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Abstract

There are many extensions of the basic attribute grammar formalism intended to improve its
pragmatics, e.g. certain modularity concepts, remote access, object-orientation, templates, rule
models and higher-order features. In the paper, a generic and formal approach to an effective
and orthogonal reconstruction of the concepts underlying some extensions is described. The
reconstruction is effective in the sense that the reconstructed concepts are presented as executable
meta-programs. The approach to reconstruction is formal in the sense that the derived meta-
programs modelling certain concepts can be analysed based on properties of the meta-programs,
e.g. preservation properties. It is a generic approach because the meta-programming framework
can be instantiated not only for attribute grammars but also for several other representatives of
the declarative paradigm, e.g. natural semantics and algebraic specification. Thereby, concepts
can be imported from and exported to other frameworks. Finally, the reconstructions are
derived orthogonally in the sense that potential roles are first unbundled and then particular
combinations of the roles can be investigated. The described meta-programming framework has
been implemented in the specification framework of AAA and it is used for reusable formal
language definition based on attribute grammars and operational semantics.

1. Introduction

It is generally agreed that the pragmatics of the basic attribute grammar (AG) formalism is not
very suitable for practical applications. There has been a lot of research on augmenting the
basic paradigm with extensions' to overcome certain problems such as the lack of modularity,
extensibility and reusability; refer e.g. to [Wat75, Kas76, Lor77, Gie88, Hed89, DC90, Paa9l,
Kos91, SV91, Hed91, Kas91, FMY92, KLMM93, LJPR93, KW94, Boy96, DPRJ96, ZKM97, DPRJ97,
Boy98, MZ98]. Several concepts such as remote access, object-orientation, templates, rule models,
symbol computations, etc. have been implemented in one or another AG specification language
such as Lido (Eli) [Kas91, KW94], Olga (FNC-2) [JP91] and Lisa [ZKM97, MZ98]. It is an open
question what combination of concepts is most appropriate and what further improvements of the
pragmatics can be expected. Indeed, there is an ongoing research on further concepts, e.g. genericity
[DPRJ96, DPRJ97, CDPRYS]|, adaptive programming [CDPR98] and aspect-oriented programming
[La4m99a]. Since their are so many concepts, which have been introduced in certain AG frameworks
and which have been formulated and implemented in very different ways, an analysis and a comparison
of them is very delicate.

1 [KW94] suggests the term paradigm shifts for several extensions such as symbol computations, remote access and
inheritance. Thus, the title of our paper is a homage to [KW94].

37



Ralf Lammel and Giinter Riedewald

We want to approach to the reconstruction of several concepts using functional meta-programs on
AG specifications as the primary tool. Essentially, several roles present in some concepts are isolated
and represented as meta-programs in our framework. Investigating combinations of roles we might be
able to simulate several existing concepts or we even may find unique combinations. Our approach is
formal in the sense, that we use a “typeful” approach to meta-programming and properties of program
transformations corresponding to the roles and combinations of them can be analysed.

[axiom]  program := declaration_part statement_part
[dp] declaration_part = declarations

[sp] statement_part = statements

[decs] declarations :=  declaration declarations

[nodec]  declarations =

[dec] declaration = vdec type

[concat]  statements = statement statements

[skip] statements =

[assign]  statement 1= vuse expression

[if] statement := ezpression statements statements
[var] expression = vuse

[const]  ezpression = constant

Figure 1: CFG for a simple imperative language

The running example of the paper is introduced in the sequel. Consider the context-free grammar
(CFG) of a simple imperative language in Figure 1. Let us assume that we are interested in all variables
which are declared but which are not used in the statement part. The result of the corresponding
analysis should be modelled by a synthesized attribute USELESST? of the root symbol program. We
want to investigate several approaches to the specification of the accumulation of the variable identifiers
from the declaration part and the statement part.

1. The “pure” approach to a corresponding AG specification is shown in Figure 2, where several
attributes named VDECS?T and VUSEST are used to perform the accumulation of all the variable
occurrences all over the grammar in declarations and statements respectively. Multiple attributes
in a rule are combined in the sense of the union on sets (see _U_in rules [decs], [concat], [assign] and
[if]), whereas single occurrences of variables are coerced to sets by the singleton set construction
(see {_} in rules [dec], [assign] and [var]). If there are no occurrences the empty set is propagated
upward the tree (see @) in rules [nodec], [skip] and [const]).

2. Another more modular approach is shown in Figure 3. It is based on the Constituents-construct
for remote access [KW94] as available in the specification language Lido in Eli [Kas91]. Thereby,
the remote attributes corresponding to the declared and the used attributes can directly be
combined. The approach is more modular in the sense that it abstracts from the underlying
CFG and there is no need to clutter the AG specification with the accumulation of variable
occurrences.

3. The way we explained the first approach indicates that all the computations (semantic rules)
follow a certain schema. Indeed, in the paper we will use program transformations to add the
computations accordingly. The transformational approach culminates in Subsection 4.2, where
a certain combination of simple transformations will be presented as a reconstruction of the
Constituents-construct mentioned in the second approach.

2We adhere to the convention that names of attributes end with | or 7 corresponding to names of inherited resp.
synthesized attributes. Note that the arrows are not just annotations but they are proper components of the names.
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[axiom]  program := declaration_part statement_part
program .USELESS] = declaration_part.VDECST \ statement_part.VUSEST
[dp] declaration_part = declarations
declaration_part.VDECST := declarations.VDECST
[sp] statement_part = statements
statement_part. VUSEST = statements.VUSEST
[decs] declarations :=  declaration declarations
declarations.VDECST = declaration.VDECST U declarations.VDECST
[nodec]  declarations =
declarations VDECST = 0
[dec] declaration = wvdec type
declaration . VDECST = {vdec.IDT}
[concat] statements = statement statements
statements.VUSEST = statement.VUSEST U statements.VUSEST
[skip] statements =
statements.VUSEST = 0
[assign]  statement 1= vuse expression
statement.VUSEST = {vuse.IDT} U ezpression . VUSEST
[iﬂ statement := expression statements1 statementss
statement.VUSEST = expression.VUSEST
statements1.VUSEST U statements2.VUSES]
[var] eTpression = vuse
expression.VUSEST = {vuse.IDT}
[const]  ezpression = constant
expression.VUSEST = 0

