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Abstract

This paper introduces generic attribute grammars which provide support for genericity,
reusability and modularity in attribute grammars. A generic attribute grammar is a component
that is easily reused, composed and understood. Attribute grammar based systems may be
constructed out of a set of generic components, that can be analysed and compiled separately.
We show how to generate deforestated attribute evaluators for those components. As a result,
redundant intermediate data structures used to glue different components are eliminated.

1. Motivation

Recent developments in modern programming languages are providing powerful mechanisms like
modularity and polymorphic type systems for abstracting from computations and for structuring
programs. Modern applications are nowadays designed and implemented as combinations of several
generic components, all physically and conceptually separated from each other. The benefits of
such an organization are ease of specification, clearness of description, interchangeability between
different “plug-compatible” components, reuse of components across applications and separate
analysis/compilation of components.

Consider for example the construction of a compiler for a particular language. Such a compiler may
be constructed out of a set of generic components, each of which describes a particular subproblem
such as name analysis, type checking, register allocation, etc. Furthermore, each component may
describe the properties of a subproblem for a large number of languages and not just for the language
at hand: a single component may describe the name analysis task for block structured languages.
Thus, this “off the shelf” component can be re-used across applications.

Generally, those components are combined by introducing intermediate data structures that act
as the glue, binding the components of the application together: a component constructs (produces)
an intermediate data structure which is used (consumed) by other components. In a compiler setting
the intermediate structure is the abstract syntax tree which glues the compiler task components.
Increasing the number of components means simpler and more modular and maintenable code, whereas
decreasing the number of components leads to greater runtime efficiency since fewer intermediate data
structures have to be used. The long-sought solution to this tension between modularity and reuse
on the one hand, and efficiency on the other, is to increase the amount of analysis and program
transformation the compiler is performing so that the programmer may write programs as a set
of components, confident that the compiler can fuse the components together, removing redundant
intermediate data structures.
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Attribute Grammars (AG) can be split into components in several ways: (a) The components are
the non-terminal symbols of the grammar with the associated productions and semantic rules, (b) The
components are formed by the different productions associated with specific non-terminal symbols, (c)
The components are the semantic domains which are used in the overall computation. For realistic
Aas, however, the first two syntactic approaches lead to huge monolithic AGs that are difficult to
write and understand since related properties are described in different components, but can only be
understood together. A more general and efficient form of modularity is achieved when each semantic
domain is encapsulated in a single component [Kas9la, Hen93, FMY92, LIPR93, KW94, SA98|.
Traditional AG systems based on such modular descriptions first construct the equivalent monolithic
AG and only then produce an implementation for such AG. We call this syntactic compositionality.
A major disadvantage of this approach is that a single change in one component can render the entire
evaluator invalid. Thus the support for separate analysis and compilation of components, as provided
by modern programming languages, is sought. In this way we aim at semantic compositionality.

This paper introduces Generic Attribute Grammars (GENAG), which provide a support for
genericity, reusability and modularity in the context of attribute grammar based systems. A generic
attribute grammar is a component which is designed to be easily reused, composed and understood. A
generic attribute grammar describes a generic property of an abstract language and has the following
properties:

e In a generic attribute grammar some (non-)terminal symbols, from now on called generic
symbols, may not be defined within the grammar component, and thus are considered as a
parameter of the grammar. In other words, generic attribute grammars have “gaps” which are
filled later.

e From a generic attribute grammar a generic attribute evaluatoris derived. In our implementation
model a generic evaluator is a purely functional, data type free attribute evaluator as defined
in [SS99]. As we will see it is this absence of any explicit data type definitions that makes the
evaluators (and the grammars) highly modular and reusable.

e In a generic attribute grammar the productions of a non-terminal symbol may be distributed
by different GENAG components. Such components can be analysed and compiled separately,
thus giving the sought semantic compositionality.

e A generic attribute grammar can be parameterized with the semantic functions used to compute
attribute values.

o Furthermore, deforestated evaluators are used in order to remove redundant intermediate data
structures which glue the different components of a GENAG system.

In section 2 we introduce generic attribute grammars and we define a formalism to denote them.
We also discuss the circularity of GENAGs and introduce flow types. In section 3 generic attribute
evaluators are presented. Section 4 discusses the semantic compositionality of GENAGs. Section 5
briefly compares our approach to related work and describes the current implementation. Section 6
contains the conclusions.

2. Generic Attribute Grammars
This section introduces generic attribute grammars.

Definition 1 (Generic Context Free Grammar) A generic context free grammar (GCFG) is a
triple g9 = (V, P, S). V = (X UN UG) is the vocabulary, a finite non-empty set of grammar symbols.
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3 is the alphabet, i.e. the set of terminal symbols and N is the non-empty set of non-terminal symbols.
G is a finite set of generic symbols. P C N x V* is a finite set of productions. S € (N UG) is the
start symbol.

O

A generic symbol is a grammar symbol for which there are no productions. As we will explain later,
a generic symbol can be the root symbol. We denote a generic symbol G € G by G. A production
p € P is represented as X9 — P (X; X2 --- X,). Non-terminal X, is called the left-hand side
non-terminal or father of p and X; Xy --- X are the right-hand side symbols or children of p.

A generic context free grammar is complete if every non-terminal symbol is accessible from the
start symbol and can derive a sequence of grammar symbols which contains terminal and generic
symbols only. That is, it does not contain any non-terminal symbol.

Definition 2 (Complete Generic Context Free Grammar) A generic context free grammar
99 = (V, P, S) is complete iff:

VXEN Elu,u,&e(EUQ)* : S :>* /JXI/ :>* (5

A complete GCFG defines a generic abstract syntazx tree. A generic abstract syntax tree contains
normal leaves and generic leaves, the latter being labelled with a generic symbol.

