
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988 29 1

Automated Protocol Implementation with RTAG
DAVID P. ANDERSON

Abstract-RTAG is a language based on an attribute grammar no-
tation for specifying protocols. Its main design goals are: 1) to support
concise and easily understood expression of complex real-world pro-
tocols, and 2) to serve as the basis of a portable software system for
automated protocol implementation.

This paper summarizes the RTAG language, gives examples of its
use, sketches the algorithms used in generating implementations from
these specifications, and describes a UNIX@-based automated imple-
mentation system for RTAG.

Zndex Terms-Attribute grammars, communication protocols, for-
mal specification.

I. INTRODUCTION
HE number of communication protocol families, op- T erating systems, communication-based applications,

network architectures, and network interface hardware
types is large and constantly increasing. Thus, consider-
able programming effort is required to directly implement
the protocols needed for communication in large hetero-
geneous systems.

The separation of communication services into layers
with well-defined interfaces, as is done by the IS0 model
[24], improves the situation because it reduces interlayer
dependencies. However, system designers are still faced
with the problem of implementing protocols efficiently on
a range of operating systems.

The software engineering of communication protocols
is complicated by two factors: 1) for efficiency reasons,
protocols often must be placed in operating system ker-
nels where debugging is difficult and interfaces are highly
system-specific [5] ; 2) protocol implementations must
conform to an externally defined (and often poorly de-
fined) standard. In contrast, other system software (such
as a local operating system service) can serve as its own
authoritative specification.

Problem 1 can be minimized by a modular kernel or-
ganization that provides well-defined interfaces between
protocols and adjacent layers; this has been done, for ex-
ample, in 4.3 BSD UNIX [12]. Problem 2 can be ad-
dressed by the use of formal description techniques
(FDT’s) for specifying protocols. The role of FDT’s is
discussed in [20], and a survey is given in [191.

Most FDT’s in current use are based on finite state ma-
chines (FSM), and are oriented towards verification and/

Manuscript received February 15, 1987; revised October 1, 1987. This
work was supported by the IBM Corporation and by the National Science
Foundation under Grant DCR-8619302.

The author is with the Department of Electrical Engineering and Com-
puter Science, Computer Science Division, University of California, Berk-
ley, CA 94720.

IEEE Log Number 87 18690.
WNIX is a registered trademark of AT&T Bell Laboratories.

or performance analysis. Pure FSM’s are amenable to au-
tomated protocol verification, but can represent only sim-
ple or idealized protocols. Other FDT’s augment the au-
tomata with high-level language (HLL) code to express
the details of real-world protocols [2], [15].

A . RTAG: A Grammar-Based Formal Description
Technique

RTAG (real-time asynchronous grammars) is a formal
description technique designed with the following goals:

To make it easy to specify complex protocols.
To allow efficient automated implementation.

RTAG is based on a context-free grammar (CFG) no-
tation in which ordinary terminal symbols correspond to
messages sent and received. RTAG also provides conve-
nient mechanisms for specifying concurrent protocol ac-
tivities and real-time constraints.

For certain applications, RTAG has significant advan-
tages over FSM-based techniques. It supports encapsula-
tion and abstraction in protocol design and specification
by allowing a protocol to be decomposed into subproto-
cols that are specified separately. These subprotocols may
be instantiated dynamically and may operate concur-
rently. RTAG allows most protocol mechanisms to be ex-
pressed without resort to HLL code; this is in large part
due to its use of grammars, rather than FSM, as the un-
derlying formalism.

In addition, it is possible to automatically generate ef-
ficient protocol implementations based on RTAG speci-
fications. This is done using an RTAG parser, a real-time
program that, given an RTAG specification, responds to
input messages in a way that satisfies the specification.
This provides a major part of an implementation of the
protocol. Essentially, only packet assembly/disassembly
and interface routines need be added.

If a set of protocols have been specified with RTAG,
implementations of these protocols on a computer system
can be obtained by writing an RTAG parser and interface
routines on that system. Conversely, changes to a proto-
col running on a network of (possibly dissimilar) systems
all running the RTAG parser can be effected by changing
the RTAG specification, rather than by rewriting many
direct implementations.

We have developed an RTAG parser under 4.3 BSD
UNIX and have written an RTAG specification of the NBS
Class 4 Transport Protocol, TP-4 [22]. The RTAG parser
has been installed in the UNIX kernel and interfaced with
its networking code, yielding an RTAG-based implemen-
tation of TP-4. This implementation has successfully

0098-5589/88/0300-0291$01 .OO O 1988 IEEE

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on May 2, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

292 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988

communicated with other TP-4 implementations over the
DOD Internet.

This paper is organized as follows: Section I1 describes
the syntax and semantics of RTAG; Section 111 gives ex-
amples from the RTAG TP-4 specification; Section IV
sketches algorithms for an RTAG parser; Section V de-
scribes a UNIX-based RTAG development system; Sec-
tion VI compares RTAG to related work, and Section VI1
gives conclusions.