Figure 2: Detecting superfluous variable declarations — The pure approach

[axiom]  program := declaration_part statement_part

program .USELESST = declaration_part.VDECST \ statement_part.VUSEST
[dp] declaration_part = declarations

declaration_part.VDECST := Constituents vdec.ID With (VDECS,_U _,{_},0)
[sp] statement_part = statements

statement_part.VUSEST := Constituents vuse.ID With (VUSES,_U _, {_},0)

Figure 3: A variant of Figure 2 using remote access

The remaining paper is structured as follows. In Section 2 a framework for transformational
programming on AGs is developed. Afterwards, certain roles of program synthesis are introduced and
analysed in Section 3. The corresponding operators are used in Section 4 for the reconstruction of
some paradigm shifts and for the derivation of a unique notion, that is to say the schematic adaptation
of computations. Finally, we comment on results, related work and future work in Section 5.
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2. A framework for functional meta-programs

Our approach to the reconstruction of paradigm shifts is based on a framework for functional meta-
programs; refer to [LA&m99b] for details. The framework is developed in the following steps. First, a
representation for declarative target programs such as attribute grammars, natural semantics, logic
programs and constructive algebraic specifications is declared. Second, the corresponding structural
definitions are restricted to obtain the proper domains of target program fragments. These domains
are embedded into a typed A-calculus, where some further specification constructs are added as well.
Finally, properties of meta-programs, e.g. preservation properties, are defined.

2.1. The representation of target programs

The representation of declarative target programs and fragments of them is given by certain domains
which are intended to capture constructs such as rules and parameters common to (first-order)
declarative languages. The structural definition in Figure 4 is already refined for AGs. Note that
barred names are used to point out that the structural definition needs to be restricted further to
define the corresponding domain of proper fragments discussed in the next subsection.

Rules = Rule* compatible sequences of rules
Rule = Tag x Conclusion x Premise” tagged rules
Conclusion = Element conclusions (“LHSs”)
Premise = Element + Computation premises (“RHS” elements)
Element = Name X Parameter * X Parameter * parameterized grammar symbols
Computation = Operator X Parameter * X Parameter * computations (semantic rules)
Parameter = Variable x Sort annotated parameters such as variables
Tag tags
Name grammar symbols
Operator semantic function symbols
Variable countable set of variable identifiers
Sort countable set of sort identifiers

Figure 4: Structural definition of representations

Without going into detail it should be explained how AG specifications can be represented according
to the domains in Figure 4:

e The domain Rule can be regarded as an abstraction from production rules together with the
attributes + semantic rules. A rule r € Rule is a triple consisting of a tag ¢, a conclusion
¢ € Conclusion and a sequence of premises p* € Premise*. The notation [t] ¢ : p* is used to
construct a rule.

e The conclusion corresponds to the nonterminal on the LHS of the production rule together
with variables for its attributes. Similarly, premises are either RHS grammar symbols together
with variables for their attributes (Element) or semantic rules (Computation). The variables are
subdivided into inputs and outputs (corresponding to inherited and synthesized positions as
far as Element is concerned). The notation s(vi,...,vm) — (v(,...,v),) is used to construct
parameterized symbols like in extended attribute grammars [WM77] or grammars of syntactical
functions [Rie79]. The arrow — is used to separate inputs and outputs.?

e Semantic copy rules are represented by unifying variables of a rule accordingly. “Proper”

3Note that the arrow and the brackets enclosing the outputs are omitted if there are no outputs. The brackets
enclosing the inputs are omitted if there are no inputs. Note also that the sorts of the parameters in our examples are
assumed to be defined by the stems of the variable identifiers.
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semantic rules ay := f(a1,...,a,) are represented as a computation with the variable
corresponding to ag as output and the variables corresponding to a1, ..., a, as inputs.

We should justify some details of the assumed representation:

e In the common AG notation, grammar symbols are associated with attributes, whereas we
consider parameterized (grammar) symbols. The parameter positions correspond to the
attributes, whereas the sorts of the parameters correspond to the attribute types. Since sorts are
used to refer to parameter positions, we can also say that the sorts correspond to the attributes.
This representation is useful in meta-programs because there is no need to traverse the semantic
rules or to maintain separate attribute declarations in order to obtain the attributes associated
with a grammar symbol.

e In the declarative reading the order in which computations are written down is totally irrelevant.
In contrast, we consider sequences of premises in the definition of the domain Rule without
separating parameterized grammar symbols and computations from each other. It will be
illustrated in Section 4 that such a representation, where computations can be inserted before
or after a certain premise, is useful to deal with data-flow issues in meta-programs.*

e An AG is represented as a sequence of rules according to the definition of Rules. One could argue
that it would be more abstract to consider rather sets of rules. By insisting on sequences we can
maintain an order of rules during the transformation of some given rules. Thereby, readability
is improved. Moreover, the operational semantics of some AG specification language is possibly
sensible to the order of rules.

Example 1 Rule [assign] from Figure 2 is represented as target program fragment as follows:

[assign]  statement — (VUSES) : wuse — (ID), ezpression — (VUSES,),
{ID} — (VUSES1), VUSES; U VUSES; — (VUSES).

In AG jargon VUSES; can be regarded as a local attribute. {_} is a unary semantic function symbol, whereas
_U_is a binary semantic function symbol. &

2.2. Proper target program fragments

The above domains are restricted to obtain domains of proper fragments. A proper fragment is
expected to satisfy certain properties such as that it is well-typed and that it is constructed from
proper fragments. For “complete” programs additional completeness properties can be relevant, e.g.
completeness of the data-flow in the sense of a well-formed and non-circular AG. The framework is
established in a way that meta-programs can only observe and generate proper fragments rather than
arbitrary representations. Technically, inference rules are given to obtain the domains Rules C Rules,
Rule C Rule, .. .; refer to Figure 5°. Consider for example the inference rule [Rules] in Figure 5. Its
premises state the following properties for proper sequences of rules:

e The single rules must be proper rules themselves.
e The tags must be pairwise distinct.
e The types of the rules must be compatible.

