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Abstract

Ordered attribute grammars (OAGs for short) are a useful class of attribute grammars (AGs).
For some attribute grammars, even though they are not circular, OAG circularity test reports
that they are not ordered and fails to generate attribute evaluators because some approximation
introduces circularities(called type & circularities in this paper). First we discuss that it is
sometimes difficult for programmers to eliminate type 3 circularities by hand. Secondly, in order
to reduce this difficulty, we propose a new AG class called OAG* that produces less type 3
circularities than OAG while preserving the positive characteristic of OAG. OAG* uses a global
dependency graph GDS that provides a new approximation algorithm, which is different from
the existing GAG and Eli/Liga systems. We also show that we obtained good results with our
experimental implementation.

Introduction

Ordered attribute grammars (OAGs for short) introduced by Kastens in 1980 [Kas80] are a useful
class of attribute grammars [Knu68][Knu71] (AGs for short), since:

OAGs are large enough to include many practical AGs.

The problem whether a given AG is ordered is decided in polynomial time for the size of the

AG.

OAGs can automatically generate efficient attribute evaluators.

OAGs are well-suited for incremental attribute evaluation techniques that make it possible to
generate interactive programming environments such as syntax-oriented editors [RT84].
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For some attribute grammars, even though the grammars are not circular, OAG circularity test
fails to generate attribute evaluators. This results from the approximation of attribute dependencies
that is required in order to reduce to a polynomial time the complexity of the determination of the
attribute evaluation order. If no approximation is used, the problem becomes N P-complete. In such a
case, the grammar is defined as l-ordered AGs [EF82]. In the manual of the Synthesizer Generator ™
(SG for short) [Gra96], circularities due to the approximation used are called type & circularities. In
this paper, we follow the SG’s terminology.

Kastens stated in [Kas80] that type 3 circularities usually do not occur in practical applications
such as compilers. This may be true for defining programming languages, but as we show later, it is not
always true when defining programming environments using the SG. Actually, from our experience in
implementing the MAGE2 editor [SK90][GISK93][HGIK97] we observed that many type 3 circularities
can appear and that eliminating such circularities is a time consuming process based on programmers’
trial and error. In our approach, programming environments are represented as attribute trees. They
have scattered semantics since the useful information is scattered as attribute values on the attribute
trees. In contrast, compilers have gathered semantics as compiled codes are stored in a root attribute.
The scattered information is likely to be described as independent threads of attribute dependencies
resulting in many type 3 circularities. The purpose of this paper is to introduce a technique for
reducing the problem caused by type 3 circularities in OAGs.

As described in [EF82], arranged orderly AGs —that is, an AG where approximation is used and
extra (virtual) dependencies are added in order to eliminate type 3 circularities— is equivalent to [-
ordered AGs. This fact implies that the problem of eliminating type 3 circularities is NP-complete.
Thus, instead of eliminating all type 3 circularities in (probably) exponential time, we would like to find
better approximation in polynomial time. The existing Eli/Liga [Eli][Kas89] and GAG [Kas84] have
an algorithm to do it in polynomial time; just after the computation of the partition for one symbol
(i-e., before that of the partition for the next symbol), they feedback new dependencies computed
from the partition as if the dependencies are direct ones (i.e. as augmenting dependencies).

We propose a new AG class OAG* that produces less type 3 circularities in a different way from
the above existing systems, while preserving the good characteristics of OAG. OAG* has the following
characteristics:

e The problem if an AG is OAG* is decided in polynomial time.

o If the given AG is OAG*, the decision procedure also computes the partial order of attributes
that can be used to construct visit sequences. In this point, OAG* is the same as OAG.

e OAG* is a proper superset of OAG.

e In OAG*, there are less type 3 circularities than in OAG. Especially, typical type 3 circularities
appearing in OAG due to the independent threads of attribute dependencies do not appear in
OAG*.

The rest of the paper is organized as follows. Section 2 introduces our AG notation. In Section 3,
we present the definitions of Ordered AGs, Arranged orderly AGs [Kas80], l-ordered AGs [EF82] and
their properties. In Section 4, we introduce OAG* as a new AG class. The basic idea behind OAG* is
to use the global dependency graph GDS to construct the extended dependency graph EDP. Section
5 gives our experimental OAG* implementation based on the Synthesizer Generator™ [Gra96] and
a good result for our MAGE2 editor [SK90][GISK93][HGIK97]. Section 6 outlines the Eli/Liga’s
approximation algorithm, and compares OAG* and Eli/Liga. Section 7 summarizes our conclusions
and gives the directions of our future work. Section 8 is an appendix that provides an example of AG
called G5. G5 is OAG* but not OAG; it illustrates how both methods of OAG and OAG* work for a
little larger AG than the other examples given in the paper.

94



On Eliminating Type 3 Circularities of Ordered Attribute Grammars

2. Attribute Grammars

To introduce our notation, this section provides a tuple-style definition of AGs.

2.1. Definition of AGs

An AG is defined by a 3-tuple AG = (G, A, R), where G is an underlying context free grammar, A a
finite set of attributes and R a finite set of semantic rules. A context free grammar is defined by a
4-tuple G = (N, T, S, P), where N is a finite set of nonterminals, T a finite set of terminals, S € N a
start symbol!, and P a finite set of production rules.