Definition 3 (Generic Abstract Syntax Tree) For every production of the form X — C (Y1 ... Y,)
of a complete generic context free grammar there is a Generic Abstract Syntax Tree (GAST) labelled
X with subtrees Ty, ..., T, (in that order), where:

e T; is a normal leaf labelled Y; € X.
o T; is a generic leaf labelled Y;€ G.

o T, is a generic abstract syntax tree Y; € N.

A Generic Attribute Grammar is based on a generic context free grammar that is augmented with
attributes, attribute equations and semantic functions.

Definition 4 (Generic Attribute Grammar) A generic attribute grammar is o quadruple gag =
(99, A, E, F) where:

e gg=(V,P,S) is a generic context free grammar.

o A is a finite set of attributes, partitioned into sets Apont(n), Agen(g) and Ajoc(p) for eachn € N,
g€Gandp € P. Apons(n) and Agen(g) are further partitioned into sets Aipn(n), Asyn(n) and
Aink(9), Asyn(9), respectively.

e E=,cp E(p) is a finite set of attribute equations.

o F C FE is a finite set of generic semantic functions.
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P = G U F is the set of static parameters of the generic attribute grammar.

We say that a generic attribute grammar is complete if its underlying context free grammar is
complete and if every local and every output attribute occurrence of a production has at least one
defining equation and no two equations have the same target. The set of output attribute occurrences of
a production p contains the synthesized attribute occurrences of the father and the inherited attribute
occurrences of the children.

Completeness alone does not guarantee that all the attributes of a generic abstract syntax tree are
effectively computable: circular dependencies may occur. Circularities will be discussed in section 2.2.
However, if circularities do not occur for any derivable tree, the generic attribute grammar is called
well-defined. That is, for each generic abstract syntax tree of a GENAG all the attribute instances are
effectively computable.

The traditional definition of well-defined attribute grammars assumes that the synthesized
attributes of terminal symbols are defined by an external module: the lexical analyser [Paa95]. In
our definition of well-defined generic attribute grammar we make a similar assumption, that is, the
synthesized attributes of the generic symbols are defined by an external module: an external generic
attribute grammar. Thus, the attribute equations defining the synthesized attributes of a generic
symbol are not included in the GENAG which uses such generic symbol.

2.1. Generic Attribute Grammar Specifications

This section describes our notation for generic attribute grammars. We use a standard attribute
grammar notation: Productions are labelled with a name for future references. Within the attribution
rules of a production, different occurrences of the same symbol are denoted by distinct subscripts.
Inherited (synthesized) attributes are denoted with the down (up) arrow | (7). The attribution rules
are written as HASKELL-like expressions.

We extend this AG notation with two new constructs: Symbols and Functions. The former defines
the set of generic symbols used by the GENAG. The latter defines the set of generic semantic functions
used by the GENAG. For each generic symbol we define also its set of inherited and synthesized
attributes.

Consider a generic attribute grammar AGy rooted R. Suppose that this grammar has a generic
symbol € G, with Agen(X) = {inhl, synl, syn2} that is partitioned into the set of inherited
attributes A;np () = {inhl} and the set of synthesized attributes Ay, (X) = {synl, syn2}. We use
the following notation to denote this set:

Symbols = { X <|inhl,!synl,Tsyn2> }

Consider also that AG; has a generic function f € F that is used to define an occurrence of
attribute syn1. This function has to be defined in the Functions contructor. The (polymorphic) type
of every generic semantic function is also defined. The set of generic semantic functions is denoted as
follows:

Functions = { synf : { f = a -b—oc}

}

Next we present the attribution rules of this generic attribute grammar. The generic symbol
occurs in the productions and in the semantic equations of the GENAG as a “normal” grammar symbol.
The same holds for the generic function f which is used as a “normal” semantic function too.
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R <t synl >
R — (X228 S <! inhl,1 synl >
anhl = S.synl S - (n)
S.inhl = .syn2 S.synl = f n S.nhl
R.synl = .synl

Observe that the inherited and synthesized attributes of a generic symbol can be derived from the
attribute equations, exactly as for normal non-terminal symbols. We define the set of inherited and
synthesized attributes in the GENAG specifications to increase their readability.

For presenting generic attribute grammar specifications we introduce a simple desk calculator
language DESK. DESK was presented in a recent survey on attribute grammars [Paa95] where it is
analysed in great detail. A program in DESK as the following form:

PRINT < Ezpression> WHERE < Definitions>

where < Ezpression> is an arithmetic expression over numbers and defined constants, and < Definitions>
is a sequence of constant definitions of the form:

<Constant Name> = <Number> : <Type>

each named constant used in < Ezpression> must be defined in < Definitions>, and < Definitions> may
not give multiple values for a constant. We extend the original language with types, that is, a constant
has a type int or real. The dynamic meaning of a DESK program is defined implicitly as a mapping
into a lower-level code. A concrete sentence in DESK and the respective code generated looks as
follows:

PRINT 14z —y LOADI 1
WHERE <z = 2: int, ADDi 2 (x)
y =3 :real SUBr 3 (v)

PRINT O

HALT 0

This language introduces several typical tasks which are common in real programming languages:
name analysis, type checking, code generation. Observe also that it is a one pass right-to-left language
because named entities can be used before declaration.

The DESK compiler will be defined as a set of GENAG components. We start by defining a
component which performs the static semantics of DESK. The code generation component is defined
in section 4.2.

