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Automated Protocol Implementation with RTAG 
DAVID P. ANDERSON 

Abstract-RTAG is a language based on an attribute grammar no- 
tation for specifying protocols. Its main design goals are: 1) to support 
concise and easily understood expression of complex real-world pro- 
tocols, and 2) to serve as the basis of a portable software system for 
automated protocol implementation. 

This paper summarizes the RTAG language, gives examples of its 
use, sketches the algorithms used in generating implementations from 
these specifications, and describes a UNIX@-based automated imple- 
mentation system for RTAG. 

Zndex Terms-Attribute grammars, communication protocols, for- 
mal specification. 

I. INTRODUCTION 
HE number of communication protocol families, op- T erating systems, communication-based applications, 

network architectures, and network interface hardware 
types is large and constantly increasing. Thus, consider- 
able programming effort is required to directly implement 
the protocols needed for communication in large hetero- 
geneous systems. 

The separation of communication services into layers 
with well-defined interfaces, as is done by the IS0  model 
[24], improves the situation because it reduces interlayer 
dependencies. However, system designers are still faced 
with the problem of implementing protocols efficiently on 
a range of operating systems. 

The software engineering of communication protocols 
is complicated by two factors: 1) for efficiency reasons, 
protocols often must be placed in operating system ker- 
nels where debugging is difficult and interfaces are highly 
system-specific [5] ; 2) protocol implementations must 
conform to an externally defined (and often poorly de- 
fined) standard. In contrast, other system software (such 
as a local operating system service) can serve as its own 
authoritative specification. 

Problem 1 can be minimized by a modular kernel or- 
ganization that provides well-defined interfaces between 
protocols and adjacent layers; this has been done, for ex- 
ample, in 4.3 BSD UNIX [12]. Problem 2 can be ad- 
dressed by the use of formal description techniques 
(FDT’s) for specifying protocols. The role of FDT’s is 
discussed in [20], and a survey is given in [ 191. 

Most FDT’s in current use are based on finite state ma- 
chines (FSM), and are oriented towards verification and/ 
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or performance analysis. Pure FSM’s are amenable to au- 
tomated protocol verification, but can represent only sim- 
ple or idealized protocols. Other FDT’s augment the au- 
tomata with high-level language (HLL) code to express 
the details of real-world protocols [2], [15]. 

A .  RTAG: A Grammar-Based Formal Description 
Technique 

RTAG (real-time asynchronous grammars) is a formal 
description technique designed with the following goals: 

To make it easy to specify complex protocols. 
To allow efficient automated implementation. 

RTAG is based on a context-free grammar (CFG) no- 
tation in which ordinary terminal symbols correspond to 
messages sent and received. RTAG also provides conve- 
nient mechanisms for specifying concurrent protocol ac- 
tivities and real-time constraints. 

For certain applications, RTAG has significant advan- 
tages over FSM-based techniques. It supports encapsula- 
tion and abstraction in protocol design and specification 
by allowing a protocol to be decomposed into subproto- 
cols that are specified separately. These subprotocols may 
be instantiated dynamically and may operate concur- 
rently. RTAG allows most protocol mechanisms to be ex- 
pressed without resort to HLL code; this is in large part 
due to its use of grammars, rather than FSM, as the un- 
derlying formalism. 

In addition, it is possible to automatically generate ef- 
ficient protocol implementations based on RTAG speci- 
fications. This is done using an RTAG parser, a real-time 
program that, given an RTAG specification, responds to 
input messages in a way that satisfies the specification. 
This provides a major part of an implementation of the 
protocol. Essentially, only packet assembly/disassembly 
and interface routines need be added. 

If a set of protocols have been specified with RTAG, 
implementations of these protocols on a computer system 
can be obtained by writing an RTAG parser and interface 
routines on that system. Conversely, changes to a proto- 
col running on a network of (possibly dissimilar) systems 
all running the RTAG parser can be effected by changing 
the RTAG specification, rather than by rewriting many 
direct implementations. 

We have developed an RTAG parser under 4.3 BSD 
UNIX and have written an RTAG specification of the NBS 
Class 4 Transport Protocol, TP-4 [22]. The RTAG parser 
has been installed in the UNIX kernel and interfaced with 
its networking code, yielding an RTAG-based implemen- 
tation of TP-4. This implementation has successfully 

0098-5589/88/0300-0291$01 .OO O 1988 IEEE 

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on May 2, 2009 at 06:41 from IEEE Xplore.  Restrictions apply.