We call a symbol X occurring in a production rule p a symbol occurrence which is written as p : X;
where 7 denotes the occurring position. For example, in a production rule p : X — X Y, p: Xo
and p : X; are associated with the same symbol X but they represent different symbol occurrences
(subscripts are added for this distinction).

Each nonterminal is associated with two disjoint finite sets Inh(X) € A and Syn(X) € A. An
element of Inh(X) is called an inherited attribute, and that of Syn(X) is called a synthesized attribute.

For each symbol occurrence p : X; and each attribute X.a € Inh(X) U Syn(X), an attribute
occurrence written as p : X;.a is associated with p. The set of all attribute occurrences associated
with p is written as AO(p).

A set R(p) € R of semantic rules associated with a production rule p: Xy — X7 --- X, is defined
as follows?:

R(p) = {p : X0 = f( ..,p: Xj.b, .. )|((7, =0A Xp.a € Syn(Xo)) Vv (]. <i<nAX;ac€ Inh(X,)))/\
((G=0A Xo.b € Inh(Xo) V (1< j < nAXibe Syn(X:)}

Here we say “p: X;.a depends on p : X;.b”, which is represented by (p : X;.b,p: X;.a). Similarly
we say “X.a depends on X.b” by mapping the relation (p : X;.b,p : X;.a) into the relation among
attributes.

2.2. An Example of AG: GG;

Here is an example of AG called G;. G3’s derivation trees are binary trees where the attributes
X.pre_down and X.pre_up count nodes in pre-order, while X.post_down and X.post_up count nodes in
post-order. Fig.1 shows an example of the attributed trees of G.

pd: X -XX
p3:Xs.pre_down = p3:X;.pre_down
p3:X3.pre_down = p3:Xs.pre_up+1
p3:X;.pre_up = p3:Xj3.pre_up
p3:X3.post_down = p3:X;.post_down
p3:X5.post_down = p3:X3.post_up+1
p3:X;.post_up = p3:Xa.post_up

pl: R—-X
pl:X.pre_.down = 0
pl:X.post_down = 0

p2: X —e€
p2:X.pre_up = p2:X.pre_down+1
p2:X.post_up = p2:X.post_down+1

In this paper, it is important to distinguish between attributes (noted X.a) and attribute
occurrences (noted p : Xj;.a). In Gy, for example, there exist four attributes:

X.pre_down, X.pre_up, X.post_down, X.post_up

1We refer to both terminals and nonterminals as symbols.
2In this paper, we assume Bochmann normal form [Boc76] for simplicity.
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and twenty attribute occurrences:

pl: X.pre.down, pl:X.precup, pl:X.post.down, pl:X.post_up,
p2: X.pre.down, p2:X.preup, p2:X.post.down, p2:X.post_up,
p3: Xj.pre.down, p3:X;.precup, p3:X;.post_-down, p3:Xj.post_up,
p3 : Xs.pre_.down, p3:Xao.preup, p3:Xz.post_-down, p3:Xs.post_up,
p3: Xgz.pre.down, p3:Xgz.pre.up, p3:Xsz.post_-down, p3:Xz.post_up

pre_ |pre_ [post_ post_ pre_ |pre_ |post_ post_
X' |down up up |down down|up  [up |down
0O 1 5 4 2 /5 31\0

X

pre_ [pre_ [post_|post_ pre_ [pre_ |post_|post_
downfup up |down downfup |up |down
2 3 3 2 4 5 1 0

p3 p3

3.

3.1.

Figure 1: An example of attributed trees of G

Ordered AGs and Arranged Orderly AGs (=l-ordered

AGs)

Ordered Attribute Grammars

This section gives the definition of Ordered Attribute Grammars introduced by Kastens [Kas80].

The below algorithm decides whether a given AG is ordered. In other words, the below algorithm
is the definition of OAGs itself. (The definition is the same as Kastens’s in [Kas80] except for some

differences in the notation.)

Step 1 DP: dependencies among attribute occurrences associated with production rules

DP = {(p: X;.a,p:Y;.b)| an attribute occurrence p : Y;.b depends on p : X;.a in some R(p)}
If DP is cyclic, G is not ordered and this algorithm is terminated. This circularity is called type

1 circularity [Gra96]. No AG in Bochmann normal form has type 1 circularity.

Step 2 IDP: induced DP

IDP =DPU{(p: X;.a,p: X;.b)|(p' : Xj.a,p' : X;.b) € IDP* A{p: Xj.a,p: X;.b} C AO(p)}

where IDP* represents the non reflexive transitive closure of IDP.

If IDP is cyclic, G is not ordered and this algorithm is terminated. This circularity is called

type 2 circularity [Gra96).
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Step 3 IDS: induced dependencies among attributes of symbols
IDS = {(X.a,X.b)|(p: X;.a,p: X;.b) € IDP*}
Step 4 Ax ,: a disjoint partition of Inh(X) U Syn(X)
Ax1 = Syn(X)—{X.a|(X.a,X.b) € IDST}
Axon = {X.a|X.a € Inh(X) A (VX.b: (X.a,X.b) € IDST = 3Im < 2n: X.b€ Axm)} — Uity Ax i
Axon1 = {X.a|X.a € Syn(X) A (VX.b: (X.a,X.b) € IDST = 3Im < 2n+1: X.b€ Ax.m)} — Uim, Ax i

Step 5 DS: a completion of IDS

DS=1IDSU | J {(X.a,X.b)|X.a€ Axs AX.bE Ax 1}
XEN

Intuitively, DS expands IDS to satisfy the following relation.
VX € N,Va € Inh(X),Vb € Syn(X) : (X.a,X.b) € DST Vv (X.b,X.a) € DSt
Step 6 EDP: extended DP (with DS)
EDP =DPU{(p: X;.a,p: X;.b)|(X.a,X.b) e DSA{p: X;.a,p: X;.b} C AO(p)}

If EDP is cyclic, G is not ordered. This circularity is called type 3 circularity [Gra96]. If EDP
is cyclic free, G is ordered.