4For notational convenience: Since only L-attributed AGs are used in this paper it is assumed to place computations
in a way that the left-to-right evaluation is reflected.
57; denotes the i-th projection for products and sequences. #s denotes the length of the sequence s.

41



Ralf Lammel and Giinter Riedewald

7; € Rule fori =1,...,n
A Trag(Ti) # WTag(FJ;) for Za] =1,...,n0#]
A T (WTRu|e(E,Ti) for i, ... ,n) [RU'GS]
(F1,...,Tn) € Rules

7 € Rule is of the form (t,20, (€1,...,8n)),n >0

eo € Element

(e; € Element V e; € Computation) for i =1,...,n

32 : WTgye(%,7) [Rule]
7 € Rule

> > >

€ € Element is of the form (n, in, out)

A mi(in) € Parameter for i = 1,...,#in

A mi(out) € Parameter for ¢ = 1,...,#out

A 31,5 WTgemen (T, 2, €) [Element]
€ € Element

S [Computation]
e € Computation

P € Parameter

A 31,8 TYParameter('s 25 P) = Tson (D) [Parameter]
p € Parameter

Figure 5: Properties of target program fragments

Let us consider well-typedness slightly more in detail. We assume the following domains®:
Sigma C Sigma = P(Profile)
Profile C Profile = Symbol x Sort* x Sort*
Symbol = Name + Operator + - - -

Thus, symbols get associated profiles in the sense of directional many-sorted types, i.e. there are
some input and some output positions each of a certain sort. In certain instances, proper profiles
have to be restricted. Signatures ¥ are (finite) subsets of Profile. In the AG terminology the
signature of some rules corresponds to the association of grammars symbols with attributes and
to the profiles of the semantic function symbols. Again restrictions might be appropriate in certain
instances. If overloading, for example, should be prohibited, a proper signature ¥ must satisfy that
Vp,p' € T : Tsymbol(P) = Tsymboi(p') = p = p'. The type system for all the fragment types is defined in
terms of straightforward type rules which are omitted here for brevity. 7YPERrues(7s) is used in the
paper to denote the type (i.e. the signature) of some rules rs. The type system can be refined to cope
with constructs and properties which are specific to particular instances.

Finally, completeness of target programs should be discussed; refer also to Figure 6. The inference
rule [COMPLETE] states only one basic completeness criterion concerning the data flow. Notions
which can be used to refine [COMPLETE] and [DFC] are listed in Figure 6 as well. We could be
interested, for example, in reducedness in the context-free sense, where the relation COMPLETE
would have to be invoked with further parameters such as the axiom of the grammar. The minimal
requirement for a complete data flow (DFC—data-flow completeness) is that for each rule r the
applied variable occurrences (AQO(r)) are contained in the defining variable occurrences (DO(r)).
Applied variable occurrences are variables on applied positions, that is to say output positions of the
conclusion and input positions of the premises; dually for defining positions. The idea behind these
terms is that the variables with occurrences on applied positions are expected to be “computed” in
terms of variables with occurrences on the defining positions. These terms are used in much the same

6P denotes the power set constructor. We are mainly concerned with finite subsets in the paper.
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DFC(3) [COMPLETE]
COMPLETE(TS,...)

AO(7;) CDO(F;) fori =1,...,n [DFC]
'D]'-C((Fl,...,in))

Some possible refinements
non-circularity in AGs
call-correctness in logic programs
unknowns in natural semantics
reducedness in the context-free sense

Figure 6: Completeness of programs

way in extended attribute grammars [WM77]. Similar terms are introduced in [AC90] in the context
of natural semantics. Thereby, we may speak of undefined and unused variables, where a variable v
is undefined in the rule r if v € AO(r) \ DO(r); dually for unused variables.

2.3. Functional meta-programs

To obtain a meta-programming language, it is proposed to embed the data types for meta-
programming into a typed A-calculus. Functional meta-programs are preferred because of the
applicability of equational reasoning for proving properties and the suitability of higher-order
functional programming to write abstract program manipulations. Besides the embedded data types,
the following specification language constructs are assumed in the resulting functional meta-program
calculus:

foldl | foldr, non-recursive / recursive let,

the Boolean data type and the conditional b — ej, es,
products (x), sequences (*), sets (P) and maybe-types (D? = D + {?}),
e an error element T for strict error propagation,

e impure constructs to generate fresh variables and symbols.

The error element T is regarded as an element of any type. Embedding the data types for meta-
programming the application of a basic operation, e.g. for the construction of a fragment, returns T
whenever the underlying operation is not defined. Evaluating a term is strict w.r.t. T with the common
exception of the conditional. It is assumed in the sequel that DEF(e) means that the evaluation of e
terminates and returns a proper value (i.e. a value # T).

2.4. Properties of meta-programs

Certain properties of meta-programs which are useful to characterize operators and to facilitate
well-founded program manipulation are considered. In the sequel the term transformation refers
to functions on Rules and the type definition Trafo = Rules — Rules is assumed.

The first definition concerns (a’-) total transformations. In general, a transformation does not
need to be total because of partial fragment constructors and T. However, for many operators, we
can show that they are total.

Definition 1 f € Trafo is a-total if Vrs € o C Rules: DEF(f(rs)). &

7If some property holds only for some inputs ¢, the property is qualified with a.
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Let us consider now a simple preservation property, that is to say type preservation. It is often
desirable to keep the output of a transformation compatible (i.e. interchangeable as far as the profiles
of the symbols are concerned) with the input. In the AG terminology type preservation means that
the association of grammar symbols and attributes and the profiles of the semantic function symbols
are exactly preserved.

Definition 2 f € Trafo is a-type-preserving if Vrs € a C Rules:
DEF(f(rs)) = DEF(TYPERules(rs) U TYPERuies(f(75))).
¢

Another simple preservation property is skeleton preservation where the notion skeleton
corresponds to the notion of the underlying context-free grammar as far as AGs are concerned.
Technically, the skeleton of some rules rs denoted by SKELET ON(rs) is obtained by abstracting
away all parameters and computations. We omit a formal definition. Obviously, it is a desirable
property for transformations focusing on attributes and semantic rules that they do not modify the
underlying CFG. Moreover, the property facilitates composition based on the superposition of rules
with the same shape. Furthermore, skeleton preservation is necessary to be able to abstract from the
skeleton in certain situations.

