March 1999 — Second Workshop on Attribute Grammars and their Applications — WAGA99

A finest partitioning algorithm for attribute
grammars

Wuu Yang

Department of Computer and Information Science
National Chiao-Tung University
Hsin-Chu, Taiwan, R.O.C.

wuuyang@cis.nctu.edu.tw

Abstract

The attribute dependence graph of a syntax tree may be partitioned into disjoint regions.
Attribute instances in different regions are independent of one other. The advantages
of partitioning the attribute dependence graph include simplifying the attribute grammar
conceptually and allowing the possibility of parallel evaluation. We present a static partitioning
algorithm for attribute grammars. The algorithm builds the set of all feasible partitions for every
production by analyzing the grammar. After the attributed syntax tree is constructed, one of
the feasible partitions is chosen for each production instance in the syntax tree. Gluing together
the selected partitions for individual production instances results in a partition of the attribute
dependence graph of the syntax tree. No further merging or partitioning is needed at evaluation
time. In addition to static partitioning, the algorithm always produces the finest partition of
every attribute dependence graph.

1. Introduction

Since their introduction in 1968 [8], attribute grammars have attracted much research interest.
Attribute grammars [10] are a concise and powerful formalism for specifying computations on context-
free languages.

A main research focus on attribute grammars is designing algorithms for evaluating the attribute
instances in a syntax tree. Traditionally, researchers attempt to design sequential evaluation
algorithms. Due to the rapid progress in multi-processing hardware, it is interesting to design
parallel evaluation algorithms. In many parallel evaluation methods, an attributed syntax tree or its
attribute dependence graph is partitioned into blocks; the blocks are assigned to different processes
for evaluation.

Partitioning may be based on nonterminals. Certain nonterminals may be designated as dividers.
The instances of the dividers divide a syntax tree into non-overlapping blocks. Partitioning may also
be based on productions in a similar fashion. Because dependence relations among attribute instances
are ignored in these partitioning methods, processes need to make frequent communication in order
to exchange attribute values. Communication slows down evaluation seriously.

If the attribute instances evaluated by different processes are independent, communication between
processes can be completely eliminated. Therefore, partitioning based on attribute dependence
relation is also an attractive method. There are generally two approaches in dependence-based
partitioning. In the dynamic approach, partitioning is performed by the attribute evaluator after
the attribute dependence graph of a syntax tree is constructed. In the static approach, partitioning is
carried out by a grammar analyzer before the attribute dependence graph is constructed. There are

7

Wuu Yang

also hybrid methods in which some kind of preliminary partitioning is carried out by gathering useful
information about the underlying attribute grammar. When attribute instances in a syntax tree are
evaluated, the attribute evaluator performs further merging or partitioning based on the preliminary
information to produce the actual partitioning. In the hybrid methods, the overhead of partitioning
is split among the grammar analyzer and the evaluator.

In this paper, we present a static partitioning algorithm. A production may appear more than
once in a syntax tree. The attribute dependence graphs of different instances of the same production
may be partitioned differently due to different surrounding environments in the syntax tree. The
algorithm first computes all possible partitions of the attribute occurrences of individual productions
and the environments under which the partitions are applied. After the syntax tree is constructed, the
attribute evaluator selects a partition for each production instance in the syntax tree. A partition of
the attribute dependence graph of the syntax tree is naturally induced from the partitions of individual
production instances in the tree. The attribute evaluator does not need to perform further merging
or partitioning.

In addition to dividing the attribute dependence graphs into disjoint regions, dependence-based
partitioning algorithms should divide the attribute dependence graphs into as many regions as possible
in order to increase the effectiveness of the parallel evaluation. The partitioning algorithm presented
in this paper produces the finest partitioning of the attribute dependence graphs. This means that
the result of partitioning exposes the maximal parallelism for evaluation in an attributed syntax tree.

This paper is concerned only with the partitioning algorithm. Visit-oriented parallel evaluation
plans may also be generated by extending the algorithms presented in [12], as follows: A set of plans
is generated for each production in the attribute grammar. One of the plans is selected for each
production instance ¢ in the syntax tree. The selection is based on the parent and child production
instances of ¢ in the syntax tree and the partitions applied at these production instances. The
combination of the partitioning algorithm and the visit-oriented parallel evaluation algorithms, thus,
form a basis of parallel evaluation system. The parallel evaluation system is applicable to all non-
circular attribute grammars.

In Klein’s parallel ordered attribute grammars [7], the dependence graphs of individual productions
are divided into segments. In the attribute dependence graph of a syntax tree, segments from distinct
production instances that share common attribute instances are glued together at evaluation time.
Segments are not independent; therefore, communication among the evaluation processes may be
required. Klaiber and Gokhale [6] add parallelism to Katayama’s algorithm [5] by re-structuring the
syntax tree so that evaluation in a list production is translated into a loop. Parallelism is, therefore,
extracted from the loop. Reps’s scan grammar [11] carries a similar nature. However, parallelism is
explicitly expressed in a data-parallel statement within an attribute grammar. In Boehm’s algorithm
[2], a syntax tree, rather than the attribute dependence graph, is divided into disjoint regions. Each
region is assigned to a process. Attribute instances in a region may be evaluated according to statically
generated plans or according to dynamically computed dependencies. Jourdan surveyed various
parallel attribute evaluation methods on various hardware architectures [3]. One of the static methods
is based on the visit sequence. The fork operations and corresponding join operations are added in the
visit-sequence-based plans to evaluate independent attribute occurrences in a production concurrently.
Kuiper and Swierstra [9] defined tree-based distributors and attribute-based distributors that divide
the syntax tree and the attribute dependence graph, respectively, into disjoint, connected regions.
By contrast, the partitioning algorithm presented in this paper is a dependence-based approach.
Zaring [13] proposes several synchronous and asynchronous parallel evaluation algorithms for attribute
grammars. The asynchronous methods add appropriate spawn and lock operations to the statically
generated evaluation plans in order to coordinate the parallel evaluation processes. The synchronous
methods make use of fork (which is called synchset in his thesis) and implicit join operations in
the evaluation plans to evaluate mutually independent attribute instances. In contrast to the above
algorithms, the algorithm presented in this paper always assigns inter-dependent attribute instances