292 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988 

communicated with other TP-4 implementations over the 
DOD Internet. 

This paper is organized as follows: Section I1 describes 
the syntax and semantics of RTAG; Section 111 gives ex- 
amples from the RTAG TP-4 specification; Section IV 
sketches algorithms for an RTAG parser; Section V de- 
scribes a UNIX-based RTAG development system; Sec- 
tion VI compares RTAG to related work, and Section VI1 
gives conclusions. 

11. RTAG SYNTAX AND SEMANTICS 
This section summarizes the syntax and semantics of 

RTAG. An RTAG specification defines the behavior of a 
protocol entity that must respond to input messages, and 
to the passage of real time, by generating output mes- 
sages. RTAG uses a context-free grammar notation, but 
its semantics will be defined in terms of a process-based 
model. Each grammar symbol X is associated with a pro- 
cess definition Px. Event (terminal) symbol processes read 
or write a single message, and each production defines a 
nonterminal process as the sequential or paraIlel compo- 
sition of subprocesses. For example, the production 

< x >  : < y > < z >  

defines P , ,  > as a process that invokes processes P ,  > 
and P ,  > in sequence. Symbols can have data-valued at- 
tributes; the attributes of X correspond to per-process 
variables of Px. The protocol defined by an RTAG spec- 
ification is the process associated with the goal symbol. 

In an RTAG protocol entity there is at any point a tree 
of process instances; initially there is an instance of the 
goal-symbol process. The life of a process is as follows: 
it is first instantiated, creating its per-process variables, 
and is later started, i.e., executed. It becomes Jinished 
when it reaches the end of its definition or because of in- 
tervention by another process. The per-process variables 
continue to exist until the process is removed. Processes 
can block waiting for input events to occur, time to elapse, 
or expressions to become true. 

RTAG semantics are described in terms of processes 
for pedagogical purposes only. In an implementation, 
RTAG processes would be represented by symbol de- 
scriptors with a field encoding the process state, rather 
than by distinct processes at the operating system level. 

A .  Symbols and Attributes 
RTAG symbols are divided into the following classes: 

Nonterminal symbols are delimited by angle brackets 
(<, > I .  

Event symbols (both input and output) are delimited 
by square brackets ([, 1). By convention, the symbol name 
contains a character indicating the other protocol layer in- 
volved, followed by an arrow indicating whether the sym- 
bol is an input or output symbol. For example, in our 
TP-4 specification, [ U - > CR ] represents a connection 
request received from the upper layer, and [ N < - DT ] 
represents a data packet sent to the network layer. 

Special terminal symbols represent internal actions 

of the protocol entity; their names are delimited with 
slashes. There are two special terminal symbols; /timer/ 
and /remove/. 

Each symbol has an associated set of attributes, each of 
which has a type from among the following: integer, 
boolean, dataptr (pointer to message data), and symbol- 
ref (pointer to a symbol instance; used by the /remove/ 
special terminal symbol). 

The semantics of a terminal symbol X are as follows: 
Output Symbols: Px sends the corresponding message, 

using the attribute values of X as values for the message 
fields. In practice, this is done by calling an event perfor- 
mance routine, parameterized by the attribute values of 
X .  

Input Symbols: Px blocks until an arrival of the corre- 
sponding message. Its per-process variables are then ini- 
tialized with the values contained in the message fields. 

Special Terminal Symbols: /timer/ has an integer at- 
tribute interval. Pltlmerl sleeps for the amount of time given 
by the value of this attribute. /remove/ has an attribute 
where of type symbol-ref, which points to a symbol (pro- 
cess) instance Y. When an instance of Plremovel is executed, 
Y and all its descendants in the process tree are aborted 
and flagged as finished. This is used, for example, in han- 
dling abnormal closure of connections. 

B. Attribute References and Expressions 
Expressions associated with a production P can refer to 

symbols and attributes of symbols that are local (within 
P ), or nonlocal (at a relative position in the process tree). 
A local reference is of the form $n, and refers to the nth 
symbol of P;  $0 is the parent (LHS) symbol and $1 is the 
first symbol of the RHS. A nonlocal reference is either a 
nonterminal symbol name (referring to the closest ances- 
tor of that name), or a pair of symbol names separated 
with a slash (referring to a particular child of that ances- 
tor). 

Attribute references are of the form symbol-refer- 
ence.attrname and refer to the named attribute of the 
process instance specified by symbol-reference. Expres- 
sions in RTAG are built up from attribute references and 
constants using arithmetic, logical and relational opera- 
tors written as in C language [lo]. 