11. RTAG SYNTAX AND SEMANTICS
This section summarizes the syntax and semantics of

RTAG. An RTAG specification defines the behavior of a
protocol entity that must respond to input messages, and
to the passage of real time, by generating output mes-
sages. RTAG uses a context-free grammar notation, but
its semantics will be defined in terms of a process-based
model. Each grammar symbol X is associated with a pro-
cess definition Px. Event (terminal) symbol processes read
or write a single message, and each production defines a
nonterminal process as the sequential or paraIlel compo-
sition of subprocesses. For example, the production

< x > : < y > < z >

defines P , , > as a process that invokes processes P , >
and P , > in sequence. Symbols can have data-valued at-
tributes; the attributes of X correspond to per-process
variables of Px. The protocol defined by an RTAG spec-
ification is the process associated with the goal symbol.

In an RTAG protocol entity there is at any point a tree
of process instances; initially there is an instance of the
goal-symbol process. The life of a process is as follows:
it is first instantiated, creating its per-process variables,
and is later started, i.e., executed. It becomes Jinished
when it reaches the end of its definition or because of in-
tervention by another process. The per-process variables
continue to exist until the process is removed. Processes
can block waiting for input events to occur, time to elapse,
or expressions to become true.

RTAG semantics are described in terms of processes
for pedagogical purposes only. In an implementation,
RTAG processes would be represented by symbol de-
scriptors with a field encoding the process state, rather
than by distinct processes at the operating system level.

A . Symbols and Attributes
RTAG symbols are divided into the following classes:

Nonterminal symbols are delimited by angle brackets
(<, > I .

Event symbols (both input and output) are delimited
by square brackets ([, 1). By convention, the symbol name
contains a character indicating the other protocol layer in-
volved, followed by an arrow indicating whether the sym-
bol is an input or output symbol. For example, in our
TP-4 specification, [U - > CR] represents a connection
request received from the upper layer, and [N < - DT]
represents a data packet sent to the network layer.

Special terminal symbols represent internal actions

of the protocol entity; their names are delimited with
slashes. There are two special terminal symbols; /timer/
and /remove/.

Each symbol has an associated set of attributes, each of
which has a type from among the following: integer,
boolean, dataptr (pointer to message data), and symbol-
ref (pointer to a symbol instance; used by the /remove/
special terminal symbol).

The semantics of a terminal symbol X are as follows:
Output Symbols: Px sends the corresponding message,

using the attribute values of X as values for the message
fields. In practice, this is done by calling an event perfor-
mance routine, parameterized by the attribute values of
X .

Input Symbols: Px blocks until an arrival of the corre-
sponding message. Its per-process variables are then ini-
tialized with the values contained in the message fields.

Special Terminal Symbols: /timer/ has an integer at-
tribute interval. Pltlmerl sleeps for the amount of time given
by the value of this attribute. /remove/ has an attribute
where of type symbol-ref, which points to a symbol (pro-
cess) instance Y. When an instance of Plremovel is executed,
Y and all its descendants in the process tree are aborted
and flagged as finished. This is used, for example, in han-
dling abnormal closure of connections.

B. Attribute References and Expressions
Expressions associated with a production P can refer to

symbols and attributes of symbols that are local (within
P), or nonlocal (at a relative position in the process tree).
A local reference is of the form $n, and refers to the nth
symbol of P; $0 is the parent (LHS) symbol and $1 is the
first symbol of the RHS. A nonlocal reference is either a
nonterminal symbol name (referring to the closest ances-
tor of that name), or a pair of symbol names separated
with a slash (referring to a particular child of that ances-
tor).

Attribute references are of the form symbol-refer-
ence.attrname and refer to the named attribute of the
process instance specified by symbol-reference. Expres-
sions in RTAG are built up from attribute references and
constants using arithmetic, logical and relational opera-
tors written as in C language [lo].

C. Simple Productions

symbol) is written as:
A simple production (the unique production of its LHS

< x > : a .

where < x > is a nonterminal and a is a string of gram-
mar symbols.

P, , , is the composition of the processes in a (possibly
modified by attribute assignments or an enabling condi-
tion, see below). a may be empty, in which case P,,, is
immediately finished.

By default, process composition is sequential; each
subprocess in a is started when its left neighbor finishes.
Processes may also be composed in parallel, allowing the

9

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on May 2, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

ANDERSON: AUTOMATED PROTOCOL IMPLEMENTATION 293

events they derive to be interleaved in time. This is done
by enclosing a RHS in curly brackets; its processes are
then executed in parallel, and the parent process finishes
when all subprocesses are finished (see Section I11 for ex-
amples).

D. Attribute Assignments
A production can have attribute assignments of the form

attribute-reference = expression. Attribute assign-
ments are used for synchronization or data transfer be-
tween process instances.

When a process starts, its subprocesses are instantiated
and their attributes are initially undefined. In general, at-
tribute assignments are performed before starting the first
subprocess, and are performed in order. There are two
special cases. First, in a production of the form

$1 .interval = expression
(other attribute assignments)

< x > : /timer/a.

the assignment of /timer/.interval is performed when
P < x , starts. When Pltlmer, finishes, the subprocesses in a
are instantiated, and the other attribute assignments are
performed.