78

A finest partitioning algorithm for attribute grammars

to the same process for evaluation.

Jourdan [3] and Zaring [13] also address various incremental parallel evaluation methods for
attribute grammars, which is not considered in this paper.

The remainder of this paper is organized as follows. In Section 2, we introduce the notations used
in this paper. Section 3 presents the partitioning algorithm. The selection algorithm is presented
in Section 4. In Section 5, we discuss the correctness and the finest partitioning properties of the
algorithm. Section 6 concludes this paper.

2. Notations

In this section, we define the notations used in this paper. Basically, we adopt Kastens’s notations
[4]. An attribute grammar is built from a context-free grammar (N, T, P, S), where N is a finite set of
nonterminals, T is a finite set of terminals, S is a distinguished nonterminal, called the start symbol,
and P is a set of productions of the form: X — «, where X is a nonterminal and « is a string of
terminals and nonterminals. For each nonterminal X, there is at least one production whose left-
hand-side symbol is X. In this paper, a production ¢ will be written as Xy — ag X101 Xo0s ... X ay,
where Xy, X1, Xo, ..., X} are nonterminal symbols and ag, a1, @z, . .., ax are (possibly empty) strings
of terminal symbols. Furthermore, we assume that the start symbol does not appear in the right-hand
side of any production.

As usual, we require that the sets of terminals and nonterminals be disjoint. In this paper, a symbol
refers to a terminal or a nonterminal. There may be several occurrences of a symbol in a production.
Furthermore, a production may be applied more than once in a syntax tree. In this case, we say that
there are many instances of a symbol occurrence in the syntax tree.

Attached to each symbol X of the context-free grammar is a set of attributes. Intuitively, instances
of attributes describe the properties of specific instances of symbols in a syntax tree. In order to
simplify our presentation, we assume that attributes of different symbols have different names. The
attributes of a symbol are partitioned into two disjoint subsets, called the inherited attributes and the
synthesized attributes. We will assume that the start symbol has no inherited attributes and that a
terminal has only a synthesized attribute that represents the character string comprising the terminal
symbol.

An attribute a of a symbol X is denoted by X.a. Since there may be many occurrences of a
symbol, there are many occurrences of an attribute in a production. Similarly, since a production may
be applied more than once in a syntax tree, there may be many instances of an attribute occurrence
in a syntax tree.

There are attribution equations defining these attributes. In a production, there is an attribution
equation defining each synthesized attribute occurrence of the left-hand-side symbol and each inherited
attribute occurrence of the right-hand-side symbols. An example attribute grammar is shown in Figure
1(a).

Attribution equations indicate dependencies among attribute occurrences in a production. The
dependency relations in a production ¢ may be represented in the dependence graph of q, denoted by
DP(q), in which nodes denote attribute occurrences in production ¢ and edges dependencies between
attribute occurrences. An edge X.a — Y.b means that the attribute occurrence X.a is a parameter to
the function defining the attribute occurrence Y.b in production ¢. Figure 1(b) shows the DP graphs
for the example grammar in Figure 1(a).

Definition. The attribute dependence graph of an attributed syntax tree is made up of a finite
set of nodes and a finite set of directed edges in which every attribute instance of every symbol in
the syntax tree is represented by a node and every dependency between two attribute instances is
represented by an edge.

79

Wuu Yang

(a) An attribute grammar

PO: S—- X
S.j = X.b
Sk = Xd
Xa =0
Xe =1

(b) The DP graphs

P0o: S j

O — O

P1: X a b ¢ d

P3: Y e f

O — =

Pl1: X —-1Y
Ye = X.a
Xb:=Y.f
Yg = X.c
Xd =Yh

P2: X -2Y
Ye = X.a
Xb:=Y.f
Yg = X.c

Xd = Yh + Y.f

4

P3:Y -3 P4&Y -4
Yf:=Ye Yh :=Ye
Yh =Yg Yf: =Yy

Figure 1: An attribute grammar and its DP.

80

A finest partitioning algorithm for attribute grammars

of the instance

of production

subtree subtree subtree

Figure 2: The context and the subtrees of an instance of a production.

Two syntax trees based on the grammar in Figure 1 and the corresponding attribute dependence
graphs are shown in Figure 7.