C. Simple Productions 

symbol) is written as: 
A simple production (the unique production of its LHS 

< x >  : a .  

where < x > is a nonterminal and a is a string of gram- 
mar symbols. 

P, , ,  is the composition of the processes in a (possibly 
modified by attribute assignments or an enabling condi- 
tion, see below). a may be empty, in which case P,,, is 
immediately finished. 

By default, process composition is sequential; each 
subprocess in a is started when its left neighbor finishes. 
Processes may also be composed in parallel, allowing the 
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events they derive to be interleaved in time. This is done 
by enclosing a RHS in curly brackets; its processes are 
then executed in parallel, and the parent process finishes 
when all subprocesses are finished (see Section I11 for ex- 
amples). 

D. Attribute Assignments 
A production can have attribute assignments of the form 

attribute-reference = expression. Attribute assign- 
ments are used for synchronization or data transfer be- 
tween process instances. 

When a process starts, its subprocesses are instantiated 
and their attributes are initially undefined. In general, at- 
tribute assignments are performed before starting the first 
subprocess, and are performed in order. There are two 
special cases. First, in a production of the form 

$1 .interval = expression 
(other attribute assignments) 

< x >  : /timer/a. 

the assignment of /timer/.interval is performed when 
P < x ,  starts. When Pltlmer, finishes, the subprocesses in a 
are instantiated, and the other attribute assignments are 
performed. 

Second, in a production of the form 

< x >  : [ y ]  a.  
(attribute assignments) 

where [ y ]  is an input symbol, P , , ,  initially invokes 
P ! y l .  The subprocesses in a are instantiated, and the at- 
tnbute assignments are performed, only after [ y ]  is fin- 
ished, i.e., after an input event has occurred and been 
accepted. 

E. Enabling Conditions 
A production of a symbol X can have a Boolean-valued 

enabling condition. Px blocks, without instantiating sub- 
processes or performing attribute assignments, until the 
value of the enabling condition is true. For example, in 

if $0 seq > < y > . windowstart 
< x >  : [ N < - D T ]  < z > .  

9 

P < x ,  blocks until the seq attribute of < x > is larger than 
the windowstart attribute of the closest < y > ancestor, 
then instantiates [ N < - DT ] and < z > and starts [ N 
< - D T ] .  

F. Alternative Productions 

productions, denoted as follows: 
A nonterminal < X > may have several alternative 

<x> : al. 

I a2. 

(enabling condition) 
(attribute assignments) 

P , x ,  blocks until some alternative becomes selected, at 
which point that process definition is executed and the 
other alternatives are discarded. An alternative P is said 
to be selected when either 

an input event [ y ]  occurs such that P yields, without 
blocking, an instance of [ y ]  which accepts the message. 
In particular, the enabling conditions of the productions 
in the sequence by which [ y ]  is derived from < X > must 
all be satisfied 

P yields, without blocking, the epsilon process, an 
output symbol, or /remove/ 

P is defined by a production of the form 

< X >  : /timer/ CY. 
(enabling condition) 
$1 .internal = expression . . .  

and an instance of P ,  started when < X > is started, fin- 
ishes its /timer/ subprocess. As an example, consider the 
following: 

<ge tack>  : [ N - > A K ] .  

I *  
if < connection > .closed 

I /timer/ <timed out > . 
$1 .interval = 10 

The semantics of P<get a&> are as follows. When an 
instance of <get ack> is started, 

a) if the [ N - > AK ] event occurs, the first production 
is selected; 

b) if the closed attribute of the nearest <con- 
nection > ancestor becomes true, the second (epsilon) 
production is selected; 

c) if 10 time units elapse without either a) orb)  taking 
place, then the third production is selected and a <timed 
out > process starts. 

Hence, there are three alternate definitions of the < get 
ack> process. The selection depends on what happens 
first, in terms of input events, attribute value changes, and 
the passage of real time. 

G. Externally Dejined Functions 
External function names can be used in attribute as- 

signments and enabling conditions. They typically per- 
form calculations that are not easily expressed within 
RTAG or that are installation-dependent. The function 
definitions are not part of the RTAG specification, and 
must in general be supplied for each implementation. 

H.  Multiple Derivation of Input Symbols 
When an input event occurs, there may be many pro- 

cesses able to accept it. RTAG supports broadcast se- 
mantics: a message is accepted by all processes that can 
accept it. This is useful because, in a complex protocol, 
a single input message may be relevant to several subpro- 
tocol processes. For example, in our specification of 
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TP-4, the acknowledged delivery of each packet is han- 
dled in a separate process. An acknowledgment event 
may serve to acknowledge several packets, and hence be 
relevant to several processes. 