Definition 3 f € Trafo is a-skeleton-preserving if Vrs € a C Rules:
DEF(f(rs)) = SKELETON (rs) = SKELETON (f(rs)).
¢

Let us consider a more advanced preservation property. If a given target program is adapted, for
example, to cope with some additional computational aspects, the original computational behaviour
mostly must be preserved. There are several transformations which satisfy a certain “syntactical”
property, that is to say the input of the transformation can be regarded as a projection of the
output, where projection means that premises and parameter positions might be removed and
some occurrences of variables might be replaced by fresh variables. Such transformations preserve
computational behaviour because in some sense the given behaviour is extended and possibly further
constrained but not adapted in any more specific sense.

Definition 4 Given rs, s’ € Rules, rs is a projection of rs’ if

1. V7 € TYPERues(rs) : AT € TYPEruies(rs') : T is a projection of 7', i.e.

if 7' =s0f x---x0, — 0] x---0] then Jiny,...,in,, outy,...,out, such that

e the in; are pairwise distinct and the out; are pairwise distinct,
e cach in; € {1,...,n} and each out; € {1,...,m} and
! 1 T T

¢ T=S80; x”'xa-inq_)o-outl out,

ins X X0

fori=1,...,n,7=1,...,m.

2. Vr € rs: 3r' € rs’s mrag(r) = 7rag(r’) and there is a type-consistent substitution 6 such that
O(WConcIusion (7')) = 1_[('/rConcIusion (7'[)) and 9(271) = H(piul), sy e(pu) = H(p'wu), where

® D1, ..., Py are the premises of r, whereas pi, ..., p}, are the premises of 7/,
® Wi, ..., Wy are some natural numbers with 1 < w; < --- < wy, < m and
e II is the function on parameterized symbols projecting parameters according to (1.).

f € Trafo is a-projection-preserving if Vrs € a C Rules:
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DEF(f(rs)) = rs is a projection of f(rs).
%

Finally, two properties concerning DFC (the minimum requirement for the completeness of the
data-flow; refer to Figure 6) are in place. Consider a transformation which preserves DFC in the sense
that Vrs € Rules : DFC(rs) = DFC(f(rs)) provided the result is defined. Such a preservation property
is too weak to characterize transformations w.r.t. DFC because it does not apply to situations where
DFC(rs) is not satisfied in intermediate results within a compound transformation. The following
definition is useful to characterize transformations w.r.t. DFC in a more general sense.

Definition 5 Let F be a family {f; € Trafo};cz of transformations.

e f € Trafo is a-DFC-preserving w.r.t. F if Vrs € a C Rules: Viy,...,i, € I:
(DEF(f*(rs)) NDEF(f*(f(rs)))) = (DFC(f*(rs)) = DFC(f*(f(rs)))),

where f* denotes f; o---o f;,.

e The a-DFC-preservation w.r.t. F for f € Trafo is recovered by f' € Trafo if
Vrs € a: Viy,...,in € : Vk € {1,...,n}:
(DEF(f*(rs)) NDEF(f™(f(rs)))) = (DFC(f*(rs)) = DFC(f™*(f(rs)))),

where f* denotes f;, o---o fi,, whereas f™* denotes f;, o---o f; . o f o fy ---0 fi.
¢

Note that the above weak characterization is captured by DFC-preservation w.r.t. ). Recoverability
of a-DFC-preservation for f by f' means that f and f' can be composed in a sense to construct an
a-DFC-preserving transformation. This property is useful for non-DFC-preserving transformations
because it tells that f’ compensates for the undefined variables introduced by f. In the paper we
assume that F in Definition 5 corresponds to the set of transformations which are derivable as instances
of the operators presented in the paper.

3. Unbundling roles of program synthesis

A few operators for program synthesis are introduced below. The actual selection is example-
driven, i.e. the described operators suffice to derive the AG in Figure 2 from the CFG in Figure 1.
The emphasis is on the properties of the operators facilitating well-founded transformation. The
corresponding operators are meant to be orthogonal in the sense that they model basic roles which
are sufficient to derive concepts at a higher-level of abstraction, e.g. remote access. A more exhaustive
operator suite is developed in [LAm99b] including the actual definition of the operators by means of
meta-programs.

3.1. Adding parameter positions

The operator Add - : Position — Trafo with Position = lo x Symbol x Sort, lo = {Input, Qutput} is
used to add parameter positions to symbols. Consider the transformation Add (Input, s, o) applied
to some element s'(py,...,pn) — (P,---,0,). The element keeps unchanged if s # s'. Otherwise it
is transformed to s(p1,...,pn,v) — (P},...,ph,), where v is a fresh variable of sort o; similarly for
adding output positions. All conclusions and premises are transformed in that way.
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Example 2 We want to approach to a synthesis of the AG in Figure 2 starting from the CFG in
Figure 1. The first trivial step is to add the corresponding terminal attributes for the symbols vdec and
vuse (variable identifiers in the declaration part resp. statement part) by means of the transformation
Add (Output, vuse, ID) o Add (Output, vdec, ID). &

Proposition 1 Add (io,s,o) with io € lo, s € Symbol, o € Sort is total, projection-preserving,
skeleton-preserving, but it is neither type-preserving nor DFC-preserving. &

The operator Add is overloaded to add several positions at once, i.e.:

Add ((io1,81,01),.--,{i0n, Sn,0n)) = Add (ioy, $p,0n) o --- o Add (ioy, s1,01)

Moreover, an auxiliary operator Positions - For _ Of Sort _ : lo x P(Symbol) x Sort — Position* for
the construction of positions all with the same lo and Sort component is needed, i.e.:

Positions i0 For {si,...,s,} Of Sort o = ((i0, 51,0),...,{i0, $n,0))

Example 3 We continue Example 2 by adding the auxiliary positions of sort VUSES, which are used in
Figure 2 to accumulate all variable identifiers used in the statement part. The following transformation adds
these positions:

Add Positions Output For {statement_part, statements, statement, ezpression} Of Sort VUSES

Due to the added parameter positions, the rule [assign], for example, has the following intermediate form in
the notation of target program fragments:

[assign]  statement — (VUSES) : wuse — (ID), expression — (VUSES').