3. The PartitionAG algorithm

An attribute dependence graph may be partitioned into disjoint regions so that there is no dependence
relation among attribute instances in different regions. There are, in general, two approaches to
partitioning an attribute dependence graph. We may partition the attribute dependence graph of a
syntax tree after the attribute dependence graph has been built up. This is a dynamic approach.
In a dynamic approach, the partitioning must be done on a per tree basis, which slows down the
evaluation process. Alternatively, we may partition the dependence graphs of individual productions.
When the attribute dependence graph of a syntax tree is built by gluing together the dependence
graphs of individual productions, a partition of the attribute dependence graph is naturally induced
from the partitions of the dependence graphs of individual productions. This is a static approach.
The advantage of a static approach is that partitioning is performed on the attribute grammars, not
on the attribute dependence graphs. The evaluator does not need to spend time on partitioning when
evaluating the attribute instances in a syntax tree. In this section, we propose a static partitioning
algorithm. A cooperating evaluation algorithm will be presented in the next section.

There are many criteria to judge a partition of an attribute dependence graph. From the point
of view of parallel evaluation, we would prefer that attribute instances from different regions are
independent and the partition is the finest one.

Definition. A feasible partition of an attribute dependence graph is a partition of the nodes of the
attribute dependence graph that satisfies the following condition: Let X.a and Y.b be two attribute
instances in the attribute dependence graph. If there is a dependence relation X.a — Y.b in the
dependence graph, the two nodes X.a and Y.b are in the same partition block.

For instance, the partition {< a,b,e, f,j >,< ¢,d, g, h,k >} is a feasible partition of the attribute
instances in Figure 7(a) (the notation < a,b,e, f,j > means that < a,b,e, f,j > is a block of the
partition). So is the partition {< a, b, e, f, j,¢,d, g, h,k >}. Note that some partitions are not feasible.
For instance, the partition {< a,b,e, f >,< ¢,d,g,h,j,k >} is not a feasible one for the attribute
dependence graph in Figure 7(a). There is a straightforward algorithm to partition a graph: the finest
feasible partition of an attribute dependence graph is the reflexive, symmetric, transitive closure of
the graph, which is an equivalence relation or, equivalently, a partition.

81

Wuu Yang

An attribute dependence graph is partitioned into independent regions by a feasible partition.
Attribute in different regions can be evaluated by different processes on different processors
concurrently. There is no need for synchronizing the evaluation processes.

Definition. Let 7 be a feasible partition of the attribute dependence graph of an attribute syntax
tree T. Let X be an instance of a nonterminal in T (that is, an internal node in T'). The projection
of 7 onto X’s attribute instances is a feasible partition of X’s attributes.

A nonterminal X may appear in T more than once. Though different instances of X have the
same attribute instances, their attribute instances may be partitioned in different ways. All these
partitions of X’s attributes are feasible partitions. For instance, in Figure 7(a), the set of attributes
of nonterminal X is partitioned as {< a,b >, < ¢,d >} whereas it is partitioned as {< a,b,¢,d >} in
Figure 7(b). Both are feasible partitions. Note that some partitions are not feasible. For instance,
consider the grammar in Figure 1. The partition {< a >,< b,¢,d >} of X’s attributes is not feasible
because it is not a partition of the attribute instances of any instance of X in any syntax tree.

Because a nonterminal can carry only a finite number of attributes, the number of feasible partitions
of a nonterminal’s attributes is also finite. The Partition AG algorithm in this section computes all
the feasible partitions of a nonterminal’s attributes. The evaluation algorithm in the next section
attempts to find a feasible partition of the attribute dependence graph of a syntax tree by selecting
a feasible partition for each production instance in the syntax tree and gluing together these feasible
partitions.

Definition. Let 7 be a feasible partition of the attribute dependence graph of an attribute syntax
tree T. Let ¢ be an instance of a production in 7. The projection of 7 onto ¢’s attribute instances is
a feasible partition of ¢’s attribute occurrences.

Similarly, a production ¢ may appear in 7" more than once. Though different instances of ¢ have
the same attribute instances, their attribute instances may be partitioned in different ways. All these
partitions of ¢’s attribute occurrences are feasible partitions. For instance, in Figure 7(a), the set of
attribute instances of production PO is partitioned as {< a,b,j >, < ¢,d, k >} whereas it is partitioned
as {< a,b,c,d,j, k >} in Figure 7(b).

The PartitionAG algorithm also computes all the feasible partitions of the attribute occurrences
in every production. In computing the feasible partitions, we need to make use of certain refinements
of the feasible partitions, which is defined as follows. Let X be a nonterminal node in a syntax tree
T. Let Tx be the subtree of T rooted at X. Let G be the attribute dependence graph of T. The
attribute dependence graph Gx corresponding to T'x is a sub-graph of G that contains a node for
each attribute instance of symbols in T'x and all the edges of G of which both end points are attribute
instances of symbols in T'x. Note that Gx does not contain the upward transitive dependencies (to
be discussed later in this section) among X'’s attribute instances.

Definition. Let X be a nonterminal node in a syntax tree T. Let T'x be the subtree of T rooted
at X. Let Gx be the attribute dependence graph corresponding to Tx. The partition based on the
projection of Gx onto X’s attributes is called a plausible partition of X’s attributes.

Obviously, a plausible partition of X’s attributes is a refinement of a feasible partition of X’s
attributes. For instance, from Figure 7(b), we know that {< e,h >, < f,g >} is a plausible partition,
which is a refinement of the feasible partition {< e, f, g, h >}. We may define the plausible partitions
of attribute occurrences of a production in a similar way.