If an input message is not accepted by any process, it 
is discarded and ignored. In some applications it might be 
preferable to regard unaccepted messages as fatal errors 
or to log them for debugging purposes. 

I .  Key Attributes 
Some protocols have a ‘‘reference number” mechanism 

for associating input messages with connections or trans- 
actions. While this could be enforced in RTAG at the leaf 
level by having a reference number equality clause in each 
enabling condition, this would be cumbersome and inef- 
ficient. Instead, RTAG has the following mechanism: an 
attribute name can be declared as being the key attribute. 
No two nonterminal process instances may simulta- 
neously have the same value for the key attribute. Sup- 
pose an input symbol instance X has the key attribute with 
value k .  If there is a nonterminal instance Y with key at- 
tribute value k ,  X can be accepted only by descendants of 
Y. Otherwise, X can be accepted only by processes of 
which no ancestor has the key attribute. If X does not have 
the key attribute then there are no restrictions. 

J .  Example: An Alternating Bit Protocol 
An RTAG specification of the sending end of an alter- 

nating-bit protocol is given below as a small example. 
The declaration section is omitted for brevity. 
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<goal > : <packet tail > 
$l.seqno = 0 

tocol 1221. The entire specification is given in [ 11; in this 
section, we give the overall structure of the specification, 
and describe a few parts in detail. 

TP-4 was chosen as a test case because it incorporates 
many common protocol mechanisms and offers a signifi- 
cant level of complexity. TP-4 provides multiple connec- 
tions, reliable connection management, reliable se- 
quenced message transfer with end-to-end flow control, a 
separate logical channel for high-priority data, and sliding 
send and receive windows for increased throughput. 

Messages between TP-4 peer entities are called trans- 
port protocol data units (TPDU’s). There are a dozen or 
so types of TPDU’s, including connection request (CR), 
connection confirmation (CC), data (DT), acknowledg- 
ment (AK), and graceful close (GR). Data messages 
passed between TP-4 and upper layer clients are called 
transport service datu units (TSDU’s). 

A. Design Principles 
The TP-4 example illustrates the following principles 

for protocol design using RTAG: 
1) Logically distinct parts of the protocol, or subpro- 

tocols, are put in different processes (i.e., subtrees). 
RTAG provides a means for abstraction of subprotocols 
(i.e., the external interface of a subprotocol can hide its 
internal mechanisms) and encourages a top-down design 
approach. 

2) Information relevant only to a particular subprotocol 

<packet tail> : <packet> 
$2. seqno = ($0. seqno 

I [U- > FINISHED]. 

< packet > : [U- > DATA] 
$O.data = $l.data 
$2.data = $l.data 

<packet tail > . 
+ 1) % 2; 

N < -DATA] < retransmit > 

$2. seqno = < packet tail > . seqno 
9 

< retransmit > : [N- > ACK] [ U  < - ACK] . 
if $1. seqno = = < packet tail > . seqno 

I /timer/ [N< -DATA] < retransmit > 
$1 .interval = 100 
$2.data = <packet > .data 
$2. seqno = < packet tail > . seqno 

, 

111. AN EXAMPLE: THE TP-4 TRANSPORT PROTOCOL 
As an example and test case for RTAG, we have written 

a specification of the NBS class 4 transport protocol 
(TP-4), working from an AFSM specification of the pro- 

is stored in the attributes of the process (i.e., symbol) 
serving as the root for that subprotocol, rather than higher 
in the tree. 
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/timer/ <TCtail> 

A \  
(<TC> <TCtail>) 

{<K> <TC tail >} A/‘ \ ” 

Fig. 1. Multiple Transport Connections. 

<TC> 

<expsend> <reg reo!> 

Fig. 2.  Subprotocols Within a Connection. 

<regsend> 

<send mrg tail> 

B. Multiple Transport Connections 

period which protects the integrity of connections, and 

I The following productions provide an initial inactive 

/ \  allow many transport connections to exist concurrently: { <send msg> <rend mrg tail> } 

/ \  / \  
{ <sendmrg> <wndmsgtail> } [U->DTl <transmit msg> 

/ \  \ <goal> : /timer/ <TC tail>. 
$1. interval = QUIET-TIME A [U->DT] <transmitmsg> 

<TC tail> : { < T C >  <TC tail> } .  
1 [U->FIN]. 