For example, Fig. 2 shows IDS, DS, DP, IDP and EDP of the AG Gy defined in Sect. 2.2. In
Fig. 2(a), EDP is cyclic, which means G has a type 3 circularity, so for OAG, G; is not ordered.

R
pl s
{ DP=
x 7
i IDP= ”
/ v Ax ;= {X.pre_up, X.post_up}
D EDpe Ay Ay A Ay = {X.pre_down, X.post_down}
Type 3 Circ.=

(a) DP, IDP and EDP of G (b) IDS and DS of G

Figure 2: DP, IDP, EDP, IDS and DS of G,
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3.2. Arranged Orderly Attribute Grammars

It is often possible to eliminate type 3 circularities from an AG by adding extra (virtual)
dependencies [Kas80]. AGs whose type 3 circularities can be eliminated by adding such extra
dependencies are called arranged orderly. One way of doing this consists of using a conditional
expression as follows:

p:Xa = p:Yb
1
p:X.a = if(true, p:Yb, p: Z.c)

In the above, an extra dependency (p : Z.c,p : X.a) is added while retaining the G;’s original
meaning [Gra96].

More precisely, an AG is arranged orderly if there exists ADS = {(X.a, X.b)|{X.a, X.b} C A} such
that EDP computed from DPU{(p: X;.a,p: X;.b)|(X.a,X.b) € ADSA{p: X;.a,p: X;.b} C AO(p)}
is cyclic free. ADS is called augmenting dependencies [Kas80].

For example, G, is arranged orderly by an extra dependency (X.post_up, X.pre_.down). To add the
dependency into G1, one may change the semantic rule as follows:

p2: Xg.pre.down = p2:X;.pre.down
i
p2:Xs.pre.down = if(true, p2:X;.pre.down, p2: Xs.post_up)

which introduces an extra dependency (p2 : Xs.post-up, p2: Xs.pre.down). Note that there are other
ways to introduce the dependency (X.post_up, X.pre_.down) into G; such as (pl : X.post_up, pl :
X.pre_down) and (p2 : X3.post_up, p2 : X3.pre_down). Furthermore, there are six possible ADSSs in
all that can be used to eliminate the type 3 circularity:

{(X.post_up, X.pre_down)}
(X.pre_down, X.post_up)}
(X.post_down, X.pre_up)}
(X.pre_up, X.post_down)}
(X.post_up, X.pre_down), (X.post_down, X.pre_up) }
(X.pre_down, X.post_up), (X.pre_up, X.post_down)}

Thus, it is easy to find an appropriate augmenting dependency to eliminate a type 3 circularity

from G;. However, there are many cases where it is difficult (or even impossible in some cases (ex.
G- in Fig. 3)) to do so.

3.3. Properties

Y |sl|il

vistlit] v[st]in]  z|i2]st]ir]e|  z[iz]st]i1]<2]
I U

Figure 3: G» has a type 3 circularity, but is not arranged orderly(=I-ordered) .
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1. Some type 3 circularities can not be eliminated.

G> shown in Fig. 3 does not have any type 1 or 2 circularities but has a type 3 circularity. We
show that G2 is not arranged orderly as follows.

All candidates of augmenting dependencies introduce the following dependencies into DS:
(X.s1,X.i1) or (X.i1,X.s1), (Y.s1,Y.il) or (Y.il,Y.s1), (Z.s1, Z.i1) or (Z.il, Z.s1)

since the fact VX.i € Inh(X),VX.s € Syn(X) : (X.i,X.s) € DSV (X.s,X.i) € DS holds. Any
combination of 23 = 8§ possibilities makes EDP computed from DP U ADS cyclic.

2. l-ordered AGs = Arranged orderly AGs

J. Engelfriet et al. introduced l-ordered AGs and stated l-ordered AGs = Arranged orderly AGs
in [EF82].

l-ordered AGs have similar properties to OAGs except that the problem whether an AG is I-
ordered is N P-complete whereas OAGs can be tested in polynomial time. An AG G is l-ordered
iff there exists a set of total orders {LO(X)|X € N} such that for each LO(X), LO(X) is a
total order on Syn(X)U Inh(X) and

DPU{(p: Xia,p: Xi.b)|(X.a,Xb) € |J LOX)A{p: Xi.a,p: X;.b} C AO(p)}
XEeN

is cyclic free. If an AG is l-ordered, the attribute instances of a node can always be evaluated
in the order LO(X).