Definition. Let X be a nonterminal node in a syntax tree T. Let ¢ be the production applied
at X in T. Let Tx be the subtree of T rooted at X. Let Gx be the attribute dependence graph
corresponding to T'x. The partition based on the projection of Gx onto the attribute occurrences of
q is called a plausible partition of the attribute occurrences of gq.

Similarly, a plausible partition of the attribute occurrences of a production is a refinement of a
feasible partition of the attribute occurrences of the production.

82

A finest partitioning algorithm for attribute grammars

Algorithm: PartitionAG
/* 2(X), for each nonterminal X, is the set of all plausible */
/* partitions of X’s attributes due to the subtrees rooted at X. */
/* ©(X), for each nonterminal X, is the set of all feasible */
/* partitions of X’s attributes due to X’s position in a syntax tree. */
for each nonterminal X do
E(X) == 0; 0(X) := 0;
end for
for each production ¢ do
mg = the finest partition of attribute occurrences of ¢ based solely on DP(q)
end for
repeat /* bottom-up pass */
changed := false
for each production ¢ : Xo — ap X101 X200 ... Xpap do

for each o1 € 2(X1), 02 € E(X2), ..., o € 2(X}) do
7 = merge(...merge(merge(mq,01),02), .- .,0k)
o = project(w,{Xo’s attributes })
Y(qlo1,02,...,0) =0

if o does not belong to Z(X,) then
changed := true
2(Xo) =E(Xo)U{c}
end if
end for
end for
until changed = false
/* top-down pass */
0(9) := Z(9), where S is the start symbol of the grammar
repeat
changed := false
for each production ¢ : Xo — ap X101 X200 ... Xpap do
for each og € @(Xo), S E(Xl), o2 € E(XQ), o O € E(Xk) do
if TI(g|og, 01, - .,0F) has not been defined yet then
7 = merge(...merge(merge(mq, 0o),01),- - - Ok)
M(gloo,01,...,01) ==
fori:=1to k do
o = project(m,{X;’s attributes })
®(q,m,1) =0
if o does not belong to ©(X;) then
changed := true
Q(XZ) = G(Xz) U {0’}
end if
end for
end if
end for
end for
until changed = false

Figure 3: The PartitionAG algorithm.

83

Wuu Yang

function project(m, V) return a new partition
/* m is a partition. V is a set of attribute occurrences. */
/* The result is the finest partition of V' that is consistent with . */
for each block g of 7 do
for each element ¢t of § do
if ¢t does not belong to V then 3 := 3 — {t} end if
end for
if 3 =0 then 7 := 7 — {$} end if
end for
return 7
end function project

function merge(w,o) return a new partition
/* m and o are partitions of the attributes of a production or a nonterminal. */
/* merge finds the finest partition that is consistent with both = and o. */
for each block v of o do

§:=0

for every element ¢ of v do

if ¢t does not belong to § then
6 = the block in 7 that contains element ¢

m:=m—{6}
B:=pU&S
end if
end for
m:=nU{08}
end for
return 7

end function merge

Figure 4: The project and merge functions.

In the rest of this paper, we will use the Greek letter o to denote a partition of a nonterminal’s
attributes and the Greek letter = to denote a partition of the attribute occurrences in a production.

A syntax tree is made up of many instances of productions. An instance of a production in a
syntax tree is surrounded by the subtrees rooted at the nonterminals on the right-hand side of the
production and the context to which the instance of the production is adjoined. Figure 2 shows a
syntax tree that contains an instance of production p. The three subtrees and the context of the
instance of production p are also annotated in the figure.

In order to partition the dependence graph of a production p, three kinds of dependencies must
be taken into consideration: (1) the dependencies due to attribution equations in production p; (2)
the dependencies due to the context of an instance of p in a syntax tree; and (3) the dependencies
due to the subtrees rooted at the nonterminals on the right-hand side of production p. The first
kind of dependence, which is called the base dependence, occurs among attribute occurrences in p.
The second kind of dependence, which is called the upward transitive dependence, occurs among
attribute occurrences of the left-hand-side nonterminal. The third kind of dependence, which is called
the downward transitive dependence, occurs among attribute occurrences of individual nonterminals
on the right-hand side of p. Different instances of production p in a syntax tree carry the same
base dependencies but possibly different upward and downward transitive dependencies. For this
reason, a production may have more than one feasible partition on its attribute occurrences. A key

84

A finest partitioning algorithm for attribute grammars

observation of the PartitionAG algorithm is that the upward and downward transitive dependencies
of an instance of a production are independent. (This is due to the fact that the context and the
subtrees of a production instance do not overlap.) The two kinds of transitive dependencies may be
computed separately.

Definition. The base partition 7 , for each production g, is the partition of attribute occurrences
in g based solely on the dependences induced by the attribution equations in production gq.

The base partition m; may be computed from the dependence graph DP(q) of production ¢q. Note
that the base partition 7, must be a refinement of every feasible and every plausible partition of ¢’s
attribute instances.

The PartitionAG algorithm in Figure 3 computes all the feasible partitions of the attribute
occurrences of the productions. The algorithm consists of two passes. Each pass is a repeat loop
that examines the productions repeatedly. In the first pass, Partition AG computes all the plausible
partitions of the attributes of individual nonterminals. In the second pass, the algorithm finds all
feasible partitions of the attribute occurrences in individual productions.