This produces the parse tree structure shown in Fig. 1. 
Each connection (i.e., < TC > process) consists of three 
concurrent subprotocols: connection establishment, trans- 
action, and disconnection (see Fig. 2). The attributes of 
< T C >  contain information, such as local and foreign 
addresses and reference numbers, needed by more than 
one of these subprotocols. 

Fig. 3. TSDU Sending. 

ments. The send-data subprotocol is further divided into 
subprotocols for each TSDU ( < send msg > ) and each of 
these is further divided into subprotocols for each packet 
within the TSDU (<send packet>). 

The recursive production of <send msg tail> pro- 
vides a queue for TSDU’s which are in the send buffer, 
but not necessarily in the send window. 

<send msg tail > : { < send msg > < send msg tail > } .  
$2.ready = false 

I [U- > GR] < transmit GR > 

<send msg> : [U- > DT] < transmit msg > $2.data = $1 .data 

C. The Regular Send Subprotocol 
The transaction subprotocol is further decomposed into 

four concurrent subprotocols: regular send and receive, 
and high-priority send and receive. 

For sending regular-priority data, TP-4 uses a sliding 
window whose size cannot exceed the receive window size 
(or “credit”) supplied, in acknowledgment messages, by 
the peer. The regular send subprotocol is divided into sub- 
protocols for sending data and for handling acknowledg- 

Fig. 3 shows the queueing and transmission of TSDU’s. 
The delivery of each TSDU involves a recursive process 
<send packet tail> that splits the TSDU’s data into 
packets and invokes a <send packet > process to handle 
the delivery of each one. The subprotocol for delivering 
a TSDU is defined below; extract splits off a packet-sized 
portion of a longer message, and eot returns true iff its 
argument is empty. 
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<transmit msg > : < send packet tail > . 
if < send msg tail > .ready 
$ 1  .eot = eot($O.data) 

9 

< send packet tail > : { < send packet > < send packet tail > } . 
if not $O.eot 
$1 .data = extract (<transmit msg > .data) 
$ 1  .eot = eot (<transmit msg > .data) 
$1 .seqno = < reg send > .nextseq 
<reg send > .nextseq = ( <reg send > .nextseq + 1) % MAXSEQ 
$2.eot = $1 .eot 

I /freedata/. 
if $O.eot 
$1 .data = <transmit msg > .data 
< seng msg tail > / < send msg tail > .ready = true 

A Boolean attribute ready of <send msg tail > is used to prevent a queued TSDU from beginning transmission until 
the last packet of the previous message has been sent. It is set by the last production of <send packet tail > . 

The acknowledged delivery of a packet is handled by an instance of the <send packet > process, defined below. 
The following external functions are used: between(x, y ,  z )  returns true iff x < y I z in cyclic order; copy(d) 
returns a new reference to the given byte string (this could involve a reference count mechanism rather than physically 
copying the data). 

< send packet > : [N < - DT] < retransmit DT > . 

&& ( < transact > . nxoutstanding = = 0) 
if (<reg send > .nextseq ! = < reg send > . windowend) 

$1. src-ref = < TC > . refno 
$1 .dst-ref = < TC > . foreign-refno 
$l.eot = $O.eot 
$l.seqno = $O.seqno 
$1 .data = copy($O.data) 
$2 .count = RETRANS-COUNT 

< retransmit DT > : /timer/ [N < -DT] < retransmit DT > . 
if $O.count > 0 
$1 .interval = RETRANS-TIME 
$2. src-ref = < TC > . refno 
$2. dst-ref = < TC > . foreign-refno 
$2.eot = <send packet > .eot 
$2. seqno = < send packet > . seqno 
$2.data = copy( < send packet > .data) 
$3.count = $O.count - 1 

if between (<send packet > .seqno, $l.seqno, <reg send> .next seq) 
$2.refno = <TC > .refno 
$2.data = <send packet > .data 

I /timer/. 
if $O.count = = 0 
$1. interval = GIVEUP-TIME 
< TC > .transerror = true 

I [N->AK] [U<-AK]. 

Fig. 4 shows the delivery of packets within a TSDU 
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<transmit msg> 

crend packet tail > 
I 

A----. <send packettail> ) 
{ <rend packet> 

/ \  
{ <sendpacket> . / \  

[N<-DT] <retransmit DT> 

/ I \  
/timer/ (N<-DTI <retransmit DT> 

. . .  \ 
\ 

iretransmit DT> 

/ \  
[N->AK] Areedatal 

Fig. 4. Packet Sending. 
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The parser is initialized by creating an instance of the 
goal symbol to serve as the parse tree root, and setting all 
queues to empty. Its actions, thereafter, are initiated by 
input events and timeouts. 