3. There are serious situations where it is difficult to eliminate type 3 circularities.

Since Arranged orderly AGs = l-ordered AGs [EF82], the problem of eliminating type
3 circularities is NP-complete. Also, during the development of the MAGE2 edi-
tor [SK90][GISK93][HGIK97] we had to try many combinations of augmenting dependencies
to eliminate all type 3 circularities (see Sect. 5). Considering these two points, we reached the
conclusion that we need some mechanisms that relieve us from the problem of eliminating type
3 circularities. As a solution to this problem, we propose OAG* in Sect. 4.

4. OAGH*

In this section, we introduce OAG* as a new class of AGs that makes it easier to deal with type
3 circularities. The basic idea of OAG* is relatively simple; OAG* uses a global dependency graph
GDS as a good hint to avoid type 3 circularities in polynomial time. GDS projects all dependencies
among attribute occurrences in DP into those among attributes. Thus, GDS includes all possible
attribute dependencies. First, we give the definition of OAG*. Then, we show the desirable properties
of OAG*.

e OAG* retains the positive characteristics of OAGs.
Especially, the problem of determining if an AG is OAG* is computed in polynomial time.

e l-ordered(=arranged orderly AGs)D OAG* D OAG.

OAG* produces less type 3 circularities than OAG. OAG* does not produce the typical type 3
circularities due to the independent threads of attribute dependencies that appear in OAGs.

For example, G3 and G4 in Fig.4 as well as G; have independent threads of attribute
dependencies, which, for OAGs, result in type 3 circularities. By contrast, OAG* circularity
test does not produce type 3 circularities for Gy, G3 and Gjy.
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x |i1]st|i2

Y |il|sl

G3 Gq

x|it]st] v[ir]st]

Figure 4: G3,G4: simple AGs that have a type 3 circularity

4.1. Definition

The definition of OAG* is given by the following algorithm that decides whether a given AG G is
OAG* or not.

Step 1 DP, IDP, IDS, DS

The computing method of DP, IDP, IDS and DS is exactly the same as that of OAG. If it
results in type 1 or 2 circularity, G is not OAG*.

Step 2 GDS: global attribute dependencies
GDS = {(X.a,Y.b)|(X;.a,Y;.b) € DP}

Step 3 GAj: a global attribute partition

GDS is decomposed into its strongly-connected components and then topologically-sorted into
GAi,...,GAy to satisfy the following relation:

VX.0,VX.b:

(X.a, X.b) € GDS* A (X.b, X.a) € GDS* = Fm : {X.a, X.b} C GA)

A(X.a, X.b) € GDST A (X.b,X.a)  GDStT = Im,In:m <nAX.ae€GA, NXbe GA,)
A(X.a,X.b) ¢ GDST A (X.b,X.a)  GDStT = Im,In:m#n A X.a € GA, NX.be GA,)

Step 3.1 initializing; Finished := ¢,i :=1
Step 3.2 computing an i-th partition GA;

GA; = {X.b|(X.a,X.b) € GDST = (X.a € FinishedU S(X.b,GDS)}

where S(X.b, GDS) means the set of strongly-connected components with X.b in GDS.
Step 3.3 Flinished := FinishedU GA;,i:=1i+1
Go to step 3.2 until Finished = A.

Note that for a given GD.S, global attribute partition GAy, is not determined uniquely. But this
ambiguity does not affect the result whether a given AG is OAG* or not (see Theorem 4.5).

Step 4 DS': a completion of IDS with GDS and DS
DS" is constructed:
e by adding dependencies (X.a, X.b) € DS if X.a and X.b are strongly-connected in GDS,
e otherwise, by adding dependencies in GDS.
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DS = {(X.a,X.b)|({X.a,X.b} C GAm A (X.a,X.b) € DSt)
Am<nAX.a€eGA, ANXDbeGA,N
(X.a€Inh(X)ANXbe Syn(X)V X.a € Syn(X) A X.b € Inh(X)))}

Step 5 EDP': extended DP (with DS")
EDP' = DP + {(p: X;.a,p: X;.b)|(X.a,X.b) € DS' A{p: X;.a,p: X;.b} C AO(p)}

If EDP' is cyclic, G is not OAG*. We also call this (OAG*’s) type 3 circularities. If EDP’ is
cyclic free, G is OAG*.

If G is OAG¥*, then an actual partition AIX,k used for constructing visit-sequences is computed
from DS’ (just in the same way as computing OAG’s partition Ax  from IDS):

Ay, = Syn(X) — {X.a|(X.a,X.b) € DS'*}
Ay, ={X.a|X.a € Inh(X) A (VX.b: (X.a,X.b) € DS'" = Im < 2n: X.be Ay b — Uity Ay
Al sy = {X.a|X.a € Syn(X) A (VX.b: (X.a,X.b) € DS = Im < 2n+1:X.be Ay )} —Uin, Ay,

4.2. OAG* Examples

G given in Sect. 2.2 is an example of OAG* but not of OAG, since EDP of G is cyclic as shown in
Fig. 2, but EDP’ of G is cyclic free as shown in Fig. 5. Fig. 5 shows GDS, GA, DS' and EDP’ of
G1.

G3 and G4 given in Fig. 4 are also examples of OAG* but not of OAG. G¢ (Fig.6) is an example
of l-ordered AGs (=arranged orderly AGs) but not of OAG*.

4.3. Basic Idea of OAG*

The key idea of OAG* is the global dependency graph GDS, which is useful since OAG* produce less
type 3 circularities in polynomial time than OAG does. This section provides the basic idea of OAG*.