In the first pass, the algorithm considers both the base dependencies and the downward transitive
dependencies. For each production ¢ : Xg — aoXia1 Xoas ... Xgay, the PartitionAG algorithm
determines a plausible partition of Xy’s attributes by merging the base partition of ¢ and a plausible

partition of X;’s attributes, wherei = 1,2,...,k, and then projecting the resultant partition onto X¢’s
attributes. The feasible partitions computed during the first pass are stored as the X(g|o1,09,...,0%)
function, which maps a combination of plausible partitions of X;’s attributes, where i = 1,2,...,k,

to a plausible partition of Xg’s attributes.

All the plausible partitions of the attributes of nonterminals are also collected in the = function.
When the repeat loop of the first pass completes, Z(5), where S is the start symbol of the grammar,
is a set of plausible partitions of the attributes of §.

Because we assume that the start symbol S of the grammar does not appear on the right-hand
side of any production, S is always located on the root of a syntax tree. Note that there is no upward
transitive dependence among the attributes of the start symbol. By the definition of plausible and
feasible partitions, a plausible partition of the attributes of S is also a feasible partition of the attribute
of S. Therefore, Z(9) is also the set of feasible partitions of the attributes of S. The PartitionAG
algorithm uses the © function to collect feasible partitions of attributes of nonterminals. Hence, we
have ©(S5) = Z(9).

In the second pass, the algorithm considers all three kinds of dependencies. For each production
q: Xo — apXiag Xoas ... Xpag, the PartitionAG algorithm determines a feasible partition of the
attribute occurrences in production ¢ by merging the base partition of ¢, a feasible partition of Xy’s
attributes (called og), and a plausible partition of X;’s attributes (called o;), where i = 1,2,... k.
The result of merging, called 7, is a feasible partition of the attribute occurrences of production gq.
The partition « is stored as I(g|og,01,...,0k). The II function will be used in the evaluation of
attributes.

In addition to constructing the IT function in the second pass, the Partition AG algorithm also
finds feasible partitions of attributes of nonterminals. Note that the projection of 7 onto the attributes
of X;,fori=1,2,...,k, is a feasible partition of the attributes of X;. This feasible partition is stored
as ®(g,m,7). When a new feasible partition of the attributes of a nonterminal, say X, is found, it is
used to compute new feasible partitions of the attribute occurrences of productions whose left-hand
sides are the nonterminal X. The repeat loop of the second pass completes when no more new feasible
partitions of attributes of nonterminals can be found.

There is a slight ambiguity in the above discussion. In the ¥ and II functions, k¥ denotes the
number of nonterminals on the right-hand side of a production. Obviously, &k is probably different
for different productions. This ambiguity can be remedied by adding an extra level of subscripts.
We determined to leave the ambiguity in the algorithm in order to simplify the presentation of the

85

Wuu Yang

the ¥ function | the II function the @ function the Z and O tables
E(PO'O’g):UG H(PO'O’G,O'g)_Wl @(PO,Wl,].):O'g 5(5)2{06,0'7}
E(P0|0'4):0'6 (P0|0'6,0'4)—7r2 @(PO,WQ,].):O]; E(X):{U3,0'4,0'5}
Y(P0|os) = o7 | II(PO|os,05) =73 | (PO, 73,1) =05 | E(Y) = {01,02}
T(PO|o7, 73) = 5 0(8) = {6, 7)
I(POlo7,04) = 3 O(X) = {o3,04,05}
(P0|o7,05) = 73 O(Y) = {o1,02,08}
Y(Plloy) = o3 | II(Pl|os,01) = w4 | B(Pl,7m4,1) =01
Y(Plloz) = 04 | II(Pl|os,02) =75 | ®(Pl,75,1) =03
H(P1|0'4, 1)=7r @(Plﬂre,l):O’Q
H(P1|0'4, 2) = Tg
H(P1|0'5, 1) = T5
H(P].|0'5, 2) = T5
E(P2|0'1)20'5 H(P2|0'3, 1)=7r @(PQ,W‘ri,l):O'g
E(P2|0'2) = 05 H(P2|0'3, 2) = T5
TI(P2|og,01) = 5
H(P2|0'4, 2) =T5
H(P2|0'5, 1) = Ts
II(P2|os,09) = 5
E(PS):(Tl H(0’1)—71'7
H(PS'O’Q) = T8
H(0’8) = T8
Y(P4) = oy II(P4|o1) = 7g
TI(P4|o2) = 7y
TI(P4|og) = 7g

Figure 5: The II and @ functions for the example in Figure 1.

PartitionAG algorithm.
The Partition AG algorithm may be applied at the same time when evaluation plans are generated.

Example. We will use the example in Figure 1 to illustrate the Partition AG algorithm. There are
three nonterminals S, X, and Y in the grammar. Initially, 2(5) = 2(X) = E(Y) = 0(5) = 0(X) =
©(Y) = . The base partitions of the productions are as follows: mpg = {< a >,< b,j >, < ¢ >,<
d,k >}, m7p1 = {< a,e >, < b, f >, < ¢,9 >, < d,h >}, mp2 = {< a,e >,< b,d, f,h >,< ¢,9 >},
mps ={<e,f><g,h>}, and mps = {<e,h>,< f, 9>}

In the first iteration of the first repeat loop, the algorithm considers only productions P3 and P4
because the right-hand-sides of the two productions do not contain any nonterminal symbols. Let
o1 = wp3 and 03 = wpy. At the end of the first iteration of the first repeat loop, we have X(P3) = g7,
Y(P4) = 02, and E(Y) = {01,02}. Note that there are two partitions of Y’s attributes, that is, oy
and os.