Let us assume that the <Ezpression> part of DESK has one inherited attribute, the environment
(env), and synthesizes three attributes: the list of identifiers used and not contained in the inherited
environment (attribute errs), a typed tree for the expression (¢t) and the inferred type (type). Suppose
that in a library of GENAG components we have a generic component describing the processing of
such expression trees. Therefore we refer to the <Ezpression> part as a generic symbol as follows:

Symbols = { <lenv,Terrs,1 type, T tt > }

and we concentrate on defining the rest of the GENAG. This grammar is presented next. The start
symbol is Desk.

Desk <t errs>
Desk — (?PRINT? I:l 'WHERE® Defs)
.env = Defs.env
Desk.errs = concat .errs Defs.errs
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Defs <7 env,1errs> Def <Tenv,Terrs>
Defs — (Def) Def — (Def >, CD)
Defs.errs = Def.errs Def.errs =  if isin (CD.name, De fs.env)
Defs.env = Def.env then cons CD.name Defs.errs
| 0O else Defs.errs
Defs.errs = il Defenv = (CD.name,CD.entry):Defs.env
Defs.env = [l | (CD)
CD <1 name, T entry > Def.errs = mil
D — (name =’ num ’:’ type) Def.env = [(CD.name,CD.entry)l
CD.name = name
CD.entry = (num,type)

The generic symbol and its attribute occurrences are used in the semantic equations of the GENAG
as normal symbols and attributes. The semantic functions used to define the attribute env are part of
this GENAG component, although they are not presented in the above grammar. These functions are
the (built-in) list functions: the list and the empty list constructor, denoted by : and [] respectively,
and the function isin that is the list membership predicate.

The meaning of this GENAG component is the attribute errs: the only synthesized attribute of
the root symbol. This attribute represents the list of errors which occur in a DESK program. This
attribute can be a list data structure, that contains the errors, and that might be used by another
GENAG component for further processing, or it can be a string representing a pretty printed list of
errors that is shown to the user. In order to make possible to (re)use this GENAG component in all
these cases we define the semantic functions used to compute attribute errs as generic functions.

As we will see later these generic semantic functions can be instantiated with the (built-in) list
constructor functions and the meaning of this component is a list of errors. However, those functions
can also be instantiated with pretty printing functions and the meaning of the GENAG is a string.
Those functions must follow the polymorphic type of the generic semantic functions. This generic
functions are declared as follows:

Functions = { errs: { concat == a —a —a
,  Ccons b —2a —a
,  nil to—oa }

2.2. Circularities

Generic attribute grammars are executable, that is, efficient and generic implementations can be
automatically derived from generic attribute grammars. In order to derive such implementations,
the generic attribute grammars have to guarantee that all the attribute instances of a generic
abstract syntax tree are effectively computable. That is, an order to compute such attribute
instances must exist. Several methods exist that find such an order for “normal” attribute grammars
[Kas80, Alb91, Pen94].

Most of the algorithms that analyse attribute grammars for attribute dependencies can be used
to handle generic attribute grammars as well. The key idea is to provide those algorithms with
the dependencies between the inherited and the synthesized attributes of the generic symbols.
Such dependencies cannot be inferred from the GENAG since the attribute equations defining the
synthesized attributes of the generic symbols are not included in the GENAG.

In this paper we will present a strict and purely functional implementation for generic attribute
grammars. This implementation is based on the visit-sequence paradigm [Kas80] and is restricted to
the class of partitionable attribute grammars [A1b91].

A straightforward strategy to approximate the dependencies of the generic symbols is to look at
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the evaluators of these symbols as functions from inherited to synthesized attributes. That is, every
synthesized attribute of a generic symbol depends on all the inherited attributes of that same symbol.
Consequently, every generic symbol G € G has one single partition:

77'1( ) = ([Amh( )]7[Asyn( )])

Such an approach, however, may easily introduce fake cyclic dependencies. Suppose that in a
production of a GENAG, where a generic symbol G occurs, one inherited attribute a of G (transitively)
depends on one synthesized attribute b of G. This type of dependencies induces a cyclic dependency
since attribute b directly depends on attribute a (recall that in a generic symbol, every synthesized
attribute depends on all the inherited ones). In other words, multiple traversal generic symbols are
not guaranteed to pass this simplistic approximation.

Consider the GENAG AG; defined in section 2.1. Figure 1 shows the dependency graph of
production pasted with the functional dependencies induced by the generic symbol X and
the non-terminal symbol S.

R synl

/

inhl synl  syn inhl synl
~— v

N— Vv

Figure 1: Cyclic dependency graph induced by the functional dependencies of

2.2.1. Flow Types

A better strategy to provide the circularity test algorithm with the dependencies between inherited
and synthesized attributes of the generic symbols is to explicitly specify such dependencies in the
generic attribute grammar. That is, the GENAG defines the computational pattern of the generic
symbols, the so-called flow types. These types define how the information flows from the inherited to
the synthesized attributes of every generic symbol.

A flow type of a generic symbol G is a finite list of pairs, each of which defining a computation
pattern for G. A computation pattern consists of a finite list of inherited attributes of G (the first
element of the pair) and a non-empty finite list of synthesized attributes of G (the second element of
the pair). Thus, every computation pattern defines a function from the inherited to the synthesized
attributes of a generic symbol.

Consider the generic symbol G € G. A flow type for G is defined as follows:

[ (fargi]; [resi)), ..., ([argn], [resn]) |

, with argy U---Uargn, = Ainn(G) and resy U ---Ures, = Agyn(G) and resy N---Nres, = 0. That
is, inherited attributes may be used in different computation patterns, but a synthesized attribute is
defined in exactly one. We annotate the generic symbols with the flow types as follows:

( (arg) — (resi)

: (argn) — (resn)
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, where arg; =inhy,...,inhy € Ajpp(G), with 1 < j <n.