If (X.b,X.a) ¢ GDS* then we can evaluate X.a first and then X.b in any context, whether
(X.a,X.b) € GDS* or (X.a,X.b) ¢ GDS*, because (X.b,X.a) ¢ GDS* implies there is no
dependency path from p : X;.b to p : X;.a in any attributed trees by the definition of GDS. Thus,
(X.a,X.b) from GDS is a correct order in the sense that (X.a, X.b) introduces no type 3 circularities.
If GDS has no strongly-connected components, we can obtain DS’ by topologically-sorting GDS.
Unfortunately, GDS has strongly-connected components in general. Therefore, we use DS instead
of GDS for strongly-connected components in GDS as the second best approximation of attribute
dependencies.

Note that we can not accept full-searching of all possibilities here since the problem becomes
N P-complete. And also note that attribute dependencies from DS may be incorrect since they may
introduce a type 3 circularity into EDP’.

To summarize the above, OAG* first tries to use as many correct dependencies from GDS as
possible, and then, for strongly-connected components in GDS, OAG* reluctantly use (possibly
incorrect) dependencies from DS instead of GDS.

4.4. OAG* Properties
Lemma 4.1 (p: X;.a,p' : X;.b) € EDP' =>m<nAX.a€GA, ANXbeGA,.
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e Tore. nost Tpos pre_ |pre_ post_ [post_ DS = / (from DS)
down [up up _|down up
I (77w Xl | Lol x X fognbec | e bin] X |
pre_ [pre_ [post_[post_ H 4 :
X [downfup  [up " |down T e . + " (fromGDS)
o e R
(a) GDS (b) GA; (c) DS’

R
pl { pp=
jop=
EEEE |

Y IDP= /+ /1
....... B 7/

P

pre_ [pre_ |post_|post_
downjup |up |down

(d) EDP’

Figure 5: GDS, GA, DS’ and EDP' of Gy

N

x|it]st] x|it]st]

x|it]st] x|i1]st]

vlit]st] vlir]st]
N N

Figure 6: Gg: an example of [-ordered AGs (=arranged orderly AGs) but not OAG*
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Proof (p: Xj.a,p': X;.b) € EDP' implies (p: X;.a,p' : X;.b) € DP or (X.a,X.b) € DS’ by Def. of
EDP'. If (p : X;.a,p' : X;.b) € DP then (X.a,X.b) € GDS (by Def. of GDS) and m <nAX.a €
GA, AN X.b e GA, (by Def. of GA;). If (X.a,X.b) € DS then m <nAX.a € GA, ANX.b e GA,
(by Def. of DS"). Thus Lemma 4.1 holds.

O

Theorem 4.2 All attributes whose occurrences are cyclic in EDP' (i.e. type 3 circularity) are
included in the same global partition GA,,. Furthermore, they are also cyclic (i.e. strongly-connected
components) in GDS.

Proof Let p : X;.a and p’ : X;.b be in the type 3 circularity, that is, (p : Xj.a,p' : X;.b) €
EDP* A(p' : X;.b,p: X;.a) € EDP'F. From Lemma 4.1, both m < n A X.a € GA,, A X.b € GA,
andn <mAX.a € GA,ANX.b e GA,, hold. This implies m = nA{X.a, X.b} € GA,. So the first half
holds. All strongly-connected components are introduced from circularities in GDS by Def. of GAy,
as topological sorting introduces no circularities. Thus X.a and X.b are clearly strongly-connected
components in GDS. So the second half holds and Theorem 4.2 holds.

Theorem 4.3 [-ordered AG (=arranged-orderly AG) D OAG* D OAG.

Proof (l-ordered AGD OAG¥*) If a given AG is OAG¥*, there exists DS’ where DP + DS’ is cyclic
free. Let LO(X) be obtained by topologically-sorting {(X.a, X.b)|(X.a, X.b) € DS’} for all X € N.

Then, by Def. of OAG*, DPU{(p: Xj.a,p: X;.b)|(X.a, X.b) € [Jxn LO(X)} is cyclic free. This
shows the given AG is [-ordered. Here OAG* is a proper subset of [-ordered AGs since Gg as defined
in Fig. 6 is [-ordered but not OAG*.

(OAG* D OAG) First, if OAG* has a type 1 or 2 circularity then OAG also has a type 1 or 2
circularity, since the OAG* method of computing DP and IDP is exactly the same as OAG.

Next, we show that if OAG* has a type 3 circularity then OAG also has a type 3 circularity. All
attribute occurrences in a type 3 circularity belong to the same partition G,, by Theorem 4.2. Let
DSgq,, be {(p: Xi.a,p: X;.b)|(X.a,X.b) € DSt A {X.a,X.b} C Gy,}. Here DP + DSg,, is cyclic,
since G, causes the type 3 circularity. EDP = DP + DS is also cyclic, because DS¢,, C DS holds.
This shows OAG has a type 3 circularity if OAG* has a type 3 circularity. Thus, if a given AG G
is not OAG*, then G is also not OAG. This shows OAG* O OAG. Here OAG is a proper subset of
OAG* since G1 is OAG* but not OAG.

Theorem 4.4 The problem whether an AG is OAG* is decided in polynomial time.

Proof

Step 1 DP, IDP, IDS and DS is computed in polynomial time as shown in [Kas80].

Step 2 GDS global attribute dependency graph is computed in O(|Epp|) where Epp is
the set of edges in DP.

