A few years ago, Farrow et al. [7] devised a generic programming notion for
attribute grammars [11, 18] that has been recently revisited [12, 1, 19]. This
genericity is based on the observation that you can instantiate on a type 71 any
function f defined on a type 7. The only component needed, if it exists, is a
coupling described by a grammar coupling (morphism) that transforms every
structure of type 71 into its “equivalent” structure of type 7. The composition
of this coupling function with the function f performs the instantiation process.
In this context, the specialization process consists in applying a transformation
that eliminates intermediate data structures occurring in the composition. For
attribute grammars, Ganzinger and Giegerich solved this general problem by
introducing their descriptional composition algorithm [8]. Using this technique,
the construction of the intermediate representation of type 19 could be discarded
from the composition, and thus the original function f would be transformed
and actually specialized onto the type 1.



This problem of intermediate data structure elimination, usually called de-
forestation [21], has also been widely studied in the functional programming
community [16, 20, 17]. The comparison between functional and attribute
grammar deforestation methods [6, 4] led us to discover an extension of the
descriptional composition called symbolic composition [5]. This method defor-
ests some functional programs for which existing functional methods fail. Since
symbolic composition takes an important part in the attribute grammar gener-
icity mechanism, this led us to compare our generic programming method with
some functional ones.

In functional programming, the polymorphism provides a kind of genericity.
But a polymorphic function can only be reused on types that have exactly
the same structure. In order to relax this restriction, the notion of polytypic
programming [10, 15] has been introduced. A polytypic function is a function
that is defined by induction on the structure of user-defined data types [9]. This
allows polytypic functions to be adapted to changing structures.

Moreover, in object-oriented programming, there exists another approach
of structure-directed genericity called tree-traversal [14], that comes from the
adaptive programming [13] concept. This allows a program that “traverses”
a complex data towards its leaves to be generated whatever its structure is.
Since the result implements some walker algorithm, it could be seen as a kind
of morphism between the input data and the list of its components.

Our purpose is to present three different generic methods with a common
framework, mainly based on the following concepts:

Generic programming is achieved by functions composition. These func-
tions are divided into two kinds. These of the first kind (classical func-
tions) implement generic algorithms on a convenient data structure. Func-
tions of the second kind (morphisms) implements translations between
neighboring data structures.

Morphism specification provides the actual genericity. Since it describes
the translation between two data structures, it also gives the way to per-
form the algorithm instantiation. Most of morphisms involved in the
compositions could be automatically derived, thanks to a small meta-
language. This meta-language should be independent from (should not
include) the original language!. Nevertheless, these morphisms could also
be hand-written.

Specialization process performs the actual instantiation. The specified com-
positions have to be implemented. In fact, each generic function has to be
customized with respect to its composition context. Rather than applying
an ad-hoc method for each particular generic system, it is worthwhile to
use a general deforestation or fusion method, that symbolically performs
at one and the same time composition, elimination of intermediate data
structures and partial evaluation.

!Haskell for polytypic, Scheme for tree-traversal. ..



The paper is organized as follows. Section 2 briefly presents the consid-
ered generic programming methods: polytypic programming, tree-traversal and
generic attribute grammars. Section 3 shows how the two first methods can be
reformulated according to the compositional approach of attribute grammars.
Finally, section 4 describes the advantages and perspectives of this point of view
about genericity.

Preliminary remark

In order to highlight cross-fertilizations between these different genericity meth-
ods, this paper presents their general principles rather than their technical as-
pects. The three systems are not presented in their integrity neither with their
complete notations. So, by advance, we apologize to their authors for the large
simplifications we made in the following presentations.

2 Three Generic Programming Methods

2.1 Polytypic programming

Classically in functional languages, functions can only be specified for one given
(polymorphic) type. However, most functions could be abstracted from any
type. For example, the number of leaves in a tree and the length of a list are
computed by very similar functions. Polytypic programming proposes a way
to specify such abstract recursive functions in order to instantiate them over
several types.

Polytypic programming is based on the theoretical result that every poly-
morphic type can be expressed as a combination of sums, products, and ele-
ments of several kinds. This property is strongly tied to the notion of initial
algebra and functors, from the category theory [16, 9].

As an example, let us consider the polymorphic types list « and tree «:

list « = nil | cons (a , list «)
tree a = leaf () | node (tree a, tree )

These types can be automatically abstracted by their functors:

Fiist = Empty + (Par X Rec)
Firee = Par 4 (Rec X Rec)

where Rec denotes the recursive type itself and Par denotes the polymorphic pa-
rameter «. More generally, in the same way any term (value) can be abstracted
by the following constructors:

+ cx  for the alternative (¢ z) of a sum

(e.g. the cons(h,t) or nil alternative of a list).

x z '  for the product (z,z’).