Let us return to the generic attribute grammar AG;. Observe that according to the attribution
rules of production , the generic symbol G is a two traversal symbol: The two traversals are
due to the dependency from a synthesized (syns) to an inherited attribute (inhi) of G. So, let us
define a flow type which specifies a two traversal computation pattern. The first traversal synthesizes
attribute syns and the second one uses attribute inhi. A possible flow type looks as follows:

Symbols = { = (- syn2,inhl — synl) }

This flow type defines the following partitions: 1 (X) = ([], [syn2]) and m(X) = ([inhl1], [synl]).
Figure 2 shows the induced dependency graph for production .

R synl
/
inhl synl  syn inhl synl
N 4 /4 N 4

Figure 2: Dependency Graph induced by the flow type of

In section 4.4 we will introduce modular and generic attribute grammars and flow types are
automatically inferred and do not have to be explicitly specified.

Let us return to the DESK calculator example. The flow type defined for the generic symbol
is:

Symbols = { i (env— (errs, type, tt) ) }

Observe that this flow type does not introduce any circularity in the GENAG.

3. Generic Attribute Evaluators

This section presents Generic Attribute Fvaluators (GENAE), an efficient implementation for generic
attribute grammars. The generic attribute evaluators are based on purely functional attribute
evaluation techniques [KS87, Joh87, Aug93, SS99]. The generic attribute evaluators, however, have
to provide a mechanism to handle the generic symbols and semantic functions of the GENAGs.

Next we present strict A-attribute evaluators that are an efficient functional implementation for
partitionable attribute grammars.

3.1. M-Attribute Evaluators

The strict A-attribute evaluators consist of a set of partial parameterized functions, each performing
the computations of one traversal of the evaluator. Those functions, the so-called deforestated visit-
functions, return as one of their results the visit-functions for the next traversal. Performing the
visit corresponds to totally parameterizing the deforestated visit-functions and, once again returning
the function for the next traversal. The main idea is that for each visit-sub-sequence we construct
a function that, besides mapping inherited to synthesized attributes, also returns the function
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representing the next visit. Any state information needed in future visits is preserved by partially
parameterizing a more general function. The only exception is the final deforestated visit-function
that returns synthesized attributes only .

Consider the following simplified visit-(sub-)sequences for production X — (Y 2):
plan
begin 1 inh(X.inh1)
visit (Y,1)
eval . begirT 2~ E;h(lifmhz)
. visit s
o uses(X.inhi, ), eval  (X.syna)
visit  (Y,2) uses(X.inhy, )
eval (X.syn1) end 2 syn(X.syno)
uses(--+),
end 1 syn(X.syn1)

Observe that the inherited attribute X.inh; must be explicitly passed from the first visit of X (where
it is defined) to the second one (where it is used). The non-terminal Y is visited twice, both visits
are performed in the first visit to X. These two visit-sequences are implemented by the following two
deforestated visit-functions:

>‘Prod1 )\Yl AZl = ((/\Pron >\Zl)) Synl)

where (-A o) = Ayt ..
(.. _1;22 . _Y_l defined in  Ap, 51

used in A 2
syny =- - - Prod
Ay2 partial parameterized in the
Aproa? Azt inhy = (syn2) first traversal and totally
where (...)=Az ... parameterized in the second one.

syma = f (i},

The functions Ay: and Az: define the computations for the first traversal of non-terminal symbols
Y and Z. The attribute occurrence X.inh; is passed from the first to the second traversal as a hidden
result of Ap, .4 in the form of an extra argument to Ap,.s2. Note also that no reference to visits for
non-terminal symbol Yis included in Ap, 42 since all the visits to Y occur during the first visit to
only.

The A-attribute evaluators are more generic than conventional attribute evaluators since their
interface specification does not contain any explicit references to data types representing the abstract
syntax trees. Attribute instances needed in different traversals of the evaluator are passed between
traversals as results/arguments of partial parameterized visit-functions. No additional data structures
are required to handle them, like trees [Kas91b, PSV92, SKS97] or stacks and queues [AS91]. The
visit-functions find all the values they need in their arguments. Furthermore, the resulting evaluators
are higher-order attribute evaluators. The arguments of the evaluators visit-functions are other visit-
functions. Finally, the evaluators have an efficient memory usage: data not needed anymore is no
longer referenced. References to grammar symbols and attribute instances can efficiently be reclaimed
as soon as they have played their semantic role.

Parse-time attribute evaluation is achieved as a by-product of our techniques: the deforestated

visit-functions are directly called during parsing. No syntax tree is explicitly constructed. A typical
parser fragment (derived from AG,, in this case) looks as follows':

We use Happy [Mar97], an Yacc equivalent for HASKELL.
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R : X 2 §

{ /\P'r’ode $1 $3 }
S : n

{ /\Prodsl $1 }

, where Ap,,qrt and Ap,.,qs1 are calls to the deforestated visit-function derived from AGy. These
functions are presented in section 3.2.1.

3.2. Deriving Generic Attribute Evaluators

We define a mapping from generic attribute grammars into generic attribute evaluators. This mapping
handles the generic symbols and semantic functions in the “standard’ way: they are extra parameters
of the A-attribute evaluators. That is, for every generic symbol the attribute evaluator receives an
extra argument corresponding to the evaluator of that symbol. The generic semantic functions are
also handled as extra arguments to the generic evaluator. In other words, the A-attribute evaluator
derived for a generic attribute grammar gag is parameterized with the static parameters P of gag.

This technique is orthogonal to the strict and lazy implementation of attribute grammars presented
in [Sar]. Thus, strict and lazy implementations can be derived for generic attribute grammars.
The examples of generic attribute evaluators presented in this section are based on the strict
implementation only.