1) Processing Input Events: The steps in processing an 

Compute a candidate set of nonterminal leaf symbols 
that might yield the input symbol. The candidate set of an 
input symbol instance [ x ]  is the set of nonterminal leaves 
that left-derive [x ]  in the underlying CFG, and that sat- 
isfy the “key attribute” restriction. 

Attempt to yield the input symbol from each candi- 
date < a > in turn. This is done by going through all the 
production sequences that left-derive [ x ]  from < a > in 
the underlying CFG. The first production sequence that 

1 input event are: 

IV. DESIGN OF AN RTAG PARSER 
An RTAG parser is a program that, given the RTAG 

specification of a protocol, implements the protocol. It 
does so by maintaining a parse tree of attributed symbol 
instances, and responding to input events by attempting 
to “derive” them by applying productions to leaf nonter- 
minal symbols. In this section we sketch the algorithm 
used by an RTAG parser. 

A. Definitions 
Some productions may be applied for reasons other than 

message arrival. A production P is immediate if either 
P is the only production of its parent symbol and the 

RHS starts with a nonterminal; 
P is part of a production sequence which left-derives 

epsilon, an output symbol, or /remove/; 
the RHS of P starts with /timer/. 

A symbol instance is expanded when a production has 
been applied to it, and active if it, or one of its descen- 
dants, is eligible for expansion. A symbol instance is ini- 
tially inactive, and becomes active when all of its left sib- 
lings are finished (or, if part of a concurrent RHS, when 
the parent symbol is expanded). 

Symbol status can be mapped to process status: acti- 
vating a symbol corresponds to starting a process, ex- 
panding the symbol corresponds to selecting an alterna- 
tive or proceeding after an initial blockage, and the symbol 
instance is deactivated when the process finishes. 

B.  Algorithms 
The parsing algorithms use the following data struc- 

tures. 
The newly active queue is a queue of symbol in- 

stances awaiting processing after initially becoming ac- 
tive. 

The immediate queue is a queue of active nonter- 
minal instances that may be eligible for expansion by an 
immediate production. If the enabling condition of an im- 
mediate production of a symbol S depends an attribute A ,  
then S is added to this queue whenever the value of A 
changes. 

succeeds (yields the input symbol without blocking) is 
used. As a side-effect of applying productions, new active 
symbols may be created, and attribute value changes may 
enable immediate productions. 

Process the symbols in the newly active and imme- 
diate queues. 

Whenever an attribute value is changed, it is possible 
that the value of the enabling condition of some immedi- 
ate production becomes true. Therefore, whenever such a 
change occurs, all active symbols with an immediate pro- 
duction whose enabling condition involves the attribute 
are added to the immediate queue. 

2) Processing Timeouts: A timer is started when a 
symbol having a timed production becomes active and is 
not immediately expanded. A timeout is processed by ap- 
plying the production to the symbol instance. As with in- 
put events, this can result in additions to the newly active 
and immediate queues, that must then be processed. 

3) Processing the Immediate and Newly Active 
Queues: The immediate and the newly active queues are 
processed after handling an input event or timeout. This 
processing, which may add new entries to the queues, is 
continued until both queues are empty. 

A symbol on the immediate queue is processed by test- 
ing the enabling conditions of its immediate productions. 
If the condition of a production whose RHS starts with 
/timer/ is satisfied, a timer is started. If the condition of 
a nontimed production is satisfied, the production is im- 
mediately applied. 

A newly active symbol is processed as follows: 
If X is an output symbol, the corresponding output 

routine is called; the attribute values of X are passed as 
arguments. 

If X is /remove/, the symbols and associated stor- 
age below the symbol instance Y pointed to by /remove/ 
where are removed. Y is left in the tree but marked as 
finished. 

If X is a nonterminal and has an enabled immediate 
production, this production is applied. If there are im- 
mediate productions but none are enabled, links are es- 
tablished between the attributes on which the conditions 
of the productions depend, and X. Timers are started for 
any enabled timed productions. 
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C.  lmplernentation Alternatives 
The algorithm sketched above can be implemented in a 

variety of ways. Two actual implementations exist. The 
first was done with little concern for efficiency. It is in- 
terpretive, even at the level of expression evaluation. 
Measurements of its performance [ 11 show that it uses 20 
to 30 times the CPU of hand-coded counterparts. While 
this level of performance is sufficient to demonstrate fea- 
sibility, it is not acceptable for production use. 