Step 3 GA; global attribute partition is computed in O(|A|?) because all strongly-
connected components are computed in O(|Egps| + |Vaps|) by using Tarjan’s
algorithm [Tar72], and |Egps| + |Vaps| < |A]? + |4].
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Step 4 DS’ is computed in O(|A[*).

The dominant cost of computing DS’ is testing if e € DS* or e € DSt for each
e € A x A, which is computed in O(]A|?). Thus, for all e € A x A, it takes
O(IA]?) x O(JAP?) = O(JA[*).

Step 5 The cost of constructing EDP' is O(|Epp| + |SO||A]?) because the size of
{(p: Xi.a,p: X;.b)|(X.a,X.b) € DS' A{p: X;.a,p: X;.b} C AO(p)} is O(|SO||A]?),
where SO is the set of symbol occurrences.

The cost of testing if EDP' is cyclic is O(|Egpp'| + |Vepp'|). Here, we have
|Egpp| + |VeEpp| < |AO|? + |AO|, where AO is the set of attribute occurrences.

Clearly, the above steps 1 through 5 show that OAG* is computed in polynomial time for the size
of a given AG.

O

Theorem 4.5 OAG* step 3 may create several different global partitions because of topological
sorting, but all of them are the same in the sense that the difference among them does not affect
whether an AG is OAG* or not.

Proof It is sufficient to show that if EDP' for a partition G;(1 < i < k) has a type 3 circularity,
then any other partition G}(1 <i < k) also causes type 3 circularities.

Let G, be the partition including all attribute occurrences in the type 3 circularity for the partition
Gi;(1 < i < k). Then DP + G,, is cyclic, since EDP' under the partition G;(1 < ¢ < k) has
a type 3 circularity. And there exists m such that G, = G.,,, since topological sorting does not
change strongly-connected components. Therefore DP + G! , is also cyclic. This means the partition
G)(1 <i < k) also causes a type 3 circularity. Thus Theorem 4.5 holds.

O

Theorem 4.6 If two paths of attribute dependencies are not strongly-connected in GD S and each of
them causes no type 3 circularity, OAG* does not produce type 3 circularities due to the two paths.

Proof As shown in Theorem 4.2, all attribute occurrences in any type 3 circularity is also cyclic
in GDS. The two paths are not strongly-connected components, and topological sorting does not
introduce new strongly-connected components, so if each path has no type 3 circularity, the whole of
two paths has also no type 3 circularity. Thus Theorem 4.6 holds.

O

Theorem 4.6 shows that OAG* does not produce type 3 circularities due to independent threads
of attribute dependencies if they are not cyclic in GDS such as for Gy, G3 and G4. For an intuitive
understanding of Theorem 4.6, let’s consider this theorem in the case of G4. As the result of topological
sorting of G4’s GDS, one of the following sets is added into DS’ by Def. of GA; and DS".

{(X.s1,X.41), (Y.s1, Y1)}
{(X.s1,X.41), (Y.i1,Y.s1)}
{(X.i1, X.s1), (Y.s1, Y1)}

But {(X.i1,X.s1),(Y.i1,Y.s1)} is not added into DS’, because
{(X.i1,X.s1),(Y.i1,Y.s1)} U GDS(= {(X.s1,Y.i1), (V.s1, X.i1)}

is cyclic and topological sorting never produces a new cycle. This is the reason why OAG* does not
introduce a type 3 circularity for Gy4.

Theorem 4.3 and Theorem 4.6 demonstrate that OAG* produce less type 3 circularities than OAG.
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5. An Experimental Implementation

We implemented OAG* experimentally on the Synthesizer Generator™ 4.2 (SG for short) 3, which
uses incremental attribute evaluation scheme based on OAGs and we obtained good results (see also
Table. 1).

1. Gy, G3, G4 and G5 (all of them are OAG* but not OAG)

The SG with OAG* accepted all of them and generated attribute evaluators successfully, while
the original SG based on OAG reported type 3 circularities for them.

2. G5 (not l-ordered) and G (I-ordered but not OAG¥)
The SG with OAG* failed to generate attribute evaluators and reported type 3 circularities.

3. the MAGE2 editor

Using the SG, we developed the MAGE2 editor for Object Oriented Attribute Grammars
(OOAG) [SK90] [GISK93|[HGIK97]. The MAGE2 editor includes a compiler and a static error
checking including type checking, and detecting used but not declared variables. It also provides
means for communication with other tools such as objects and class browsers.

The attribute grammar specifying the MAGE2 editor is relatively large; |N| = 57,|P| =
141,|A] = 729 and 9193 lines in SSL*. We were troubled with eliminating many type 3
circularities when developing the MAGE2 editor, although the SG is very useful to develop
such tools.

55 augmenting dependencies were added to eliminate all type 3 circularities (some of them may
not be necessary); without them the original SG reported 10 type 3 circularities.

The SG with OAG* accepted it without 55 augmenting dependencies and generated an attribute
evaluator successfully. This shows that OAG* is useful in this case to eliminate type 3
circularities.

6. Related Works — Eli/Liga system —

GAG system [Kas84] and Liga system integrated in Eli [Eli][Kas89] (Eli/Liga for short) have an
algorithm to avoid type 3 circularities. Eli/Liga applies the same algorithm as GAG does on
abstraction level. So we refer only to the Eli/Liga’s algorithm in the rest of this section. The
algorithm is different from ours.