3.2.1. Generic Symbols

The generic symbols are handled as normal non-terminal symbols: the visit-functions derived for
the productions, where a generic symbol occurs, receive as an extra argument the generic evaluator
which decorates the generic symbol. This is just as normal grammar symbols are handled. The
generic attribute evaluators, however, refer to the visit-functions which decorate the generic symbols
as parameters of the GENAE.

In order to derive strict A-attribute evaluators for generic attribute grammars the attribute
evaluation order must first be statically computed. Traditional attribute grammar scheduling
algorithms can be used to compute such an evaluation order, provided that the dependencies between
the inherited and synthesized attributes of the generic symbols are known. That is, the AG scheduling
algorithms have to know the partitions of the generic symbols, like for the circularity test of generic
attribute grammars. Thus, the flow types are used to provide the scheduling algorithm with the
evaluation order of the generic symbols.

Consider the generic attribute grammar AGy and the flow type of X as defined in section 2.2.1.
According to the partitions induced by the flow type and the dependencies defined in both productions
of AG1 (see figure 2) the visit-sequences produced by the the scheduling algorithm are:

plan

begin 1  inh()
visit (2, 1) plan
v g'll’;hl) begin 1 inh(S.inkl)

T eval (S.synl)

e\.rai!. (X.inhl) end 1 syn(S.synl)
visit (2, 2)
eval (R.synl)

end 1 syn(R.synl)
The visit-sequences can be directly implemented as A-attribute evaluators using the techniques
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described in [SS99]. For the sake of completeness the resulting deforestated visit-functions are shown
next. The generic semantic function fis considered in this example as a normal semantic function.
Generic functionas are discussed in next section.

AProde -)‘S1 = Sy’ﬂl
where (Ay.,syn2) = Aprogst 1 inhl = (synl)

(synl,) = Ag1 syn2 where (synl)=f n inh

(synl) = Ao synl,

As expected the evaluator of the generic symbol X is one argument of the visit-function Ap,.,qp1-
Observe that that evaluator represents the first visit to the generic symbol only. When such a function
is applied to the inherited attributes of the first visit (an empty set, in this case), it returns the visit-
function to the next visit: Exactly as “normal’ deforestated visit-functions of A-attribute evaluators.

Consider the productions and of the DESK calculator. The deforestated visit-
functions derived for these productions are:

AROOtP’!‘Odl M ADef1 = 61"7‘8)

where (envs,errss) = A 1
( ’ Def where (name) = A4t

(errsa, type,, tta) = envs (entry) = Anum1 Aryper)

(errs) = concat errss errss

AAssign1 )‘namel Anuml )‘typel = (name,entry)

, where is the reference to the partial parameterized visit-function that is obtained when

parsing the expression part of a DESK program. In the body of visit-function Ag,.;pr0qt We can see
the right to left pass of the attribute evaluator: first the function that represents the evaluation of
the <Definitions> part of DESK is called (and it returns the environment). After that, the function
which represents the evaluation of the <Egzpression> part is computed (and it uses the computed
environment). Note also that the deforestated visit-function Ap.s1 has all the parameters it needs at
parse-time (no parameters in this case). Thus, the calls to that function are totally parameterized at
parse-time. Consequently, the < Definitions> part of DESK is decorated during parsing.

The arguments of the visit-function A 4,4,,1 are the tokens produced by the “external” lexical
analyser. The deforestated visit-functions are completely generic as shown by their type definitions:

)‘RootProdl = (a - (b,C,d)) - (aab) — b
)‘Assignl ta —>b—>c— (aa (bac))

In this evaluator and in the GENAG, for example, nothing is defined about the type of the identifiers
of the language. They can be a sequence of characters, a single one or even a numeral. The GENAG
and the evaluator can be reused in all those cases.

3.2.2. Generic Semantic Functions

The generic semantic functions are handled as extra arguments of the evaluators. We consider two
possibilities: the generic semantic functions are normal inherited attributes, or the generic functions
are syntactic referenced symbols. In the next sections we describe both approaches.
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3.2.3. Generic Semantic Functions as Inherited Attributes

They are inherited attributes of the root symbols and they are passed down in the tree to the nodes
where they are used as normal attributes. Furthermore, the attribute grammar scheduling algorithms
are used in the standard way to schedule their “computation”, because the generic semantic functions
have become normal attributes. In this section we show how to transform a GENAG wich contains
generic functions into an equivalent one without generic functions. As a result of this transformation,
we can use the techniques described thus far to derive generic attribute evaluators.

A generic attribute grammar with generic functions can be transformed into an equivalent grammar
with no generic functions as follows: Let gag = (gg, A, E, F) be a generic attribute grammar and R
be the root of the generic context free grammar gg.

1. For every generic semantic function f € F we add an inherited attribute | f to A;n(R).

2. Every occurrence of fin F is replaced by TR.f.

, where 1X.f denotes the access to a remote attribute of an ascendent non-terminal symbol?.

Consider the GENAG AGy. This grammar is transformed into the following one:

R < ,T synl > S <| inhl, 1 synl >
R — (X 2:28) S = (n)
dinhl = S.synl S.synl = n S.inhl
S.inhl = .syn2
R.synl = .synl

, and the derived A-attribute evaluator looks as follows:

AProdrl  AX1 Ast : (synl)

where (Ay.,syn2) = AProast  n nhl|f|= (synl)
(synly) = Ag1 syn2 where (synl) = n inhl
(synl) = Ay2 synl,

This technique, however, introduces type conflicts in the GENAE when the productions of a GENAG
are extended. This type conflict will be explained in section 4.1.