Second, in a production of the form

< x > : [y] a.
(attribute assignments)

where [y] is an input symbol, P , , , initially invokes
P ! y l . The subprocesses in a are instantiated, and the at-
tnbute assignments are performed, only after [y] is fin-
ished, i.e., after an input event has occurred and been
accepted.

E. Enabling Conditions
A production of a symbol X can have a Boolean-valued

enabling condition. Px blocks, without instantiating sub-
processes or performing attribute assignments, until the
value of the enabling condition is true. For example, in

if $0 seq > < y > . windowstart
< x > : [N < - D T] < z > .

9

P < x , blocks until the seq attribute of < x > is larger than
the windowstart attribute of the closest < y > ancestor,
then instantiates [N < - DT] and < z > and starts [N
< - D T] .

F. Alternative Productions

productions, denoted as follows:
A nonterminal < X > may have several alternative

<x> : al.

I a2.

(enabling condition)
(attribute assignments)

P , x , blocks until some alternative becomes selected, at
which point that process definition is executed and the
other alternatives are discarded. An alternative P is said
to be selected when either

an input event [y] occurs such that P yields, without
blocking, an instance of [y] which accepts the message.
In particular, the enabling conditions of the productions
in the sequence by which [y] is derived from < X > must
all be satisfied

P yields, without blocking, the epsilon process, an
output symbol, or /remove/

P is defined by a production of the form

< X > : /timer/ CY.
(enabling condition)
$1 .internal = expression . . .

and an instance of P , started when < X > is started, fin-
ishes its /timer/ subprocess. As an example, consider the
following:

<ge tack> : [N - > A K] .

I *
if < connection > .closed

I /timer/ <timed out > .
$1 .interval = 10

The semantics of P<get a&> are as follows. When an
instance of <get ack> is started,

a) if the [N - > AK] event occurs, the first production
is selected;

b) if the closed attribute of the nearest <con-
nection > ancestor becomes true, the second (epsilon)
production is selected;

c) if 10 time units elapse without either a) orb) taking
place, then the third production is selected and a <timed
out > process starts.

Hence, there are three alternate definitions of the < get
ack> process. The selection depends on what happens
first, in terms of input events, attribute value changes, and
the passage of real time.

G. Externally Dejined Functions
External function names can be used in attribute as-

signments and enabling conditions. They typically per-
form calculations that are not easily expressed within
RTAG or that are installation-dependent. The function
definitions are not part of the RTAG specification, and
must in general be supplied for each implementation.

H. Multiple Derivation of Input Symbols
When an input event occurs, there may be many pro-

cesses able to accept it. RTAG supports broadcast se-
mantics: a message is accepted by all processes that can
accept it. This is useful because, in a complex protocol,
a single input message may be relevant to several subpro-
tocol processes. For example, in our specification of

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on May 2, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

294

TP-4, the acknowledged delivery of each packet is han-
dled in a separate process. An acknowledgment event
may serve to acknowledge several packets, and hence be
relevant to several processes.

If an input message is not accepted by any process, it
is discarded and ignored. In some applications it might be
preferable to regard unaccepted messages as fatal errors
or to log them for debugging purposes.

I . Key Attributes
Some protocols have a ‘‘reference number” mechanism

for associating input messages with connections or trans-
actions. While this could be enforced in RTAG at the leaf
level by having a reference number equality clause in each
enabling condition, this would be cumbersome and inef-
ficient. Instead, RTAG has the following mechanism: an
attribute name can be declared as being the key attribute.
No two nonterminal process instances may simulta-
neously have the same value for the key attribute. Sup-
pose an input symbol instance X has the key attribute with
value k . If there is a nonterminal instance Y with key at-
tribute value k , X can be accepted only by descendants of
Y. Otherwise, X can be accepted only by processes of
which no ancestor has the key attribute. If X does not have
the key attribute then there are no restrictions.

J . Example: An Alternating Bit Protocol
An RTAG specification of the sending end of an alter-

nating-bit protocol is given below as a small example.
The declaration section is omitted for brevity.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988

<goal > : <packet tail >
$l.seqno = 0

tocol 1221. The entire specification is given in [11; in this
section, we give the overall structure of the specification,
and describe a few parts in detail.

TP-4 was chosen as a test case because it incorporates
many common protocol mechanisms and offers a signifi-
cant level of complexity. TP-4 provides multiple connec-
tions, reliable connection management, reliable se-
quenced message transfer with end-to-end flow control, a
separate logical channel for high-priority data, and sliding
send and receive windows for increased throughput.

Messages between TP-4 peer entities are called trans-
port protocol data units (TPDU’s). There are a dozen or
so types of TPDU’s, including connection request (CR),
connection confirmation (CC), data (DT), acknowledg-
ment (AK), and graceful close (GR). Data messages
passed between TP-4 and upper layer clients are called
transport service datu units (TSDU’s).