The final form of the rule [assign] was shown in Example 1. The positions of sort VDECS can be added in a
similar way. ¢

3.2. Inserting constant computations

The operator Default For - By _ : Sort x Operator — Trafo facilitates the elimination of undefined
variables by the insertion of “constant computations”, i.e. premises with no inputs and one output.
Consider the transformation Default For ¢ By o applied to the rule . Let vy,...,v, be all the
undefined variables of sort ¢ in r. The premises 0 — (v1), ..., 0 = (v,,) are inserted into r.

Example 4 Default For VUSES By 0 is useful to add the computations for the synthesized attributes of
sort VUSES in the rules [skip] and [const] in Figure 2. Actually, the attributes are identified with the empty
set. ¢

Proposition 2 Default For o0 By o with o € Sort, o € Operator is a-total with a C Rules such that
Vrs € a: DEF(TYPERules(rs) U {0 :— a}), type-, skeleton-, projection- and DFC-preserving. O

Proposition 3 The DF(C-preservation of Add (io, add,o) is recovered by Default For o By by,
where 40 € lo, add € Symbol, by € Operator, o € Sort. $

3.3. Inserting unary conditions

The operator Use _ By _ : Position x Operator — Trafo facilitates the insertion of unary conditions
(i-e. premises with one input and no outputs). Consider the transformation Use (io, s, o) By o applied
to the rule r. For each parameter p on a defining position matching with (io, s,s) a corresponding
premise o(p) is inserted.
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Example 5 To continue the synthesis of Figure 2 it is explained how for any occurrence wvuse.lD the
corresponding (singleton) set of variable identifiers is derived. The corresponding computations can be added
to the rules [assign] and [var] by the following transformation:

Add (Output, {_}, VUSES) o Use (Output, vuse, ID) By {_}
Thus, to insert the corresponding unary computations, first a unary condition is added (Use), second an output

position is added (Add). As far as the rule [assign] is concerned, for example, the following intermediate form
is achieved:

[assign]  statement — (VUSES) © wuse — (ID), expression — (VUSES,), {ID} — (VUSES:).
Note that the above rule is not yet in the final form (refer to Example 1) because VUSES; and VUSES; must
still be combined to compute VUSES. &

Proposition 4 Use (i0,s,0) By o with 40 € lo, s € Symbol, o € Sort, 0 € Operator is a-total
with a C Rules such that Vrs € a: DEF(TYPEruies(rs) L {o : a}), type-, skeleton-, projection- and
DFC-preserving. O

3.4. Pairing unused occurrences

The operator Reduce _ By _ : Sort x Operator — Trafo is used to pair unused variables of a
certain sort o in a dyadic computation deriving a new defining position of sort ¢. The purpose
of these computations is to reduce any number > 1 of unused variables of sort ¢ to 1. Consider the
transformation Reduce o By o applied to the rule r. Let vy, ..., v, be all the unused variables of sort
o in 7. The computations o(vi,v2) — (Vnt1), 0(Vnt1,v3) = (Vnt2), -+ 0(Vntn—2,n) = (Vntn-1),
are inserted into r, where the variables vy y1,...,Vn4n—1 are fresh variables of sort o. Thus, vp4n—1
will be the only unused variable of sort o in the result of the transformation.

Example 6 Example 5 is continued. Several defining occurrences of sort VUSES in a given rule can be
combined by the transformation Reduce VUSES By _U _. As far as the rule [assign] is concerned, for
example, the following intermediate form is achieved:

[assign]  statement — (VUSES) : wuse — (ID), ezpression — (VUSES;),
{ID} — (VUSES3), VUSES; U VUSES, — (VUSES').

Note that the above rule is still not yet in the final form (refer to Example 1) because the variables VUSES'
and VUSES must be unified. &

Proposition 5 Reduce ¢ By o with o € Sort, o € Operator is a-total with @ C Rules such that
Vrs € a: DEF(TYPEules(rs) U {o: 0 x o — o}), type-, skeleton-, projection- and DFC-preserving.

¢

3.5. Inserting copy rules

The operator From The Left - : Sort — Trafo facilitates propagation by copying systematically
defining occurrences of a certain sort to undefined variables from left to right. In AG jargon we would
say that copy rules are established. Note that an application of the operator corresponds to the
insertion of a potentially unknown number of copy rules. The schema is sufficient to establish certain
patterns of propagation, e.g. a bucket brigade, provided the necessary positions have been added
in advance. Consider the transformation From The Left o applied to the rule r. Any undefined
variable v of sort o in r is replaced by the first defining variable occurrence v’ of sort o to the left of
v. Note that the transformation depends on the actual positions of computations.

Example 7 Example 6 is continued. To transmit the combined sets of variable identifier upward in the
decorated syntax tree the transformation From The Left VUSES is useful. As far as the rule [assign] is
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concerned, for example, the above transformation exactly corresponds to the missing step to arrive at the final
form shown in Example 1. &

Proposition 6 From The Left o with ¢ € Sort is total, type-, skeleton-, projection- and DFC-
preserving. ¢

4. Investigating combinations of roles

It will be shown that certain extensions of the basic AG paradigm can be modelled by meta-
programs at a high level of abstraction. The first subsection provides some auxiliary notions. Then,
the reconstruction of concepts facilitating the schematic addition of computations (e.g. propagation
patterns, rule models, remote access) is investigated in some detail. Finally, an entirely new notion of
schematic adaptation of computations is derived.

4.1. Auxiliary operators

The auxiliary operator From _ To _ In _ : P(Symbol) x P(Symbol) x Skeleton — P(Symbol) serves
for the computation of closures of symbols in the sense of the reachability relation for context-free
grammars. Taking such closures is an important tool because thereby program manipulations may
abstract from the underlying skeleton of a target program. Actually, this kind of reachability can be
seen as the basis of a simulation of remote access constructs as in Lido [KW94] in the basic paradigm.