During the second iteration of the first repeat loop, the algorithm considers the four productions:
P1, P2, P3, and P4. Let o3 = {< a,b > < ¢,d >}, 00 = {< a,d >,< bc >}, and

={< a,b,c,d >}. At the end of the second iteration of the first repeatloop, we have X(P1|oy) = o3,
Y(Plloz) = 04, X(P2|o1) = 05, L(P2|o2) = 035, and E(X) = {03,04,05}. Note that there are three
partitions of X’s attributes, that is, o3, 04, and 5. There is no change concerning productions P3
and P4 and the nonterminal Y.

During the third iteration of the first repeat loop, the algorithm considers all five productions. Let
o6 = {<j>,<k>} and o7 = {< j,k >}. At the end of the third iteration of the first repeat loop,

86

A finest partitioning algorithm for attribute grammars

we have X(P0|o3) = 06, X(PO0|os) = 06, X(P0|os) = o7, and Z(S) = {o6,07}. There is no change
concerning productions P1, P2, P3, and P4 and the nonterminals X and Y.

After three iterations, no more change will occur and hence the first repeat loop terminates. At
the beginning of the second repeat loop, ©(S) = Z(9).

In the first iteration of the second repeat loop, the algorithm first considers production P0. Let
m ={<a,b,j >,< ¢, d,k>}. Because merge(merge(npo,0s),03) = 71, II(P0|og,03) = 1. Because
project(mi, X’s attributes) = {< a,b >, < ¢,d >} = o3, ®(P0,71,1) = 03. Similarly, we may
compute the II and ® functions. The various functions are summarized in Figure 5. In Figure
5, m = {< a,b,j >, < ¢,d,k >}, ma = {< a,d,;k >,< byc,j >}, m3 = {< a,b,¢,d,j,k >},
T4 = {< aabaeaf >, < c,d,g,h >}J s = {< aab)cadaeafagah >}7 g = {< eafagah >})
e = {< a,d,e,h >, < bc,f,g>}, mm={<e,f><g,h>}=01,and 7 = {< e, f,g,h >} = 03.
O

4. Selecting feasible partitions

The PartitionAG algorithm in the previous section computes all feasible partitions of the attribute
occurrences of productions. After a syntax tree is built up by the parser, the Evaluate Attributes
algorithm in Figure 6 chooses a feasible partition for every production instance in the syntax tree. The
FEvaluate Attributes algorithm consists of two passes. During the first pass, the algorithm traverses
the syntax tree bottom up. A plausible partition of the attribute instances of every nonterminal
node X is chosen. The choice is based on the plausible partitions of the attribute instances of the
nonterminal children of X. The necessary information for selecting plausible partitions is encoded in
the ¥ function, which is constructed by the PartitionAG algorithm. At the end of the first pass, a
plausible partition of the attribute instances of the root of the syntax tree has been chosen.

Because the context of the root node is a (trivial) empty graph, no additional constraints will be
imposed by the context of the root. Therefore, the plausible partition of the attribute instances of
the root is also a feasible partition.

During the second pass, which is a top-down traversal of the syntax tree, the Evaluate Attributes
algorithm makes use of the II function to select a feasible partition for each production instance in
the syntax tree. For each production instance, the selection is based on the feasible partition of
the attribute instances of the left-hand-side nonterminal and the plausible partitions of the attribute
instances of the right-hand-side nonterminals. After a feasible partition for a production instance is
selected, the EvaluateAttributes algorithm makes use of the ® function to select a feasible partition
of the attribute instances for every nonterminal on the right-hand side of the production. The selected
feasible partition of a nonterminal’s attributes will be used to determine a feasible partition of the
child production.

After the second pass completes, a feasible partition has been selected for every production instance
in the syntax tree. Gluing together these feasible partitions will result in a feasible partition of the
whole syntax tree. Note that no merging or partitioning is needed during evaluation.

After the attribute dependence graph of the syntax tree is partitioned into independent regions,
the attribute instances in different regions may be evaluated concurrently, possibly by independent
evaluators.

Example. Figure 7 shows two syntax trees based on the attribute grammar in Figure 1. The
first syntax tree is made up of three productions: P0, P1, and P3. In the bottom-up pass of the
Evaluate Attributes algorithm, a plausible partition is chosen for each nonterminal node. The partition
chosen for the Y node is ¥(P3), which is o;; the partition chosen for the X node is £(P1|oy), which
is 03; and the partition chosen for the S node is ¥(P0|o3), which is 4. During the top-down pass,
the EvaluateAttributes algorithm chooses a partition for each production instance in the syntax tree.