A. Design Principles
The TP-4 example illustrates the following principles

for protocol design using RTAG:
1) Logically distinct parts of the protocol, or subpro-

tocols, are put in different processes (i.e., subtrees).
RTAG provides a means for abstraction of subprotocols
(i.e., the external interface of a subprotocol can hide its
internal mechanisms) and encourages a top-down design
approach.

2) Information relevant only to a particular subprotocol

<packet tail> : <packet>
$2. seqno = ($0. seqno

I [U- > FINISHED].

< packet > : [U- > DATA]
$O.data = $l.data
$2.data = $l.data

<packet tail > .
+ 1) % 2;

N < -DATA] < retransmit >

$2. seqno = < packet tail > . seqno
9

< retransmit > : [N- > ACK] [U < - ACK] .
if $1. seqno = = < packet tail > . seqno

I /timer/ [N< -DATA] < retransmit >
$1 .interval = 100
$2.data = <packet > .data
$2. seqno = < packet tail > . seqno

,

111. AN EXAMPLE: THE TP-4 TRANSPORT PROTOCOL
As an example and test case for RTAG, we have written

a specification of the NBS class 4 transport protocol
(TP-4), working from an AFSM specification of the pro-

is stored in the attributes of the process (i.e., symbol)
serving as the root for that subprotocol, rather than higher
in the tree.

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on May 2, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

ANDERSON: AUTOMATED PROTOCOL IMPLEMENTATION 295

/timer/ <TCtail>

A \
(<TC> <TCtail>)

{<K> <TC tail >} A/‘ \ ”

Fig. 1. Multiple Transport Connections.

<TC>

<expsend> <reg reo!>

Fig. 2. Subprotocols Within a Connection.

<regsend>

<send mrg tail>

B. Multiple Transport Connections

period which protects the integrity of connections, and

I The following productions provide an initial inactive

/ \ allow many transport connections to exist concurrently: { <send msg> <rend mrg tail> }

/ \ / \
{ <sendmrg> <wndmsgtail> } [U->DTl <transmit msg>

/ \ \ <goal> : /timer/ <TC tail>.
$1. interval = QUIET-TIME A [U->DT] <transmitmsg>

<TC tail> : { < T C > <TC tail> } .
1 [U->FIN].

This produces the parse tree structure shown in Fig. 1.
Each connection (i.e., < TC > process) consists of three
concurrent subprotocols: connection establishment, trans-
action, and disconnection (see Fig. 2). The attributes of
< T C > contain information, such as local and foreign
addresses and reference numbers, needed by more than
one of these subprotocols.

Fig. 3. TSDU Sending.

ments. The send-data subprotocol is further divided into
subprotocols for each TSDU (< send msg >) and each of
these is further divided into subprotocols for each packet
within the TSDU (<send packet>).

The recursive production of <send msg tail> pro-
vides a queue for TSDU’s which are in the send buffer,
but not necessarily in the send window.

<send msg tail > : { < send msg > < send msg tail > } .
$2.ready = false

I [U- > GR] < transmit GR >

<send msg> : [U- > DT] < transmit msg > $2.data = $1 .data

C. The Regular Send Subprotocol
The transaction subprotocol is further decomposed into

four concurrent subprotocols: regular send and receive,
and high-priority send and receive.

For sending regular-priority data, TP-4 uses a sliding
window whose size cannot exceed the receive window size
(or “credit”) supplied, in acknowledgment messages, by
the peer. The regular send subprotocol is divided into sub-
protocols for sending data and for handling acknowledg-

Fig. 3 shows the queueing and transmission of TSDU’s.
The delivery of each TSDU involves a recursive process
<send packet tail> that splits the TSDU’s data into
packets and invokes a <send packet > process to handle
the delivery of each one. The subprotocol for delivering
a TSDU is defined below; extract splits off a packet-sized
portion of a longer message, and eot returns true iff its
argument is empty.

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on May 2, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

296 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 3. MARCH 1988

<transmit msg > : < send packet tail > .
if < send msg tail > .ready
$ 1 .eot = eot($O.data)

9

< send packet tail > : { < send packet > < send packet tail > } .
if not $O.eot
$1 .data = extract (<transmit msg > .data)
$ 1 .eot = eot (<transmit msg > .data)
$1 .seqno = < reg send > .nextseq
<reg send > .nextseq = (<reg send > .nextseq + 1) % MAXSEQ
$2.eot = $1 .eot

I /freedata/.
if $O.eot
$1 .data = <transmit msg > .data
< seng msg tail > / < send msg tail > .ready = true

A Boolean attribute ready of <send msg tail > is used to prevent a queued TSDU from beginning transmission until
the last packet of the previous message has been sent. It is set by the last production of <send packet tail > .

The acknowledged delivery of a packet is handled by an instance of the <send packet > process, defined below.
The following external functions are used: between(x, y , z) returns true iff x < y I z in cyclic order; copy(d)
returns a new reference to the given byte string (this could involve a reference count mechanism rather than physically
copying the data).