Obviously, a skeleton sk € Skeleton can be regarded as a CFG. Thus, it makes sense to consider
the transitive closure :>;';c of the context-free direct derivation relation w.r.t. the grammar sk.
From from To to In sk is assumed to compute the set of all symbols s € Name satisfying the
property Af € from,3t € to: f :>s+k S :P;k t.

Example 8 Example 3 can be improved by abstracting from the underlying CFG, i.e. the closure of symbols
contributing to the synthesis is derived from the skeleton:

Add (Positions Output For (From {program} To {vuse} In Figure 1) Of Sort VUSES)
%

The notion of object-oriented CFGs together with attribute inheritance (and maybe rule models)
[Kos91] and the notion of abstract symbol computations (together with inheritance) in Lido [KW94]
are also somehow concerned with the abstraction from the underlying CFG. However, these concepts
are more directly concerned with “collective” computations, i.e. computations which are applicable
to a set of symbols (in several occurrences maybe) rather than a single symbol. These notions can
be easily modelled by using transformations parameterized by symbols and by computing closures of
symbols based on a class system defined in one or another way.

Let us consider another technical issue. The scope of transformations frequently needs to be
restricted in a certain controlled way. The following forms are needed in the paper (especially in
Figure 7). The transformation Selecting ¢ts Do f applies f only to those input rules with tags in
ts, whereas the other rules are taken over. The transformation Hiding s Do f renames s to a fresh
symbol in the input rules before f is applied. After the transformation, the renaming is nullified.
Thereby, a confusion of occurrences of s in the input rules and occurrences inserted by some part
of f is avoided. Such a confusion may otherwise cause type conflicts or unintended modifications of
previous occurences. The combinators are defined as follows:

(Selecting ts Do f) (rs) = (f(rs]ts)) Mrs 78|7AGS(rs)\ts
(Hiding s Do f) (rs) = [s'/s](f([s/s']rs)) s' is a fresh symbol

The following notation is assumed:
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T AGS(rs) denotes the tags of rs (i.e. {mi(m1(rs)), ..., 1 (7urs(rs))}).
rs|ts denotes the sequence of rules from rs with tags in ts.
rs|ss denotes the sequence of rules from rs with LHS symbols in ss.

[ ]

[ ]

[ ]

e 751 M rsy denotes the concatenation of the rules rs1 and rss.

e 751 M, rsy denotes a permutation of rs; X rsy such that the order of tags in rs is preserved.
[ ]

[s/s'|rs denotes the rules obtained from rs by replacing each occurrence of s by s'.

Proposition 7 Selecting ts Do f and Hiding s Do f with ts € P(Tag), s € Symbol, f € Trafo are
skeleton-, type- or projection-preserving resp. if f has the corresponding property.® &

4.2. Adding computations schematically

Several extensions of the AG paradigm are concerned with the schematic definition of computations,
e.g. attribute classes [Le 89, Le 93] in Olga (FNC-2) [JP91], remote access and symbol computations
[KW94] in Lido (Eli), rule models [KLMM93] in Mjglner/Orm and templates in Lisa’s sense [MZ98] or
in the sense of MAGs [DC90]. It should be obvious that standard examples like the value distribution
pattern, the propagate pattern, the bucket brigade (left) can be easily represented in our framework
based on the reachability relation (From _ To _ In _) and the operators Add and From The Left.
That should also explain why the Including-construct and chains as in Lido can be simulated in our
framework; refer to [LAm99b] for details. To simulate rule models the operator Default additionally
has to be taken into consideration.” We want to give a detailed reconstruction of a more intricate
construct, that is to say the Constituents-construct of Lido which cannot be simulated, for example,
with rule models at all and in no satisfying manner with MAGs.

Figure 7 defines an operator Constituents _._. With (_,_,_,_) For _ In _ modelling the
corresponding construct in Lido. The first six parameters coincide with the parameters of the
construct in Lido, whereas the remaining two parameters refer to the symbol of the nodes rooting the
accumulation and to the rule, where the remote access takes place. The actual definition should be
clear from the examples from the previous section performing all the functionality step by step.

Example 9 The pure AG in Figure 2 is derived from the CFG in Figure 1 using the operator Constituents.
Indeed, evaluating the following expression returns almost Figure 2:
( Constituents vdec.ID With (VDECS,_U _,{_},0) For declaration_part In [axiom]
o Constituents vuse.ID With (VUSES, _U _,{_},0) For statement_part In [axiom]
o Add ((Output, vuse, ID), (Output, vdec, ID))
) (Figure 1)

It remains to add the following computation to the rule [axiom]:
program USELESST := declaration_part. VDECST \ statement_part.VUSEST

¢

Proposition 8 Constituents rsym.rsort With (auz,union, unit,zero) For for In in with
rsym, for € Name, union, unit, zero € Operator, rsort, aux € Sort, in € Tag is a-total with o C Rules
such that Vrs € a: DEF(T YPEules(rs) U {union : aur X auzr — auz,unit : rsort — auz,zero :—
auz}), skeleton-, projection- and DFC-preserving. O

There are several proposals to extend the AG formalism with object-oriented notions such
as inheritance [Kos91, KW94, MZ98]. Inheritance facilitates “collective semantic rules” (refer to
Subsection 4.1) and overriding. We should comment on the simulation of overriding—at least—
semantic rules. Obviously, every concrete computation ¢ in an AG ag can be represented as a

8The precondition for f so that the combined transformation will be total is slightly more involved.
9 Actually, to simulate the most general kind of rule models (in contrast to the simple examples in [KLMM93]) an
elaborate variant of Default is needed.
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Arsym  : Name. % the symbol of the remote nodes
Arsort :  Sort. % the sort of the remote attributes
Aauz ¢ Sort. % the auxiliary sort for combined occurrences
Aunton : Operator. % binary combination of (combined) occurrences
Aunit : Operator. % to qualify single occurrences for combination
Azero : Operator. % to represent zero occurrences
Afor : Name. % the symbol of nodes intended to carry the combined occurrences
Ain ¢ Tag. % the rule intended to perform remote access
Ars : Rules. % the input rules
Let sk = SKELETON (rs) In % the skeleton preserved by the schema
Let ¢l = (From {for} To {rsym} In sk) U{for} In % symbols contributing to the synthesis
5) ( Default For auz By zero % deal with empty occurrences in a subtree
4) o From The Left auz % propagate combined occurrences
3) o Selecting 7.AGS(rs) \ {in} Do % restrict scope
Reduce auz By union % pairwise combination of occurrences
2) o Add Positions Output For ¢l Of Sort auz % add positions for combined occurrences
1) o Selecting 7AGS(rs|.) Do % restrict scope
Hiding unit Do ( % incremental construction of premises
1b) Add (Output, unit, auz) % transform conditions into computations
la) o Use (Output, rsym, rsort) By unit % add conditions for the remote nodes
)
)