87

Wuu Yang

Algorithm: Ewvaluate Attributes

/* T is an unevaluated syntax tree. */

BottomUpChoose(root of T)

o := the partition chosen for the root of T'

TopDownChoose(root of T, o)

Use any traditional visit-oriented evaluator for each partitioning block of T'.

procedure BottomU PChoose(n)
/* n is a nonterminal node in the syntax tree T'. */
/* The BottomU pChoose procedure chooses a partition for each production instance in
T. */
q := the production applied at node n
Let mq,mo, ..., m; be the nonterminal child nodes of n in T'.
for each nonterminal child m; of n do
BottomUpChoose(m;)
end for
Let 01,09, ...,01 be the partitions chosen for nodes mq,ma, ..., my, respectively.
choose the partition ¥(g|o1,02,...,0k) for node n.
end BottomUpChoose

procedure TopDownChoose(n, o)
q := the production applied at node n

Let mq,mo, ..., my, be the nonterminal child nodes of n in T'.
Let 01,09,...,0) be the partitions chosen for nodes my,ma, ..., my, respectively.
m:=1(qlo,01,09,...,0%)

choose the partition = for production gq.

for each nonterminal child m; of n do
TopDownChoose(m;, ®(q, 7, 1))

end for

end TopDownChoose

Figure 6: The Evaluate Attributes algorithm.

The partition chosen for PO is II(P0O|og, 03), which is m;. Because ®(P0,7,1) = o3, the partition
chosen for P1 is II(P1|o3,01), which is m4. Because ®(P1,m4,1) = o1, the partition chosen for P3
is II(P3Jo1), which is m7; The attribute instances in the syntax tree is thus partitioned into two
independent regions by 71, 74, and 77: {< j,a,b,e, f >, < k,c,d,g,h >}.

The second syntax tree is made up of three productions: P0, P2, and P4. In the bottom-up pass
of the Evaluate Attributes algorithm, a partition is chosen for each nonterminal node. The partition
chosen for the ¥ node is ¥(P4), which is o2; the partition chosen for the X node is ¥(P2|o2), which
is 05; and the partition chosen for the S node is ¥(P0|os), which is o7. During the top-down pass,
the EvaluateAttributes algorithm chooses a partition for each production instance in the syntax tree.
The partition chosen for PO is II(P0O|o7,05), which is m3. Because ®(P0,73,1) = o5, the partition
chosen for P1 is II(P1|os,02), which is m5. Because ®(P1,m5,1) = og, the partition chosen for P3
is TI(P3|og), which is 7g; The attribute instances in the syntax tree is thus partitioned into a single
region by 73, 75, and 7ws: {< j,k,a,b,¢,d,e, f,g,h >}. O

88

A finest partitioning algorithm for attribute grammars

(a) a syntax tree (b) another syntax tree
Po: S j k PoO: S k
A A
st 3
01 01
P1: Xabcd P2: Xabcd

A A
T4 5 /
P3: Yet @h P4: Ye U h
U IS

7

3 4

Figure 7: Two syntax trees.

5. The finest partition property

There may be more than one feasible partition on the attribute dependence graph of a syntax tree.
These feasible partitions may be organized as a lattice by the refinement relation. In this section, we
show that the partition found by the PartitionAG and EvaluateAttributes algorithms is the finest
one, that is, it is the refinement of all feasible partitions. We will need a new definition.

Definition. Let G be the attribute dependence graph of a syntax tree and a and b be two attribute
instances (that is, two nodes) in G. We say that a and b are related in G, denoted by a ~ b, if and
only if one of the following four conditions holds: (1) a and b are the same attribute instance; (2) a
is dependent on b in G; (3) b is dependent on a in G or (4) there is an attribute instance ¢ in G such
that ¢ is related to both a and b.

In short, the ~ relation is the reflexive, symmetric, and transitive closure of the dependence relation.
The following theorem is an immediate corollary to the above definition.

Theorem. Let G be the attribute dependence graph of a syntax tree. A partition 7 on G is a
feasible partition if and only if related attribute instances are in the same partition block in 7.

We need to prove the following theorem.

Theorem. Let G be the attribute dependence graph of the syntax tree 7. Let a and b be two
attribute instances (nodes) in G. Let 7 be the partition of G computed by the PartitionAG and
FEvaluate Attributes algorithms. a ~ b if and only if a and b belong to the same partition block in 7.

Proof. First suppose that a ~ b. By the definition of the ~ relation, there is a sequence of attribute

instances my, ma, ..., m;, where m; = a and m; = b, of attribute instances in G such that there is a
dependence relation between every pair of adjacent attribute instances in the sequence. Consider an
arbitrary pair m; and m;41, where ¢ = 1,2,...,5 — 1, of attribute instances in the sequence. Let ¢

be the production instance in which the dependence relation between m; and m;41 occurs. Because
there is a dependence relation between m; and m;y1, m; and m;y; must be in the same block in the
base partition of production g. Since the base partition of the production g is always a refinement
of every partition recorded in the TI(g|...) function, m; and m;;; must be in the same block in the
partition 7, which is computed by the PartitionAG and EvaluateAttributes algorithms.

89

Wuu Yang

n
1
D2
w2
()
D
m
0" O @
Figure 8: The X, node is an ancestor of X in 7T'.
Because every pair of adjacent attribute instances in mq, ms,...,m; belong to the same partition

block in 7, @ and b must belong to the same partition block in 7.