< send packet > : [N < - DT] < retransmit DT > .

&& (< transact > . nxoutstanding = = 0)
if (<reg send > .nextseq ! = < reg send > . windowend)

$1. src-ref = < TC > . refno
$1 .dst-ref = < TC > . foreign-refno
$l.eot = $O.eot
$l.seqno = $O.seqno
$1 .data = copy($O.data)
$2 .count = RETRANS-COUNT

< retransmit DT > : /timer/ [N < -DT] < retransmit DT > .
if $O.count > 0
$1 .interval = RETRANS-TIME
$2. src-ref = < TC > . refno
$2. dst-ref = < TC > . foreign-refno
$2.eot = <send packet > .eot
$2. seqno = < send packet > . seqno
$2.data = copy(< send packet > .data)
$3.count = $O.count - 1

if between (<send packet > .seqno, $l.seqno, <reg send> .next seq)
$2.refno = <TC > .refno
$2.data = <send packet > .data

I /timer/.
if $O.count = = 0
$1. interval = GIVEUP-TIME
< TC > .transerror = true

I [N->AK] [U<-AK].

Fig. 4 shows the delivery of packets within a TSDU

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on May 2, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

ANDERSON: AUTOMATED PROTOCOL IMPLEMENTATION

<transmit msg>

crend packet tail >
I

A----. <send packettail>)
{ <rend packet>

/ \
{ <sendpacket> . / \

[N<-DT] <retransmit DT>

/ I \
/timer/ (N<-DTI <retransmit DT>

. . . \
\

iretransmit DT>

/ \
[N->AK] Areedatal

Fig. 4. Packet Sending.

291

The parser is initialized by creating an instance of the
goal symbol to serve as the parse tree root, and setting all
queues to empty. Its actions, thereafter, are initiated by
input events and timeouts.

1) Processing Input Events: The steps in processing an

Compute a candidate set of nonterminal leaf symbols
that might yield the input symbol. The candidate set of an
input symbol instance [x] is the set of nonterminal leaves
that left-derive [x] in the underlying CFG, and that sat-
isfy the “key attribute” restriction.

Attempt to yield the input symbol from each candi-
date < a > in turn. This is done by going through all the
production sequences that left-derive [x] from < a > in
the underlying CFG. The first production sequence that

1 input event are:

IV. DESIGN OF AN RTAG PARSER
An RTAG parser is a program that, given the RTAG

specification of a protocol, implements the protocol. It
does so by maintaining a parse tree of attributed symbol
instances, and responding to input events by attempting
to “derive” them by applying productions to leaf nonter-
minal symbols. In this section we sketch the algorithm
used by an RTAG parser.

A. Definitions
Some productions may be applied for reasons other than

message arrival. A production P is immediate if either
P is the only production of its parent symbol and the

RHS starts with a nonterminal;
P is part of a production sequence which left-derives

epsilon, an output symbol, or /remove/;
the RHS of P starts with /timer/.

A symbol instance is expanded when a production has
been applied to it, and active if it, or one of its descen-
dants, is eligible for expansion. A symbol instance is ini-
tially inactive, and becomes active when all of its left sib-
lings are finished (or, if part of a concurrent RHS, when
the parent symbol is expanded).

Symbol status can be mapped to process status: acti-
vating a symbol corresponds to starting a process, ex-
panding the symbol corresponds to selecting an alterna-
tive or proceeding after an initial blockage, and the symbol
instance is deactivated when the process finishes.

B. Algorithms
The parsing algorithms use the following data struc-

tures.
The newly active queue is a queue of symbol in-

stances awaiting processing after initially becoming ac-
tive.

The immediate queue is a queue of active nonter-
minal instances that may be eligible for expansion by an
immediate production. If the enabling condition of an im-
mediate production of a symbol S depends an attribute A ,
then S is added to this queue whenever the value of A
changes.

succeeds (yields the input symbol without blocking) is
used. As a side-effect of applying productions, new active
symbols may be created, and attribute value changes may
enable immediate productions.

Process the symbols in the newly active and imme-
diate queues.

Whenever an attribute value is changed, it is possible
that the value of the enabling condition of some immedi-
ate production becomes true. Therefore, whenever such a
change occurs, all active symbols with an immediate pro-
duction whose enabling condition involves the attribute
are added to the immediate queue.

2) Processing Timeouts: A timer is started when a
symbol having a timed production becomes active and is
not immediately expanded. A timeout is processed by ap-
plying the production to the symbol instance. As with in-
put events, this can result in additions to the newly active
and immediate queues, that must then be processed.

3) Processing the Immediate and Newly Active
Queues: The immediate and the newly active queues are
processed after handling an input event or timeout. This
processing, which may add new entries to the queues, is
continued until both queues are empty.

A symbol on the immediate queue is processed by test-
ing the enabling conditions of its immediate productions.
If the condition of a production whose RHS starts with
/timer/ is satisfied, a timer is started. If the condition of
a nontimed production is satisfied, the production is im-
mediately applied.