(rs) % apply the composed transformation to the input rules

Figure 7: Reconstruction of the Constituents-construct

transformation &, intended to insert ¢ into the corresponding rule in a target program with the
skeleton of ag. A schema s (e.g. a bucket brigade) from a certain class can also be represented as
a corresponding transformation £, intended to insert all the derived computations. The simplest
form of overriding assumes that concrete computations have a higher priority than computations
derivable from a schema. In our functional framework this idea is very easily realized. Consider an AG
specification ag dealing with the underlying CFG (skeleton) sk, some attributes a1, ..., @, concrete
computations ¢i, .. ., ¢, and schemata (templates, rule models, symbol computations) si,...,s;. The
corresponding target program representation is obtained by the following application:

( &po---0&,; % insert the computations according to si, ..., Sk
o &,0---0&, % insert the computations ci,...,cn

o Add{(...) % add the positions according to a1,...,am

) (sk)

It is assumed that the transformations modelling the schemata do not insert computations for
attributes which are already defined by other computations. Indeed, operators like Default and From
The Left are defined in this way. Note also that it is a very pleasant consequence of our analysis that
this kind of overriding preserves computational behaviour if the &, , .. ., &, are projection-preserving.

4.3. Adapting computations schematically

All the concepts referenced in the previous subsection do not facilitate the schematic adaptation of
computations in contrast to overriding. It will be shown that such an adaptation is useful and feasible.
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Example 10 Consider the following fragment of an AG describing the interpretation'® of an assignment and
of an expression consisting of a variable. Obviously, the specification does not cope with side-effects during
expression evaluation because of the restricted data-flow of the memory (i.e. the nonterminal ezpression does
not synthesize a corresponding attribute of sort MEM).

VUSE eTPression
statement . MEM|

[assign] statement
ezpression.MEM|

statement. MEM?T  := update(statement.MEM|, vuse.ID1, ezpression.VALT)
[var] expression = vuse
expression.VALT := lookup(ezpression. MEM/, vuse.IDT)

Now let us assume that the interpreter definition needs to be adapted in order to cope with side-effects during
expression evaluation. Thus, a synthesized attribute of sort MEM must be added to expression and the new
attribute must be incorporated into the data-flow. As far as the above fragment is concerned, the following
variant is needed where the boxes indicate the modified positions:

vuse erpression
statement.MEM|

[assign]  statement
expression. MEM|

statement . MEM7T = update(‘ expression. MEMT |, vuse.IDT, expression.VALT)
[var] ezpression = ovuse
expression. VALT := lookup(expression.MEM|, vuse.IDT)
| erpression.MEMT  :=  ezpression.MEM| |

¢

Example 10 illustrates once more that altering design decisions may affect several parts of a
specification resulting in a lack of extensibility. Thus, we are looking for concepts modelled by
transformations to avoid that specifications need to be rewritten.

The scenario of the above example is paraphrased in more general terms. The corresponding
schematic way to adapt computations is concerned with turning from distribution to accumulation;
refer to Figure 8 for an illustration. To be more precise, the scope of accumulation is extended in
the sense that certain symbols additionally synthesize an attribute of the dedicated sort o. Due
to the inserted output positions, there will be unused and undefined occurrences of sort o. These
occurrences should be eliminated by adapting parameter positions of sort ¢ in such a way that a
(depth-first) left-to-right data-flow is re-established.

Figure 8: Extending a thread

The following transformation can be applied if certain symbols ss € P(Symbol) should participate
in accumulation of a data structure of sort o rather than distribution:

10Dynamic semantics is not the standard domain for AGs. However, we can assume a form of AGs more suitable for
this domain, e.g. dynamic attribute grammars [PRJD96].
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From The Left 0 o Refresh ¢ o Add Positions Output For ss Of Sort o

Refresh o denotes a simple transformation refreshing all variables of sort o, i.e. considering the result
of the transformation, any applied occurrence is an undefined occurrence and any defining occurrence
is an unused occurrence. Actually, the computations are relocated before in a way that the assigned
locations reflect the left-to-right dependencies w.r.t. sort o.

Proposition 9 Refresh ¢ is total and type-preserving and the DFC-preservation of Refresh ¢ is
recovered by Default For o By s, where o € Sort, s € Symbol. &

The transformation Refresh o is obviously not projection-preserving, but the above application
stretching the scope of accumulation preserves computational behaviour in another sense if some
preconditions are met: The rules to be transformed must show left-to-right dependencies as far as o
is concerned!! and there must not be any defining occurrences of sort o in the premises of rules with
a LHS symbol in ss. Then, computational behaviour is preserved because for any node the additional
synthesized attribute will be equal to the original inherited attribute.

Example 11 The adaptation outlined in Example 10 is performed step by step. We will be only concerned
with the rule [assign]. First, the original rule which does not cope with side-effects during expression evaluation
is represented as target program fragment:

[assign]  statement(MEM) — (MEM)" : wuse — (ID), expression(MEM) — (VAL),
update(MEM, ID, VAL) — (MEM’).

Inserting an output position of sort MEM for ezpression, the rule takes the following form:

[assign]  statement(MEM) — (MEM') : wuse — (ID), ezpression(MEM) — (VAL, )
update(MEM, ID, VAL) — (MEM’).

Refreshing all parameters of sort MEM the rule takes the following form:

[assign] statemem‘(| MEM; |) — (| MEMs |) . wuse — (ID), ezpression( MEM; |) — (VAL,| MEM; |)
update( MEM, ], ID, VAL) — ( MEMj )).