This section compares OAG* and Eli/Liga system. First, the outline of Eli/Liga’s algorithm
is given. Then, we compare OAG* and Eli/Liga using the examples G; through Gg (Table. 1).
From the results, two AG classes defined by OAG* and Eli/Liga are not in the inclusion order each
other. Needless to say, they include OAG properly. Both algorithms seem to be effective with some
differences, although it requires further research to identify both properties.

6.1. Eli/Liga’s Algorithm

This section outlines the Eli/Liga’s algorithm to avoid type 3 circularities. Please note the algorithm
is given here by partially using mathematical notation, since we would like to focus briefly on how to

3Since version 5.0, the Synthesizer Generator is shipped without its source code. Therefore we do not use the SG
now for this purpose.
4SSL is the specification language of the SG.
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“feedback” a partition to IDS. The actual Eli/Liga algorithm is defined as fully iterative and more
efficient one.

Roughly speaking, every time Eli/Liga computes the partition Ax j for one symbol X, Eli/Liga
adds new edges computed from the partition as augmenting dependencies, then performs a closure
computation again like Step 2 and 3 of Sect.3.

To be more precise, we need to use two variables T'D P(p) and T DS(X) after the Sec. 7 of [Kas80].
We abbreviate J,c p TDP(p) and Uy TDS(X) as TDP and TDS, respectively.

e TDP(p): a dependency graph variable for rule p

e TDS(X): a dependency graph variable for symbol X
We also introduces two procedures Propagate() and Partition(X).

procedure Propagate() { // a closure computation
loop forall p € P do
TDP(p) :=TDP(p)U{(p: X;s.a,p: X;.b)|((p' : Xj.a,p' : X;.b) €e TDP*
V(X.a,X.b) e TDS(X))AN{p: X;.a,p: X;.b} C AO(p)}; 0d
loop forall X € V do
TDS(X) :={(X.a,X.b)|(p: X;.a,p: X;.b) € TDP}; od
}

procedure Partition(X) { // partitioning and updating TDS(X)
Computing a partition Ax j using TDS(X) just in the same way described in Step 4 of Sect.$,
TDS(X) :=TDS(X) U {(X.a, X.b)|Am,In:m >nAX.a € Axpm AX.DE Axn};

}

Using the above, we can now describe both algorithms: the original OAG’s and the Eli/Liga’s. We
assume here DP(p) includes all direct dependencies in p.

procedure OAG() {
loop forall p € P do TDP(p) := DP(p); od
loop forall X € V do TDS(X) :={}; od
Propagate();
loop forall X € V do Partition(X); od // partitioning independently among symbols
Propagate(); // to check for type 3 circularities

}

procedure EliLiga() {
loop forall p € P do TDP(p) := DP(p); od
loop forall X € V do TDS(X) :={}; od
Propagate();
loop forall X € V do
Partition(X); // (1) partitioning one symbol and feedbacking the partition into TDS(X)
Propagate(); od // (2) then performing the closure computation

To borrow Kastens’s words, the above algorithm EliLiga() is summarized as follows:

As a consequence of the above (1) and (2), further dependencies may be added to TDS(Y)
for some other Y € N. They influence the partitioning decisions made for the next symbols,
and avoid conflicts which may have occurred if the partitions were computed independently.
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In the case of G4 (Fig. 7), for example, Eli/Liga’s algorithm feedbacks {(X.il,X.i2)} as an
augmenting dependency to T'DS(X) before the partition of Y is computed. As a consequence,
(Y.s1,Y.41) is added to TDS(Y). Thus the type 3 circularity is avoided.

" DP= /
N X - - - «
X '153 Y llsxl x]lldjl\ Y’|1|dsl‘ oP= "+
EDP= /+ Pkl
TDP of G4 TDPof G4 —
propagate _
] Type 3 Circ.=
x|it]st] v [i1]st] x|it]st] v|i1]st] J———— .
e L ‘ A U IDS= / i
TDSof G, : ¢ Lee?;?;?;, TDSof G4

the original OAG algorithm the Eli/Liga s algorithm

Figure 7: an example of feedback in G4 by the Eli/Liga’s algorithm

6.2. Comparing Eli/Liga and OAG*

Table 1 compares OAG* and Eli/Liga using the example AGs G; through Gg. G7 (Fig.8) is not OAG*
but Eli/Liga accepts, while Gg (Fig.9) is OAG* but Eli/Liga does not accept. Thus G7 and Gg shows
that two AG classes defined by OAG* and Eli/Liga are not in the inclusion relation each other. Of
course, both of the classes include OAG properly.

If a given AG has so many semantic rules that all attributes in GDS' are strongly-connected (ex.
G7), OAG* may not be useful. If there is no appropriate augment dependency that can be feedbacked
(ex. Gs), Eli/Liga may not be useful, although we do not know how often such situations happen in
practical applications (especially that have scattered-semantics).