The second implementation improves performance at 
the cost of a larger machine-dependent part. The goals of 
the second implementation are to reduce total CPU re- 
quirements, and to minimize the time between message 
arrival and response. The following techniques are used. 

Functions for enabling conditions and attribute as- 
signments are translated into a native language of the tar- 
get machine. 

Nonlocal symbol references are evaluated ahead of 
time. Pointers to all ancestors of a nonterminal X that 
could be made by descendants of X are stored with X ,  and 
propagated to its children as needed. 

The candidate sets for all input symbol types are cal- 
culated ahead of time. When a nonterminal symbol is ac- 
tivated and is not immediately expanded, it is added to 
the candidate sets of any input symbols that it left-derives. 

Performance studies of the new parser are underway. A 
preliminary measurement shows that for the alternating 
bit protocol shown in Section 11-J, the parser uses about 
2 ms on a VAX@ 11/785 to process an acknowledgment, 
cancel a timer, send a new data packet, and start a new 
timer. This does not include the allocation and checksum- 
ming of packets or the generation of headers. 

V. RTAG-BASED SOFTWARE SYSTEMS 
As indicated earlier, a primary goal of RTAG is to pro- 

vide a software system for protocol development and ex- 
perimentation. A possible use for such a system is to de- 
velop protocols in an environment that is heterogeneous 
with respect to processor types or operating systems. 
Therefore, we distinguish between the host system on 
which the specification is being developed, and the target 
systems on which the protocol is to run. It is natural to 
break up the work between host and target systems as fol- 
lows. 

An RTAG compiler runs on the host system. It checks 
the RTAG specification for errors, parses it, and converts 
it into a machine-independent form from which the data 
structures needed by the target machine can be easily de- 
rived. An RTAG compiler for UNIX was constructed 
using Lex [ 131, Yacc [ 81, and it uses the C preprocessor 
[23] to handle comments, macro substitutions, and in- 
clude files. 

An RTAG parser must be implemented for each tar- 
get system. The two versions of the RTAG parser de- 
scribed in Section IV-C have been written in C .  The first 
version used the compiler’s output file directly. The sec- 
ond version adds a preprocessing step in which portions 

@VAX is a registered trademark of Digital Equipment Corporation. 
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Fig. 5 .  An RTAG Software System. 

of the specification are converted to C code (this is 
straightforward since RTAG uses C expression syntax). 
In either case, certain aspects are system dependent, such 
as memory allocation and the access to timers. 

The relationship between the components of the RTAG 
software system is shown in Fig. 5 .  

A. RTAG Environments in BSD UNIX 
The RTAG parsers can run in the following execution 

environments in 4.3 BSD UNIX: 
Kernel Mode: In 4 . 2  BSD and later versions of 

Berkeley UNIX, the kernel is designed to facilitate the 
addition of new communication protocols [ 2 3 ] .  Protocols 
are interfaced to user-level processes by the “socket sys- 
tem,” which provides services such as process synchro- 
nization, data buffer management, and connection 
queueing. The interfaces between 1) protocols and the 
socket system, 2) different protocol layers, and 3) proto- 
cols and network interfaces drivers, are standardized to 
some extent. The position of the RTAG parser in this set- 
ting is shown in Fig. 6. 

User-Level Kernel Simulation: To allow debugging 
kernel-level protocols at the user level, we simulated parts 
of the kernel in a user program. This was done by com- 
piling the relevant parts of the kernel (such as the socket 
routines and the read/write system call routines) into the 
user program, and using a software simulation of the lower 
layers (IP and the network interfaces). We also developed 
routines for interactive perusal of the parse tree, and de- 
bugging options that allow logging the actions of the par- 
ser (productions, event occurrences, and attribute assign- 
ments) in a disk file. 

User-Level Prototyping System: This system allows 
RTAG specifications to be tested with a minimum of pro- 
gramming. It consists of a simulated network layer based 
on the UNIX IPC facility, as well as routines that trans- 
late between event symbols and packets (correctly han- 
dling data pointed to by dataptr attributes). The tree pe- 
rusal and logging routines are available here also. 

B. Interface Routines for TP-4 under 4.3 BSD UNIX 
Our RTAG specification of TP-4 was combined with 

the kernel-mode RTAG parser to obtain a working version 
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Fig. 6 .  RTAG in the UNIX Kernel Environment. 

of TP-4 operating in the Internet domain. The following 
interface routines and external functions were needed. 