Finally, the refreshed parameters of sort MEM are identified to encode a data-flow from left to right. Note
that the final form was also shown in Example 10 in the common AG notation.

[assign] statement(| MEM |) — (| MEM" |) . wvuse — (ID), expression( MEM |) — (VAL,| MEM' |)

update(| MEM' ], ID, VAL) — ( MEM" ).

&

We should explain why schematic adaptation has not been suggested in other frameworks so
far. MAGs, rule models and symbol computations can be overridden (“pointwise”) by concrete
computations but not vice versa. Indeed, certain technical problems arise when a given complete
AG specification should be adapted schematically. It would be straightforward to override all
computations computing relevant attributes by the new computations derived from the schema, but
usually some computations should be retained; maybe they have to be adapted, e.g. the computation
modifying the memory in rule [assign] in Example 10. That seems to be an intricate problem. We can
retain and adapt computations in our approach because of the following two special phases. In the
first phase the data-flow is made totally undefined as far as the dedicated sort is concerned (Refresh).
Copy rules get lost, but not proper computations including their left-to-right order. In the second
phase the data-flow is re-established according to the schema. The retained computations contribute
to the data-flow. The two phases are illustrated in Example 11 where the intermediate result is shown.

je.: s = (From The Left ¢ o Refresh o) (rs)
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Lisa [ZKM97, MZ98] supports a sophisticated concept to extend an AG. One can, for example,
override computations of the inherited AG by other computations possibly expressed in terms of
templates. Note that such an adaptation can be simulated in our framework if we introduce a
rather simple (non-projection preserving) operator to remove computations. Nevertheless, this kind
of adaptation still forces one to override all the single relevant computations “by hand”.

5. Concluding remarks

First, the results of the paper are concluded. Afterwards, related work is considered. Finally, a few
remarks on future work are provided.

5.1. Results

We developed a detailed formal framework for functional meta-programs which is suitable to
instantiate transformational programming for AGs. We unbundled and analysed roles present in
several extensions of the basic AG paradigm such as remote access [Kas76, Lor77, KW94], symbol
computations [KW94], rule models [KLMM93]. The genericity of the framework allows us to
take a general point of view, that is to say we do not only reconstruct AG concepts but also
concepts proposed for other representatives of the declarative paradigm, e.g. stepwise enhancement
[Lak89, KMS96, Nai96).

There are some unique technical contributions. First, we have shown that it is possible to
model roles of the synthesis of AGs as skeleton-preserving, projection-preserving and DFC-preserving
program transformations. Second, neither the general notion of schematic adaptation, where concrete
computations are overriden according to a schema, nor an instance of it have been proposed or
implemented before. We give an example where distribution is partially extended to accumulation.

The framework and a superset of the outlined operators have been implemented in AAA
[HLR97, Ldm99b] with applications in language definition based on AGs and operational semantics.

5.2. Related work

Besides the extensions of the basic AG paradigm discussed throughout the paper, there are some
further related approaches.

Kiczales et al. recently proposed aspect-oriented programming (AOP) [KLM*97], where special
language support is used to weave (non-functional) properties—the so-called aspects—into the basic
functionality. Standard examples for aspects are error handling and optimization. Implementing
aspects in the traditional approach would result in tangled code which is then unclear and hard to
modify and adapt because these properties tend to cross-cut the functionality. Meta-programming is
a viable option for developing aspect code and performing weaving [FS98, Lam99a].

The Demeter Research Group (Karl J. Lieberherr et al.) has developed an extension of object-
oriented programming, that is to say adaptive object-oriented programming [Lie95]. The Demeter
method proposes class dictionaries for defining the class structure and propagation patterns for
implementing the behaviour of the objects. Our approach is similar to that of Demeter in that
transformations are independent from the actual skeleton and how computational behaviour based on
the notion of reachability can be established in concrete target programs.

Sterling’s et al. stepwise enhancement [Lak89, JS94, KMS96] advocates developing logic programs
systematically from skeletons and techniques. Skeletons are (in contrast to our terminology) simple
logic programs with a well-understood control flow, whereas techniques are common programming
practices. Applying a technique to a program yields a so-called enhancement. Our framework for
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functional meta-programs and our program manipulations are effective means to develop and to
reason about techniques. Kirschbaum, Sterling et al. have shown in [KSJ93] that program maps—a
tool similar to our projection-preserving transformations—preserve the computational behaviour of a
logic program, if we assume that behaviour is manifested by the SLD computations of the program.
Note that our approach is generic and that we make vital use of modes and sorts. Skeletons in the
sense of our framework are not instrumented in stepwise enhancement.

5.3. Future work

The paper emphasizes that program transformations can model concepts which are similar to
extensions in other specification languages like Lido (El) [KW94], Olga (FNC-2) [JP91] or Lisa
[ZKM97, MZ98]. Another point of view emphasizing the aspect of adaptation and to support it by
means of a transformational programming environment should receive more attention. There is some
related work in this respect, e.g. Attali’s et al. environment for program transformation based on the
rule-based language TrfL for program transformations [APR97] (primary intented for non-declarative
programs) or program manipulation systems such as Translog [Bru95] and Spes [ABFQ92] in the logic
programming community.

Another issue concerns the correctness of roles and reconstructions. Although we represent our
transformations as functional programs, it is apparently not trivial to provide rigorous proofs for all the
propositions we are interested in, e.g. the property of our reconstruction of the Constituents-construct
to be projection-preserving, or the more general question if it is really correct w.r.t. the primary form
in Lido. Some propositions should be provable by a rather simple derivation of properties of compound
transformations from properties of the underlying transformations. We would like to approach to the
more intricate problems by using a theorem prover.

The proposed notion of schematic adaption should be worked out further. The example we have
given is obviously tuned towards left-to-right dependencies and it does not illustrate a very broad
class of schemata. Other useful scenarios should be identified. Schemata of adaptation such as our
example are usually not projection-preserving. Thus, we need to adopt other notions to reason about
preservation of computational behaviour.

Finally, we should look for concrete suggestions how AG specification formalisms such as Lido,
Olga and Lisa could benefit from our analysis and framework.
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