Par z for interesting parameters.

Rec z for recursive components.

Const « for hidden parameters.
Empty  for empty values



For instance the list [a; b; ¢| is abstracted into + (cons) (a , [b;c]), since it
is a cons alternative of a list, with a as the head element, and [b; ¢] as the tail
list.

Writing the generic program

We will specify the polytypic function length with respect to the previously
listed constructors. Intuitively, since a sum (+) stands for possible alternatives,
the length of a sum is the length of the considered alternative. In the same way,
computing the length of a product (x) of terms consists in adding their lengths.
Finally, the length of a parameter is “1” if it has to be count and “0” otherwise.
These intuitive remarks lead to the following polytypic function length (add
stands for the integer addition):

polytypic length z =
match (out z) with
+cy — (length y)
xyy — (add (length y) (length y'))
Rec ¥ — (length y)
Par y —1
Const y — 0
Empty — 0

Instance specification

Of course, one has to notice that this program needs an operator to abstract
the input data structure in terms of sums and products. This is done by the
operator out of the polytypic language. It is an initial morphism that must be
defined for every possible type of its argument. In the polytypic frameworks [9],
a type-checker exists and detects all these types, allowing the operator out to
be automatically defined.

Instantiation & Specialization process

For an implementation of the polytypic function length for an argument of type
tree «, the expression length (z : tree ) will be customized into lengthipeeq -
Then, the operator out has to be defined on the type tree a as follows:

out (leaf n) =+ (leaf) (n)

out n =Par n if n is of type «

out (node z y) = + (node) (z,y)

out (z,y) =Xz y

out z =Rec z if z is of type tree

To complete the instantiation implementation, all abstract constructors

(4, x,Par...) have to be eliminated. In [9] this is performed by applying
an ad-hoc? partial evaluation dedicated to the constructors introduced by the
operator out. This finally leads to the following specialized function:

’By ad-hoc, we mean that no real deforestation method has been pointed out.



let lengthireeq T =
match x with
node a b — (add (lengthieeq @) (lengthireea b))
leaf n —1

For a more complete presentation of polytypic programming the reader is
invited to refer at [9].

2.2 Tree-Traversal

The concept of adaptive programming [13] extends the classical object-oriented
paradigm. It gives more flexibility between functions and data types by loosely
coupling them through navigation specifications. This section deals with an
implementation of this concept called tree-traversal [14].

Writing the generic program

An illustrative example for this tree-traversal kind of genericity is the problem
of highlighting a particular word w in a text document. The basic specification
one would intuitively write for this problem is:

at word {
if (this.val=w) then this.highlight();
}

where ‘this’ denotes the current word and w the word to highlight. Since ‘doc-
ument’ contains ‘paragraphs’, which themselves may contain ‘lines’ containing
‘words’, the previous specification is incomplete.

Instance specification

Highlighting the word w requires the programmer to write by hand many search
methods to reach all words through the document structure. The tree-traversal
technique uses the traverse statement to automatically generate these meth-
ods.

traverse
from document to word
at word {
if (this.val=w) then this.highlight();
}

Instantiation process

From such an instantiation specification, the system produces one method for
each class that contains (even indirectly) words. These search methods are:



document : :search(w) {
for paragraph in this.paragraphs()
{ paragraph.search(w); }
}
paragraph: :search(w) {
for line in this.lines()
{ line.search (w); }
}
line: :search(w) {
for word in this.words()
{ word.search(w); }

word : :search(w) {
if (this.val=w) then this.highlight();
}

Of course, tree-traversal yields automatic generation of such methods that
are boring to write by hand. But this approach is much more useful when data
structures evolve. For instance, suppose that the previous document structure
has to be modified in order to contain ‘things’ that are ‘paragraphs’ or ‘tables’
(that also contain words). Then, the search methods will be automatically
updated while the instantiation specification remains unchanged. In fact, the
more a program contains tree-traversal specifications, the more tolerant it is for
data type structure evolution.

For a more complete presentation of tree-traversal method the reader is
invited to refer at [14].

2.3 Attribute Grammar

Attribute grammars [11, 18] are declarative and structure-directed specifica-
tions. They specify on each type constructor what is to be computed instead of
how it is computed. More precisely, programs are specified by oriented equa-
tions over the data structure.