Lower-layer event output routines for assembling 
TPDU’s and sending them via IP. 

A lower-layer input routine to accept a TPDU from 
IP, verify the checksum, extract the TPDU parameters, 
and generate the appropriate input event. 

Upper-layer output event routines for conveying in- 
formation to the UNIX socket layer. 

An upper-layer input routine to handle requests from 
the socket system. For the most part, these translate di- 
rectly into input events. 

VI. RELATED WORK 

We first compare RTAG to other systems for protocol 
development. These systems may be categorized as fol- 
lows. 

Systems such as IBM’s FAPL system [15] and that 
described by Blumer and Tenney [2] are intended primar- 
ily to automate the development of production-quality im- 
plementations. These systems use FSM-based formalisms 
augmented with HLL code. The efficiency of their output 
is approximately that of direct implementations, and 
RTAG has not yet attained this goal. However, RTAG 
has some advantages over FSM as a specification lan- 
guage (see Section VII). 

Systems such as PANDORA [7] and CUPID [21] are 
intended primarily for automated analysis and verifica- 
tion. RTAG currently has no analysis or verification fa- 
cility, and has no theory to support such a facility. This 
has not been a goal of the project, and our experience is 
that it is possible to develop error-free protocols using 
RTAG without automated analysis tools. 

LOTOS [3], [4], is an FDT based on algebraic event 
expressions. Researchers have also used logic program- 
ming languages [ 141, [ 181 to specify protocols. These for- 

malisms have features, analogous to those of RTAG, al- 
lowing them to support well-structured specifications. 
Interpreters have been developed for both formalisms, al- 
lowing (in theory) automated implementation. However, 
it is not clear that these implementations can be made ef- 
ficient enough for production use. 

A second area of comparison is with work in program- 
ming languages and environments. Attribute grammars 
have been used to specify programming languages [ 1 11, 
and to aid in the automatic generation of compilers and 
language-based editors [6]. There are some ideas in com- 
mon between these areas and RTAG; for example, ref- 
erences to attributes of nonlocal symbols [9]. However, 
the similarity is almost entirely superficial. Because of the 
completely different semantics, none of the language work 
appears to carry over to RTAG. Among these semantic 
differences: 

The “semantic equations” in language grammars 
correspond roughly to RTAG’s attribute assignments. 
However, attribute assignments are not equations; they 
are performed once (when the production is applied) and 
need not hold after that. 

In RTAG, attribute information is used (in enabling 
conditions) to control parsing, whereas in language sys- 
tems attributes are generally evaluated after parsing to 
check for errors. 

RTAG’s subtree concurrency and multiple derivation 
of input symbols appears to preclude application of pars- 
ing techniques for context-free grammars. 

VIZ. CONCLUSION 
Nounou and Yemini [ 161 state that 

State-transition-based specifications (such as state 
machines and Petri-net-based models) lend them- 
selves more easily than event-based specifications 
(such as sequence expressions) to translations into 
implementations. This is because specifications for 
the former describe the flow of execution of a pro- 
tocol step by step, while specifications for the latter 
are concerned with the valid outcomes of the pro- 
tocol operation and not with how the outcomes are 
produced. 

Piatkowski [ 171 repeats this argument, and concludes that 
the goal of event-based techniques are ‘‘socially irrespon- 
sible” for this reason. The conclusions of the RTAG proj- 
ect, in contrast, are that: 

Event-based specifications (such as grammars) can, 
in general, be translated into implementations as easily as 
state-based specifications. A regular grammar has a trivial 
translation into an FSM. There are very efficient parsing 
techniques for large classes of context-free grammars. 
RTAG is more complex than either of these, but its se- 
mantics were intentionally designed to allow efficient real- 
time parsing. Preliminary results (see Section IV-C) sug- 
gest that RTAG implementations can be fast enough for 
production use. 

Because event-based specifications express ‘‘the valid 
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outcomes of the protocol operation,” they are easier to 
understand. 

The limited expressive power of FSM-based formal- 
isms is most evident when they are applied to protocols 
that consist of a dynamically varying set of concurrent 
“subprotocols. ” RTAG, because it allows a direct spec- 
ification of such structures, is better-suited to these pro- 
tocols. For example, the RTAG specification of TP-4 is 
significantly more complete, concise, and well structured 
than its FSM counterpart. 

Work remains to be done towards increasing and mea- 
suring the efficiency of RTAG-based implementations, 
and towards the development of RTAG-based design 
tools. 
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