A newly active symbol is processed as follows:
If X is an output symbol, the corresponding output

routine is called; the attribute values of X are passed as
arguments.

If X is /remove/, the symbols and associated stor-
age below the symbol instance Y pointed to by /remove/
where are removed. Y is left in the tree but marked as
finished.

If X is a nonterminal and has an enabled immediate
production, this production is applied. If there are im-
mediate productions but none are enabled, links are es-
tablished between the attributes on which the conditions
of the productions depend, and X. Timers are started for
any enabled timed productions.

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on May 2, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

298

C. lmplernentation Alternatives
The algorithm sketched above can be implemented in a

variety of ways. Two actual implementations exist. The
first was done with little concern for efficiency. It is in-
terpretive, even at the level of expression evaluation.
Measurements of its performance [11 show that it uses 20
to 30 times the CPU of hand-coded counterparts. While
this level of performance is sufficient to demonstrate fea-
sibility, it is not acceptable for production use.

The second implementation improves performance at
the cost of a larger machine-dependent part. The goals of
the second implementation are to reduce total CPU re-
quirements, and to minimize the time between message
arrival and response. The following techniques are used.

Functions for enabling conditions and attribute as-
signments are translated into a native language of the tar-
get machine.

Nonlocal symbol references are evaluated ahead of
time. Pointers to all ancestors of a nonterminal X that
could be made by descendants of X are stored with X , and
propagated to its children as needed.

The candidate sets for all input symbol types are cal-
culated ahead of time. When a nonterminal symbol is ac-
tivated and is not immediately expanded, it is added to
the candidate sets of any input symbols that it left-derives.

Performance studies of the new parser are underway. A
preliminary measurement shows that for the alternating
bit protocol shown in Section 11-J, the parser uses about
2 ms on a VAX@ 11/785 to process an acknowledgment,
cancel a timer, send a new data packet, and start a new
timer. This does not include the allocation and checksum-
ming of packets or the generation of headers.

V. RTAG-BASED SOFTWARE SYSTEMS
As indicated earlier, a primary goal of RTAG is to pro-

vide a software system for protocol development and ex-
perimentation. A possible use for such a system is to de-
velop protocols in an environment that is heterogeneous
with respect to processor types or operating systems.
Therefore, we distinguish between the host system on
which the specification is being developed, and the target
systems on which the protocol is to run. It is natural to
break up the work between host and target systems as fol-
lows.

An RTAG compiler runs on the host system. It checks
the RTAG specification for errors, parses it, and converts
it into a machine-independent form from which the data
structures needed by the target machine can be easily de-
rived. An RTAG compiler for UNIX was constructed
using Lex [131, Yacc [81, and it uses the C preprocessor
[23] to handle comments, macro substitutions, and in-
clude files.

An RTAG parser must be implemented for each tar-
get system. The two versions of the RTAG parser de-
scribed in Section IV-C have been written in C . The first
version used the compiler’s output file directly. The sec-
ond version adds a preprocessing step in which portions

@VAX is a registered trademark of Digital Equipment Corporation.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 3, MARCH 1988

.. .. ‘T!

1
[device driven1

Fig. 5 . An RTAG Software System.

of the specification are converted to C code (this is
straightforward since RTAG uses C expression syntax).
In either case, certain aspects are system dependent, such
as memory allocation and the access to timers.

The relationship between the components of the RTAG
software system is shown in Fig. 5 .

A. RTAG Environments in BSD UNIX
The RTAG parsers can run in the following execution

environments in 4.3 BSD UNIX:
Kernel Mode: In 4 . 2 BSD and later versions of

Berkeley UNIX, the kernel is designed to facilitate the
addition of new communication protocols [2 3] . Protocols
are interfaced to user-level processes by the “socket sys-
tem,” which provides services such as process synchro-
nization, data buffer management, and connection
queueing. The interfaces between 1) protocols and the
socket system, 2) different protocol layers, and 3) proto-
cols and network interfaces drivers, are standardized to
some extent. The position of the RTAG parser in this set-
ting is shown in Fig. 6.

User-Level Kernel Simulation: To allow debugging
kernel-level protocols at the user level, we simulated parts
of the kernel in a user program. This was done by com-
piling the relevant parts of the kernel (such as the socket
routines and the read/write system call routines) into the
user program, and using a software simulation of the lower
layers (IP and the network interfaces). We also developed
routines for interactive perusal of the parse tree, and de-
bugging options that allow logging the actions of the par-
ser (productions, event occurrences, and attribute assign-
ments) in a disk file.

User-Level Prototyping System: This system allows
RTAG specifications to be tested with a minimum of pro-
gramming. It consists of a simulated network layer based
on the UNIX IPC facility, as well as routines that trans-
late between event symbols and packets (correctly han-
dling data pointed to by dataptr attributes). The tree pe-
rusal and logging routines are available here also.