MEIEIRMEIEY

xlit]st] vlia]st] v [ir]st]

v[it]st] z[in]st] z[iz]st]
N N

Figure 8: G7: an example that is not OAG* but Eli/Liga accepts

7. Conclusion

In this paper, we proposed OAG* a new class of AG to reduce the difficulty of eliminating type
3 circularities. To eliminate type 3 circularities, OAG* has a different algorithm from the existing
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x|it]st] v i1]st]

vlin]st] x]i1]st]

Figure 9: Gg: an example that is OAG* but Eli/Liga does not accept

G3,Gy, Gs | G1,Gg | G7 | G | Go
l-ordered A A A A | NA
OAG* A A NA | NA | NA
Eli/Liga A NA | A |NA|NA
OAG NA NA NA | NA | NA

A=accepted, NA=not accepted

Table 1: Comparative Table: OAG* and Eli/Liga

systems: GAG [Kas84] and Eli/Liga system [Eli][Kas89]. We showed that OAG* has several attractive
characteristics:

e The problem if an AG is OAG¥* is decided in polynomial time.
e l-ordered(=arranged orderly AG) D OAG* D OAG

e OAG* produces less type 3 circularities than OAG. Especially, OAG* does not produce type
3 circularities for independent threads of attribute dependencies that are not cyclic in GDS,
which are typical type 3 circularities in OAG.

We obtained a good result for our MAGE2 editor on our experimental OAG* implementation based
on the Synthesizer Generator™ [Gra96]. This result showed that OAG* is useful. We compared
OAG* and Eli/Liga using the examples given in the paper. From the results, two AG classes defined
by OAG* and Eli/Liga are not in the inclusion order each other. Needless to say, they include OAG
properly. Both algorithms seem to be effective with some differences, although it requires further
research to identify both properties.

One of our future works is to study a more precise classification of attribute grammars; especially
we would like to know the relationship between OAG* and OAG(i)(page 16 of [DJL88]), although
we expect that OAG* is one of OAG(i). Another important work is to research how efficient OAG*,
Eli/Liga system and l-ordered AGs are in pragmatic use. We could possibly use l-ordered AG scheme
to reduce programmer’s burden even if the problem of determining if an AG is l-ordered is N P-
complete.
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8. Appendix: Another Example AG Gj;

This section provides another example of AG called G5, its EDP and EDP’ to illustrate how both
methods OAG and OAG* work for a little larger AG than those defined in the previous examples
considered in this paper.

The syntax of G5 has only block-structures, goto statements and labels in procedural languages.
The following is an example of G.
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{

label2:
{

}
labell:

goto label2;

goto labell;

G5 computes the value of a root attribute Program.err. The value of Program.err is false if G has

no errors or true otherwise. We consider the two following types of errors:

e the same label is already defined before in the same block

e the label in goto statement is not defined (we assume here that goto statements can not go to
the inner blocks.)

The above example of G5 has no error, so the value of Program.err is false. Fig. 10 shows the definition
of G5 where the notation for an attribute occurrence p : X;.a is abbreviated as X;.a for simplicity.
The identifier [tb stands for “labels in the table” and vl stands for “visible labels”.

G5 is not OAG but OAG*. As shown in Fig. 11, G5 has an OAG’s type 3 circularity. If you change

the attribute equation appearing in Fig. 10: “p6: Labelltb = Stmt;.1th” to “p6: Label.ltb = if(true,
Stmtq.1tb, Label.vl_up)”, then G5 becomes OAG. By contrast, EDP’ of G5 without any changes is
cyclic free (see, Fig. 12).

pl: Program — Block

p2:  Block — “{” StmtList “}”

p3:  StmtList — €

p4:  StmtList — Stmt StmtList

p5:  Stmt — Block
Block.vl_.down = Stmt.vl
Stmt.err = Block.err
Stmt.vl_up = Stmt.vl_.down
Stmt.ltb_up = Stmt.Itb

p6: Stmt — Label Stmt *”
Label.vl.down = Stmt;.vl_.down
Label.ltb = Stmt;.1tb
// Label.ltb = if(true, Stmt;.1tb, Label.vl_up)
Stmts.vl_down = Label.vl_up
Stmts.ltb = Label.ltb_up
Stmts.vl = Stmt;.vl
Stmt;.err = Label.err or Stmts.err
Stmt;.vl_up = Stmty.vl_up
Stmty .1tb_up = Stmts.ltb_up

p7:  Stmt — goto ID “”
Stmt.err = ID ¢ Stmt.vl
Stmt.vl_up = Stmt.vl_.down
Stmt.ltb_up = Stmt.ltb

p8: Label —» ID «”
Label.vl_up = {ID}U Label.vl_.down
Label.err = ID € Label.ltb
Label.ltb_up = {ID}U Label.ltb

Program.err = Block.err
Block.vl. down = ¢

Block.err = StmtList.err
StmtList.vl_.down = Block.vl_down
StmtList.vl = StmtList.vl_up
StmtList.ltb = ¢

StmtList.vl_up = StmtList.vl. down
StmtList.err = false

StmtList;.err = StmtLists.err or Stmt.err
StmtList;.vl_up = StmtListy.vl_up
Stmt.vl_down = StmtList;.vl_down
Stmt.vl = StmtList;.vl

Stmt.ltb = StmtList;.1tb

StmtListy.vl = StmtList.vl

StmtLists.ltb = Stmt.ltb_up
StmtListy.vl_down = Stmt.vl_up

Figure 10: the description of AG G5
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Figure 11: OAG’s DP,IDP,IDS,DS and EDP for G5
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Figure 12: OAG*’s GDS,GA, DS’ and EDP’ for Gj
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