3.2.4. Generic Semantic Functions as Syntactic Symbols

This section introduces a second approach to handle generic semantic functions: they are syntactically
referenced symbols. That is, each visit-function defining the first visit to a particular constructor
receives an extra argument for every generic function used in the respective production. The generic
semantic functions are passed to the visits where they are applied, as arguments/results of the
visit-functions which perform the different visits to that particular constructor. This is exactly as
syntactically referenced symbols (i.e. grammar symbols which are used as normal values in the semantic
equations of a Higher-order Attribute Grammar [VSK89]) are handled by the A-attribute evaluators.
Thus, the techniques used to handle syntactic references can be used to handle generic symbols too.
In this paper we present the evaluators obtained with this technique only. For a formal derivation of
such evaluators the reader is referred to [Sar].

Consider the GENAG AG; again. The generic attribute evaluator obtained with this technique is:

2We use the notation of the SsL language [RT89].
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Aprodrt  Ax1 Agt = (synl)
where (Avya,syn2) = AProdst n inhl = (synl)

(synly) = Ag1 syn2

where (synl) = n inhl

(synl) = Ay, synl,

Observe that the visit-function call Ag: in the body of Ap, sz is partial parameterized with the
generic function f at parse-time. That function call corresponds to the total parameterization of the

visit-function.

R : X §

{ /\Prode $1 $3 }
S : n

{ /\P'rodS1 f $1 }

The generic functions are now the first arguments of the visit-functions. This approach has an
important advantage when compared to the previous one: the visit-functions can be partially evaluated
[JGS93] with respect to generic semantic functions. Note that they are the partial parameters of
the GENAG. That is, when we parameterize the generic function of the GENAG with a particular
function (that is a static parameter of the GENAG) we also partially evaluate the respective evaluator
with respect to that function. As a result of partial evaluation the evaluator is a “standard”
A-attribute evaluator: all the semantic functions are part of the evaluator and they are not arguments

of the visit-functions.

Let us consider the DESK

processing of expression trees.

calculator again and present a GENAG component which defines the
The root symbol is Exp.

Functions = { tt: { add a —-b —oc —e¢
, fac a -b —-c}
, errs: { concat d -d —d
, cons e »d —d
, il o o—od }
}
Exp <| env, T errs, T type, T tt >
Ezp — (ézp ,+; Fac)7 Fac <| env, 7 errs, T type, T val >
Ezps.env = Exp.env Foc — (name)
Facenv = Ezp.env Fac.wal = getval name Fac.env
Fac.type = gettype Fac.val
Ezxp.errs = Exps.errs Fac.errs . S
Eaptype = inftype Exps.type Fac.type Fac.errs = 11.; zsmnrz?me Fac.env
en
| Ezxp.tt F )= Fac.val Exp.type Exps.tt else cons name 7l
ac
num
Fac.env = Ezp.env | Fac.va,l( =) num
gigte;;‘: i ?ZZ':;‘;Z Fac.type = gettype Fac.val
: - : Fac.errs = mnil
Exp.tt = fac Fac.val Exp.type

The semantic functions used to compute the value of synthesized attributes errs and the typed
tree tt are defined as generic functions. The other semantic functions (e.g. getval, gettype , etc) are
normal (static) semantic functions that are part of this GENAG. The single deforestated visit-function

derived for the production

is presented next:
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A ddat ABopl AFact €NV = (errs, type, tt)

where (errss,types,vals) = Ap,.1 env
(errsa, typey, tta) = Apapl €MV
(errs) : errsa errss
(type) = inftype type, types
(

tt) = vals type tts

We show next the (complicated) type definition for this deforestated visit-function. This function
and its type will be used in the next section to explain the composition of GENAG components.

Aagar 2 (@—=b—c)—(d— Type —e— f) — (g — (a,Type,e)) — (9 — (b,Type,d)) — g
— (¢, Type, f)

As we can see in this type definition, the first four type sub-expressions represent the polymorphic
types of four functions: the two generic functions and the two visit-functions (derived for the right-
hand side non-terminal symbols). The type variable g represents the type of the environment. The
visit-function returns one triple, where ¢ represents the type of the list of errors, T'ype is the derived
type for the expression (inferred from the static semantic functions) and f is the type variable that
represents the type of the typed tree.

4. Semantic Compositionality

This section discusses the semantic compositionality of generic attribute grammars.

4.1. Extending the Productions of a Non-terminal

The generic attribute evaluators are independent of the abstract tree data type. This data type freeness
allows the GENAG and the GENAE to be easily extended with new productions. Suppose we want
to extend a generic attribute grammar with new productions. In a traditional AG implementation,
the existing attribute evaluator will have to be modified, since the type of the abstract syntax tree
changes. As a result the attribute evaluator for the complete AG will have to be produced again.

In our implementation, however, we can define a new GENAG component where the new production
and its semantic equations are specified. This component can be analysed separately and the
deforestated visit-function(s) for the production can be produced. No “global” tree data type has
to be modified. In order to compute the order of the attribute evaluation we have to provide the
scheduling algorithm with the flow type of the non-terminal symbol on the left-hand side of the
production.