For example, to compute the length of a list, the idea is to define an attribute
(i.e., a value) length for every list z, denoted z.length. Since every list is
build either by nil or cons constructors, the attribute grammar defining length
attribute is the following:

cons h t —
this.length = (add t.length 1)
nil —
this.length = 0
where this is the considered list. As a less trivial example, let us consider a
document that consists of a list of chapters, each chapter being a list of sections,

etc. The aim is to compute the list of the words in the document (to count
them, or to search a word in a document.. . ).



Writing the generic attribute grammar

A well suited type for abstracting a structure that contains elements is the type
bag (a set with possible repetitions).

bag = union (bag, bag) | single (element) | empty

The list of elements of a bag is build by accumulation. So, the attribute
grammar bag.list computing this list needs two attributes outlist and inlist
(the later is initialized with the list nil):

single a —

this.outlist = (cons a this.inlist)
empty —

this.outlist = this.inlist
union a b —

this.outlist = b.outlist

b.inlist = a.outlist

a.inlist = this.inlist

Instance specification

Suppose now that the complete document structure is defined with respect to
several sub-types and their constructors: doc and end_doc for type document,
chap and end_chap for type chapter, sect and end_sect for type section, etc.

document = doc (chapter, document) | end_doc
chapter = chap (section, chapter) | end_chap
section = sect (paragraph, section) | end_sect
paragraph = par (word, paragraph) | end_par

To instantiate word-listing for documents, the idea is to generate a coupling
function that transforms a document into a bag structure.

Intuitively, let Cor be the property (or relation) that associates each docu-
ment, chapter, section, and paragraph with a bag, and each word with a bag’s
element. Then Cor completely defines the morphism between bag and document
structures. This correspondence relation Cor can be specified as follows:

Cor(bag) = {document, chapter, section, paragraph}
Cor(element) = {word}

Instantiation

It is possible to write by hand an attribute grammar that computes a morphism
consistent with the relation Cor: for each document, chapter, section and para-
graph the attribute grammar document.coupling can be defined to represent
their equivalent bag-structure.



doc ¢ d —

this.coupling = (union c.coupling d.coupling)
chap s ¢ —

this.coupling = (union s.coupling c.coupling)
sect p § —

this.coupling = (union p.coupling s.coupling)
par w p —

this.coupling = (union (single w) p.coupling)

Rather than write by hand this coupling attribute grammar, there exists
algorithms to infer it automatically. In [12, 2], we formalize the correspondence
and grammar coupling notions. We study some conditions for this coupling to
be well-defined (a function). In addition, given an output grammar (e.g., bag),
an input grammar (e.g., document) and a valid coupling between them (e.g.,
Cor), we propose an algorithm which constructs the coupling attribute grammar
under certain conditions.

Let " be the programming environment containing the type description of
bag and document. Let C be the algorithm that infer the coupling attribute
grammar document.coupling. The instantiation can be formalized as:

Cor,T’ & document.coupling

Specialization process using deforestation method

Then it is easy to compose the attribute grammar document.coupling with the
bag.list one. The symbolic composition [5] transforms these two attribute gram-
mars into a new single one, denoted document.list which no more constructs
the intermediate bag-structure:

doc ¢ d —
this.outlist = d.outlist
d.inlist = c.outlist
c.inlist = this.inlist
chap s ¢ —

sect p § —
par w p
this.outlist = (cons w p.inlist)

Let SC be the symbolic composition. The specialization process is defined
by:

document.coupling o bag.list ¢ document.list

The important point to notice here is that morphism generation and defor-
estation application are totally separated from each other.



3 Compositional Approach

This section presents a different approach of polytypic and tree-traversal pro-
gramming.

3.1 Polytypic programming

In the original polytypic approach, special constructors (+, x,Rec, Par, etc.)
are introduced to manipulate both the data and their structure. Let us define
the following type:

F = Sum (Object, F)
|  Prod (F,F)
| Par (Object)
|  Rec (F)

| Obj (Object)

The important point is that F is a type defined in the original functional
language, without using any special constructor. The only technical point to
solve is the definition of the Object type, that can represent heterogeneously
any value of any type>.

The type F allows the length function to be specified in the original lan-
guage:

let length * = match x with
Sum cy — (length y)
Prod y y' — (add (length y) (length y'))
Rec y — (length y)
Par y -1
Obj z —0

Suppose now that the function length is needed on type tree «. This instan-
tiation is performed thanks to an explicit morphism from type tree a to type
F, easy to write as the out_treea function:

let out_treea t = match z with

node a b — (Sum (node) (out_treea a) (out_treea b))
leaf y — (Sum (leaf) (Par y))

Notice that out_treea is no more an operator like the out one in polytypic
language, but just a function written in the original functional language. Then
the function length on type tree « is obtained by the following composition:

length_treea t = (length (out_treea t))

Applying deforestation will eliminate the construction of the F term, and
will lead to the expected function length on type tree a.