B. Interface Routines for TP-4 under 4.3 BSD UNIX
Our RTAG specification of TP-4 was combined with

the kernel-mode RTAG parser to obtain a working version

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on May 2, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

ANDERSON: AUTOMATED PROTOCOL IMPLEMENTATION 299

nosf system

,_____________. : uwr-supplied j
;components ,
. _ _ _ _ _ _ _ _ _ _ _ _ - A

[-I
system components

......... 1

input
event
queue

! input : : outpul :
:interface : : interface :

taqcr *ern
.___.._......

Fig. 6 . RTAG in the UNIX Kernel Environment.

of TP-4 operating in the Internet domain. The following
interface routines and external functions were needed.

Lower-layer event output routines for assembling
TPDU’s and sending them via IP.

A lower-layer input routine to accept a TPDU from
IP, verify the checksum, extract the TPDU parameters,
and generate the appropriate input event.

Upper-layer output event routines for conveying in-
formation to the UNIX socket layer.

An upper-layer input routine to handle requests from
the socket system. For the most part, these translate di-
rectly into input events.

VI. RELATED WORK

We first compare RTAG to other systems for protocol
development. These systems may be categorized as fol-
lows.

Systems such as IBM’s FAPL system [15] and that
described by Blumer and Tenney [2] are intended primar-
ily to automate the development of production-quality im-
plementations. These systems use FSM-based formalisms
augmented with HLL code. The efficiency of their output
is approximately that of direct implementations, and
RTAG has not yet attained this goal. However, RTAG
has some advantages over FSM as a specification lan-
guage (see Section VII).

Systems such as PANDORA [7] and CUPID [21] are
intended primarily for automated analysis and verifica-
tion. RTAG currently has no analysis or verification fa-
cility, and has no theory to support such a facility. This
has not been a goal of the project, and our experience is
that it is possible to develop error-free protocols using
RTAG without automated analysis tools.

LOTOS [3], [4], is an FDT based on algebraic event
expressions. Researchers have also used logic program-
ming languages [141, [181 to specify protocols. These for-

malisms have features, analogous to those of RTAG, al-
lowing them to support well-structured specifications.
Interpreters have been developed for both formalisms, al-
lowing (in theory) automated implementation. However,
it is not clear that these implementations can be made ef-
ficient enough for production use.

A second area of comparison is with work in program-
ming languages and environments. Attribute grammars
have been used to specify programming languages [1 11,
and to aid in the automatic generation of compilers and
language-based editors [6]. There are some ideas in com-
mon between these areas and RTAG; for example, ref-
erences to attributes of nonlocal symbols [9]. However,
the similarity is almost entirely superficial. Because of the
completely different semantics, none of the language work
appears to carry over to RTAG. Among these semantic
differences:

The “semantic equations” in language grammars
correspond roughly to RTAG’s attribute assignments.
However, attribute assignments are not equations; they
are performed once (when the production is applied) and
need not hold after that.

In RTAG, attribute information is used (in enabling
conditions) to control parsing, whereas in language sys-
tems attributes are generally evaluated after parsing to
check for errors.

RTAG’s subtree concurrency and multiple derivation
of input symbols appears to preclude application of pars-
ing techniques for context-free grammars.

VIZ. CONCLUSION
Nounou and Yemini [161 state that

State-transition-based specifications (such as state
machines and Petri-net-based models) lend them-
selves more easily than event-based specifications
(such as sequence expressions) to translations into
implementations. This is because specifications for
the former describe the flow of execution of a pro-
tocol step by step, while specifications for the latter
are concerned with the valid outcomes of the pro-
tocol operation and not with how the outcomes are
produced.

Piatkowski [171 repeats this argument, and concludes that
the goal of event-based techniques are ‘‘socially irrespon-
sible” for this reason. The conclusions of the RTAG proj-
ect, in contrast, are that:

Event-based specifications (such as grammars) can,
in general, be translated into implementations as easily as
state-based specifications. A regular grammar has a trivial
translation into an FSM. There are very efficient parsing
techniques for large classes of context-free grammars.
RTAG is more complex than either of these, but its se-
mantics were intentionally designed to allow efficient real-
time parsing. Preliminary results (see Section IV-C) sug-
gest that RTAG implementations can be fast enough for
production use.

Because event-based specifications express ‘‘the valid

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on May 2, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

300 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 3, MARCH 1988

outcomes of the protocol operation,” they are easier to
understand.

The limited expressive power of FSM-based formal-
isms is most evident when they are applied to protocols
that consist of a dynamically varying set of concurrent
“subprotocols. ” RTAG, because it allows a direct spec-
ification of such structures, is better-suited to these pro-
tocols. For example, the RTAG specification of TP-4 is
significantly more complete, concise, and well structured
than its FSM counterpart.

Work remains to be done towards increasing and mea-
suring the efficiency of RTAG-based implementations,
and towards the development of RTAG-based design
tools.

ACKNOWLEDGMENT
I would like to thank A. Bricker and T. Lebeck, who

helped with the UNIX kernel implementation and pro-
vided most of the code for the TP-4 interface routines and
the UNIX kernel simulation. L. Chin and D. Hernek as-
sisted in the implementation of the second version of the
RTAG parser.