Let us return to the DESK example. Suppose that we want to extend the productions of the
expression GENAG in order to allow the operation <, which is not supported by the reused component.
Using generic attribute grammars we define this extension in one new component. The non-terminal
symbol in the left-hand side of the grammar is defined as a generic symbol and its flow type is specified.
The new production and its attribute equations are defined as follows:
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Symbols = { i (env— (errs, type, tt) ) }
Functions = { tt: { dia x a ob oc —c}
, errs { concat = d —d —d }
}
<| env,T errs, T type, T tt >
— (EBzp 2O Fac)
Ezxpr.env = Exp.env
Fac.env = FExp.env
Exp.errs = concat Ezxpa.errs Fac.errs
Ezxp.type = inftype Exps.type Fac.type
Exp.tt = dia Fac.val Exp.type Exps.tt
Observe that the start symbol S of this GENAG is the generic symbol . This grammar

component is used to extend its production only. From this GENAG component a deforestated visit-
function is generated. The header of the function derived for this component is:

Apigl  concat ABapt Aract env = (errs, type, tt)

Suppose now that the generic function is handled as one inherited attribute, as proposed in the
first technique to handle generic semantic functions. In this case, a new inherited attribute dia is added
to non-terminal symbol Exp. As a result all the visit-functions derived for the productions applied
on Fxp have to be extended with an extra argument too. If we consider the separate compilation of
the modules, however, we get a type error during evaluation since the visit-functions derived for those
productions have different types!

4.2. Composing GENAG Components

The generic attribute grammars are efficiently and easily composed. The generic functions of one
GENAG can be instantiated with the visit-functions of the evaluator derived from another GENAG.
Because this evaluator is totally deforestated no intermediate data structure is constructed nor
traversed. Furthermore, we can give different semantics to a GENAG by instantiating its static
parameters (i.e. the generic functions and the generic symbols) with different arguments.

Consider the code generation task of the DESK calculator. The code generation is performed
according to the typed tree computed by the type checker. The typed tree attribute is one of the
synthesized attributes of the expression part of DESK, as defined in section 2.1. In the GENAG
for expressions that attribute is defined using generic functions. As a result we can, for example,
parameterize the expression GENAG with a tree algebra and explicitly construct the typed tree. This
tree can be defined by the following algebraic data type:

data ETree = Num Type ETree
Num Type

, where Num and Type are the types of the correspondent terminal symbols of the GENAG. The
constructs of the tree data type follow the types defined for the generic functions. Thus, we can
instantiate the generic functions with these constructor functions as follows:

add =
fac =

In this case the evaluation of attribute ¢t actually constructs the typed tree as we can see in the
type definition of the resulting deforestated visit-function:

Agaar i (@ —>b—>c¢) > (d > Type - ETree — ETree) — (9 — (a, Type, ETree))
— (9 — (b,Type,d)) — g — (¢, Type, ETree)
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In a traditional AG implementation this tree is traversed later on in order to generate the assembly
code. Thus, this tree is the intermediate structure which glues the GENAG components.

Let us now present one GENAG component that describes the code generation task.

Ezxp <71 code >
Exp — (num type Ezp)
Exp.code =  if isinttype type then Exps.code ++ [“ADDi ¢ ++ num|
else FEzxps.code ++ [“ADDr ¢ ++ num)|
| (num type)
Ezp.code =  if isinttype type then [LOADi”’ ++ num)

else [“LOADr” ++ num|

, and derive the deforestated generic attribute evaluator. We show next the deforestated visit-function
derived for the production only:

ACodeAddl )‘numl )‘typel AEmp% = (COde)
where (code;) = ABap}
(code) = if isinttype Ay pe1 then codes ++ [“ADDi “ ++ A, 1]
else codey ++ [“ADDr ““ ++ X\, ..1]

Using the deforestated generic attribute evaluators we can instantiate the generic functions with
the deforestated visit-functions derived for the code generation GENAG. We compose the GENAG
components as follows:

add = AcodeAdar
fac = A(70d<»3Fac1

Observe that these visit-functions have all the arguments they need during the decoration of the
expressions trees. As result, the code generation is actually computed during the evaluation of the
expression trees. Furthermore, no intermediate data structure (e.g. the typed tree) is constructed.
The type definition of the visit-function is:

Aggqr i (@ —>b—>c) — (d - Type — [String] — [String]) — (g — (a,Type, [String]))
— (g — (b, Type,d)) — g — (c, T'ype, [String])

As a result the single visit-function which decorates the expression part of the DESK language
returns, as one of its results, a list with the assembly code. The intermediate typed tree is not
constructed not traversed. Observe also that the list (with the generated code) can also be eliminated
if we define the pretty printing of the assembly code in an attribute grammar setting and derive the
correspondent deforestated visit-functions. In this case, the list is eliminated and the previous function
returns a string: the assembly code (see [Sar] for details).

4.3. Inter-Module Attribute Dependencies

The main problem in a purely functional implementation of attribute grammars is to handle attribute
instances that are computed during one traversal of the evaluator and used in a future one, the so-
called inter-traversal attribute dependencies [Pen94]. A traditional imperative approach stores such
values in the nodes of the tree. The A-attribute evaluators explicitly pass those values between visits,
as normal arguments/results of the visit-functions.

A similar problem occurs with the separate compilation of GENAG components: How do we pass
attribute values computed in one GENAG component and used in a different component? We use
the approach of the deforestated evaluators: Those values are arguments/results of the visit-functions
derived for the GENAG components. No additional data structures are required.
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Consider the expression GENAG presented in section 3.2.4. The value of the attribute type is
defined in this GENAG and it is used in the code generation component. The attribute is passed
between components in the “standard” way: The generic function which defines the typed tree is
partially parameterized with the attribute type. When such generic function is instantiated and
totally parameterized the value of the attribute type is available.

4.4. Modularity Constructs

This section briefly presents a modular notation for generic attribute grammars. A generic attribute
grammar component is extended with a name and a set of imported modules, the so-called modular
and generic attribute grammar. The presentation in this paper is necessarily short relying entirely on
the DESK example. A more detailed and formal presentation appears in [Sar].