Here, function out_treea has been hand-written. In the same way as the
polytypic operator out is inferred, this function can be automatically generated.

3Many solutions exist: sub-typing, cast, or explicit constructors for each type involved...



System rephrasing

Considering the previous example, we can rephrase the polytypic system into:

C
f T:::fout_rt f o outT defwg;ation f r
T o out_T

where o is the standard composition in the original language. Thus a general de-
forestation method can be applied, rather than an ad-hoc method which would
be restricted to polytypic functions. So, a method like HYLO system [17], or
symbolic composition [5], can advantageously take charge of the specialization
process in polytypic approach. Of course, some interesting polytypic features
still remain to be converted or generalized.

This above presentation comes from a more detailed comparison between
generic attribute grammars and polytypic programming that is presented in [3].

3.2 Tree Traversal
Compositional approach

Recall the example presented in section 2.2, and consider the following docu-
ment D:

D Py — {L1 — {wi;w2}}
Py — {Ly — {ws;ws}; L3 — ws}

D consists of two paragraphs P; and P,. Pj consists of the line L; that con-
sists of the words w; and wy, etc. The traversal methods ‘search’ will traverse
the document D in the following order:

D; Py ;Ly;wyswas PosLysws;ws; Ly ws

Let us denote by T' the type of such an heterogeneous list. Thus the traversal
can be divided into two programs. Given any document, the first one produces
a list of type T. The second one performs the highlighting of w in any list of
type T. Their composition yields the highlighting of w in a document.

Now the real instantiation has to be performed, and the construction of the
intermediate list has to be eliminated. We do not know what kind of defor-
estation method already exists in object-oriented programming. Nevertheless,
we are sure that it is possible to define some new specialization method in this
area, based on the symbolic composition principles.

4 Compositional Genericity

In this section, an abstract generic programming system is defined indepen-
dently from any language. It is based on two strongly separated parts. The
first one is a coupling algorithm that produces a morphism between two data
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structures. This morphism is a function that translates a value into an inter-
mediate representation; it could be composed with any program working on
this intermediate representation. The second part applies deforestation in or-
der to specialize such compositions. Let s be the morphism specification, C the
coupling algorithm, f the “generic” function, g the morphism function, h the
expected specialized function, and I' the programming environment defining
types or classes, etc. The abstract generic-system is defined as follows:

S,F :C> g fog defore:sgation h
fi8,I'=foyg fog=nh

The specialization process of the polytypic method is very closed to those of
the generic attribute grammar. More precisely, they are akin to deforestation.
Referring previous comparisons [4, 5] between functional and attribute grammar
deforestation, it is worthwhile to use a general algorithm rather than ad-hoc
ones. In a compositional approach, generic programming will freely benefit
from deforestation improvements. In object-oriented programming, it is less
clear that the specialization process could be performed by a deforestation-
like transformation. As a future work, it seems interesting to define a new
specialization of object oriented programs based on deforestation principles.

At this point, it is important to identify the instantiation process separately
from the specialization process. Furthermore, both the generic program and
the morphism generated during the instantiation ought to be written with the
original language, since any general deforestation method will be freely and
easily applicable.

Moreover, remark that the presented generic systems provide methods to
automatically infer morphisms. So it is worthwhile to specify these morphisms
with some small independent meta-language rather than with super-languages
that include the original ones.

Then, it would be nice to transpose each of these methods on every other
paradigms. For instance, the polytypic out operator definition suggests new
methods to produce coupling attribute grammars. In the same way, the corre-
spondence relation suggests extensions for the fixed definition of out operator.

Another interesting problem is to look for a unified formalism that describes
all these morphism specifications. This would ease the transposition of specific
methods for morphism generation onto other programming paradigms.

5 Conclusion

This article tends to extract a general concept of generic programming from
different methods. Instead of bringing them into conflict, we expect large cross-
fertilizations. Each method has advantages and limitations, and offers different
— and complementary — kinds of genericity.

In order to ease the cross-fertilizations it seems worthwhile to separate mor-
phism specification from instantiation and specialization. Then, symbolic com-
position — or other deforestation method — is the basic tool which enables the
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specialization of an algorithm over new structures via morphisms specifications.
As soon as a deforestation method is available, many ways to achieve genericity
can be developed quickly, easily and efficiency.

Besides, there certainly exists many other generic programming and special-

izing methods that should be included in this comparison. This is our strong
belief and the thrust of our future works. In our point of view, future research
will have to carry out some wunified way to specify morphisms and to exhibit
families of automatic or semi-automatic methods to generate these morphisms.
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