REFERENCES
D. P. Anderson, “A grammar-based methodology for protocol spec-
ification and implementation,” Ph.D. dissertation, Univ. Wiscon-
sin-Madison, WI, Aug. 1985.
T. P. Blumer and R. L. Tenney, “A formal specification technique
and implementation method for protocols,” Comput. Networks, vol.
6, no. 3, pp. 201-217, July 1982.
1. P. Briand, M. C. Fehri, L. Logrippo, and A. Obaid, “Structure of
a LOTOS interpreter,” SIGCOMM’86 Symp., Stowe, VT, Aug. 1986.
E. Brinksma, “A tutorial on LOTOS,” in Proc. 5th IFIP Symp. Pro-
tocol Spec. Test. Verif., June 1985.
D. Clark, “Modularity and efficiency in protocol implementation,”
RFC 81 7, SRI Network Information Center, 1983.
A. T . Demers, T . Reps, and T. Teitelbaum, “Incremental evaluation
for attribute grammars with applications to syntax-directed editors,”
in Proc. Eighth Annu. ACM Symp. Principles Program. Languages,

G. Holtzmann, “The PANDORA system: An interactive system for
the design of data communication protocols,” Delft Univ. Technol.,
Rep. 39, Aug. 1982.
S . C. Johnson, “Yacc: Yet another compiler-compiler,” Unix Pro-
grammer’s Manual, vol. 2B, 1979.

pp. 105-116, 1981.

[9] G. F. Johnson and C. N. Fischer, “A meta-language and system for
nonlocal incremental attribute evaluation in language-based editors,”
in Proc. 12th ACM Symp. Principles Program. Languages, pp. 141-
151, Jan. 1985.

B. W. Kernighan and D. M. Ritchie, The CProgramming Language.
Englewood Cliffs, NJ: Prentice-Hall, 1978.
D. E. Knuth, “Semantics of context free languages,” Math Syst.
Theory/. 2 , vol. 2, pp. 127-145, 1968.
S. 1. Lemer, W. N. Joy and R. S. Fabry, 4.2BSD networking imple-
mentation notes, UNIX programmer s manual, vol. 2C,” Computer
Systems Research Group, Dep. Elec. Eng. Comput. Sci., Univ. Cal-
ifornia, Berkeley, Aug. 1983.
M. E. Lesk and E. Schmidt, “Lex-a lexical analyzer generator,”
Unix Programmer’s Manual, vol. 2B, 1979.
L. Logrippo, D. Simon, and H. Ural, “Executable description of the
OS1 transport service in Prolog,” in Proc. 4th IFIP Workshop Pro-
tocol Spec. Test. Verif., pp. 279-294, June 1984.
S. C . Nash, “Automated implementation of SNA communication
protocols,” in Proc. IEEE Int. Conf. Commun., pp. 1316-1322, June
1983.
N. Nounou and Y. Yemini, “Development tools for communication
protocols: An overview,” in Proc. IEEE Global Telecommun. Conf.,
Nov. 1984.
T. F. Piatkowski, “Protocol engineering,” in Proc.-lEEE In?. Conf.
Commun., Boston, MA, June 1983.
D. P. Sidhu, “Protocol verification via executable logic specifica-
tions,” IFIP Workshop Protocol Spec. Test. Verif., 1983.
C. A. Sunshine, “Formal techniques for protocol specification and
verification,’’ Computer, vol. 12, pp. 20-27, 1979.
C. A. Vissers, R. L. Tenney, and G. Bochmann, “Formal description
techniques,” Proc. IEEE 71, pp. 1356-1364, Dec. 1983.
Y. Yemini and N. Nounou, “CUPID: a protocol development envi-
ronment,” in Proc. 3rd IFIP Workshop Protocol Spec. Test. Verif.,
May 1983.
“Specification of a transport protocol for computer communications,
volume 3: Class 4 protocol,” Nat. Bureau Stand., Rep. ICSTIHLNP-

4.2BSD UNIX Programmer’s Manual, Comput. Syst. Res. Group,
Dep. Elec. Eng. Comput. Sci., Univ. California, Berkeley, Aug.
1983.

83-3, 1983.

[24] “Basic reference model for Open Systems Interconnection,” Inter-
national Standards Organization 7498, 1983.

David P. Anderson received the B.A. degree in
mathematics from Wesleyan University, Middle-
town, CT, in 1977, the M.A. degree in mathe-
matics, and the M.S. and Ph.D. degrees in com-
puter science from the University of Wisconsin-
Madison in 1979, 1983, and 1985, respectively.

Since 1985, he has been an Assistant Professor
with the Computer Science Division, Department
of Electrical Engineering and Computer Science,
at the University of California, Berkeley. His
fields of research are operating systems, distrib-

uted systems, and computer music.

and the IEEE Computer Society.
Dr. Anderson is a member of the Association for Computing Machinery

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on May 2, 2009 at 06:41 from IEEE Xplore. Restrictions apply.