A modular and generic attribute grammar extends a GENAG with a module’s name A and a set
of imported modules M. Every generic symbol X € G of a modular component has to be defined as
a (normal) grammar symbol X in one of the imported modules m € M. We say that a modular and
generic AG is complete if the underlying GENAG is complete and each generic symbol X is also one
grammar symbol X of the imported GENAGs. Futhermore, the set of attributes of symbols X and X
must be equal. Moreover, the flow type of a generic symbol X is the set of partitions of symbol X.
The partitions of the grammar symbol X are computed (using standard AG techniques) when deriving
the evaluator for the GENAG component where X is defined. As a result it is not needed to specify
the flow type for the generic symbols: the flow types are the partitions of the grammar symbols which
instantiates the generic symbols. We consider that the partitions (é.e. the flow types) of the grammar
symbols of a modular and generic attribute grammar m are available to the modular grammar which
imports m.

In order to write modular and generic attribute grammars we add two new constructs to our
specification language: Module and Import, which define the name of the module and the set of
modules imported, respectively. Furthermore, the occurrences of generic symbols in the attribution
rules are annotated with the module where the symbol is defined as follows:

<module name>_<generic symbol>.<attribute>

Let us define a modular and GENAG component, called SEMANTICS, which describes the static
semantics for the DESK language. This component imports two GENAGs: the Expression GENAG
and a GENAG which defines the unparsing of the list of errors. Furthermore, a set of generic semantic
functions is defined in order to glue the Semantics and the CodeGen components.

Module SEMANTICS
Root Desk
Import = { Errors, Expression }
Symbols = { } -- no flow type needed
Functions = { code: { coddesk = a—b , codadd :: a—-b—c—oc
, coddia = a—b—oc—oc , codfac :: a—b—oc }
}
Desk <1 errs,1 code >
Desk — (’PRINT’ WHERE’ Defs)
Expression__ .add = codadd
Expression fac = codfac
Expression .env = Defs.env
Desk.errs = Errors_ Err.concat Expression .errs Defs.errs
Desk.code = coddesk Expression 1t
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Observe that the flow type of the generic symbol is not defined in the AG. The partitions of
Exp inferred when producing the attribute evaluator for the Expression GENAG are the flow types.
Such partitions are available when analysing the Semantics AG since it imports the Expression
GENAG.

Let us show the fragment of the SEMANTICS grammar which defines the processing of the expression
tree. When writing a GENAG component the syntax underlying the attribute grammar is reduced
to the entities which have a role in the attribute evaluation algorithm. Thus, let us assume that the
reused expression GENAG is defined over the abstract syntax of the expression trees instead of over
the concrete one (as defined previously). Furthermore, we also extend the expression component with
an additional production. This fragment is shown next.

I:l <| env,1 errs, T type, T res >

Exp — (Ezp2 >+’ Fac)

Expression (Exps Fac)

| (Fac)
Expression (Fac)

| (Exp2 <’ Fac)
Exps.env = Exp.env
Fac.env = FExp.env
Ezxp.errs = Errors_Err.concat Exps.errs Fac.errs
Ezxp.type = checktype Exps.type Fac.type
Exp.res = coddia Fac.val Exp.type Exps.res

The semantic equations of the productions and specify which visit-functions are

used to decorate the instances of those productions (i.e. the respective subtrees). The new production
and its semantic equations are defined as usually.

5. Related Work and Implementation

Several attribute grammar extensions allowing modularity and reusability of attribute grammar
components have been developed. Most existing attribute grammar systems, however, use syntactic
compositionality: a monolithic AG is first constructed out of modular descriptions. This type of
modularity allows the semantic rules in one module to use attributes defined in another module. This
allows a separate description of the phases without the need for defining and constructing any glue.
This approach has one important drawback: the separate analysis of modules is not supported.

Our work, however, aims at semantic compositionality: the separate analysis and compilation
of attribute grammar components. When writing AGs in a component style the interface between
two components has to be defined. There are two approaches that can be taken: Define a special
purpose data type or a glue grammar for this specific task. This is, for example, the approach taken in
composable attribute grammars [FMY92]. In this approach, however, when the interface changes the
components have to be recompiled. Furthermore, the “glue” is actually constructed.

The second approach is to define a generic data type in which the information may be encoded.
Examples of such representations are S-expressions or rose-trees. We have taken this second approach,
in which functions are used as the uniform representation: in this way we get the genericity of
the second approach. Furthermore, since the functions are totally deforestated no glue is actually
constructed.

The generic attribute grammars have been implemented in a very experimental version of the LRC
system [KS98]: A purely functional attribute grammar system developed in our department?. The LRC
processes higher-order attribute grammars, written in a super-set of SsL [RT89], and produces purely

3LRc is available at the address: http://www.cs.uu.nl/people/matthys/lrc_html/
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functional attribute evaluators. Incremental attribute evaluation is achieved via function memoization.

The LRC generates C based attribute evaluators and more recently we have incorporated a new
back-end in order to generate HASKELL based evaluators. The A-attribute evaluators and the generic
attribute evaluators are produced in HASKELL only.

The modular constructs for generic attribute grammars are currently being incorporated to LRC.
We are also planing to incorporate a type inference system into LRC. In the current implementation
of LRC the generic and deforestated attribute evaluators rely on the HASKELL type system to perform
the type checking.

6. Conclusions

This paper introduced generic attribute grammars. Generic attribute grammars provide the support
for genericity, reusability and modularity in the context of attribute grammars. A generic attribute
grammar is an executable component: efficient attribute evaluators are derived for a GENAG. The
A-attribute evaluators are particularly suitable to implement generic attribute grammars since they
are completely generic: no data type has to be defined.

The generic attribute evaluators are deforestated and no intermediate data structure is
constructed/used to “glu€e’ the components of a GENAG system or to pass attribute values between
different components. Furthermore, these techniques are orthogonal with the function memoization
techniques used to achieve incremental attribute evaluation [PSV92].
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