Next, suppose that a and b belong to the same block in 7. We need to show that a ~ b. Let X,
be the nonterminal instance in 7' to which a belongs. Similarly, let X; be the nonterminal instance
in T to which b belongs. Because T is a tree, there is a unique path between X, and X3 in T. There
are four cases to consider: (1) X, is an ancestor of X} in T'; (2) X} is an ancestor of X, in T; (3) X,
and X, are the same nonterminal instance; or (4) X, and X, are distinct nonterminal instances in T
and neither is an ancestor of the other. We will prove the theorem for case (1) above; the other three
cases can be proved similarly.

We may label the production instances from X, to X, as pi,pe,...,p;, which are shown in
Figure 8. Let m; be the partition chosen for the production instance p;, for ¢ = 1,2,...,1, by the
FEvalaute Attributes algorithm. The partition 7 of G is the combination of 7y, 7o, . . . , 77, and partitions

for other production instances in 7.

Let Y1,Y5,...,Y) be the nonterminal children of X, in 7. Assume without loss of generality that
Y5 is on the path from X, to X. We show that ¢ ~ a in G for every attribute instance ¢ of Y5 that
is in the same partition block as a in the partition .

Note that the partition m is selected by the Fvaluate Attributes algorithm as II(p; |00, 01, - .., 0%),
where oy is the feasible partitions chosen for the node X, and o1, 09,..., 0 are the plausible partitions

90

A finest partitioning algorithm for attribute grammars

chosen for the nodes Y1,Ys,..., Y, respectively. 71 is actually the merging of the base partition of
production p; and oy, 01, .. .,0. Without a detailed proof, we claim that there must be an attribute
instance d of X, and an attribute instance e of Y5 such that a ~ d (due to gy), e ~ ¢ (due to g2),
and there is a dependence relation between d and e in production p; (due to the base partition of
production py).

We also need to show that there is at least one attribute instance ¢ of Y5 that is in the same
partition block as a in the partition 7;. This claim is quite obvious because the two partitions m; and
o are glued together by at least one common attribute instance of Y5.

At this point, we have shown that ¢ ~ a in G for every attribute instance ¢ of Y2 that is in the
same partition block as a in the partition 7;. By the same argument, we can show that d ~ ¢ in G
for every attribute instance d of X3 that is in the same partition block as ¢ in the partition w5 (where
X3 is a child of Y5 and is on the path from Y5 to X;). Repeating the same argument, we can show
that a ~ b and a and b are in the same block in the partition . This completes the proof. O

6. Conclusion

We have proposed an algorithm for partitioning the attribute dependence graph of a syntax tree. It
is a static algorithm in that partitioning is done on the grammar, rather than on individual syntax
trees. It produces the finest partition for every syntax tree. The partition algorithm, when combined
with visit-oriented evaluation algorithm in [12] is applicable to all non-circular attribute grammars.

Bibliography

[1] Bochmann, G.V., “Semantic evaluation from left to right,” Comm. ACM, Vol. 19, No. 2, pp.
55-62, February 1976.

[2] Boehm, Hans-Juergen, W. Zwaenepoel, “Parallel attribute grammar evaluation,” Proceedings
of the Tth International Conference on Distributed Computing Systems, IEEE, pp. 347-354,
September 1987.

[3] Jourdan, M., “A survey of parallel attribute evaluation methods,” Proceedings of the International
Summer School SAGA, (Prague, Czechoslovakia, June 1991), Lecture Notes in Computer Science,
Vol. 545, pp. 234-255, 1991.

[4] Kastens, U., “Ordered attribute grammars,” Acta Informatica, Vol. 13, pp. 229-256, 1980.

[5] Katayama, T., “Translation of attribute grammars into procedures,” ACM Trans. Programming
Languages and Systems, Vol. 6, No. 3, pp. 345-369, July 1984.

[6] Klaiber, Alexander and Maya Gokhale, “Parallel evaluation of attribute grammars,” IEEE Trans.
Parallel and Distributed Systems, Vol. 3, No. 2, pp. 206-220, March 1992.

[7] Klein, E., “Parallel ordered attribute grammars,” Proceedings of the 1992 International
Conference on Computer Languages, pp-106-16, 1992.

[8] Knuth, D.E., “Semantics of context-free languages,” Mathematical System Theory, Vol. 2, No. 2,
pp- 127-145, June 1968. Correction. ibid. Vol. 5, No. 1, pp. 95-96, March 1971.

[9] Kuiper, M.F. and S.D. Swierstra, “Parallel attribute evaluation: Structure of evaluators and
detection of parallelism,” Proceedings of the International Summer School SAGA, (Prague,
Czechoslovakia, June 1991), Lecture Notes in Computer Science, Vol. 545, pp. 61-75, 1991.

91

Wuu Yang

[10] Paakki, J., “Attribute grammar paradigms—A high-level methodology in language implementa-
tion,” ACM Computing Surveys, Vol. 27, No. 2, pp. 196-255, June 1995.

[11] Reps, T., “Scan Grammars: Parallel Attribute Evaluation Via Data-Parallelism,” TR-1120,
Computer Sciences Dept., Univ. of Wisconsin, Madison, WI, November 1992.

12] Yang, W., “A classification of non-circular attribute grammars,” submitted for publication,
g
Computer and Information Science Dept., National Chiao-Tung Univ., Hsinchu, Taiwan, 1997.

[13] Zaring, A.K., “Parallel evaluation in attribute grammar-based systems,” Ph.D. dissertation, Dept.
of Computer Science, Cornell Univ., Ithaca, NY, August 1990.

92

