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Abstract

Attribute grammars are well-designed to construct complex algorithms by composing several
ones together. Actually, there exists a powerful transformation called descriptional composition
which highly simplifies the composition of two attribute grammars by removing useless
intermediate constructions.

However, most of non-linear algorithms can not be expressed with attribute grammars. Thus,
many compositions can not be simplified by the descriptional composition. In this paper, we
present Equational Semantics, a formalism largely inspired by attribute grammars but where non-
linear algorithms can be encoded. More precisely, instead of being restricted to one input static
tree as it is the case for attribute grammars, an algorithm encoded with Equational Semantics
may use dynamically constructed trees.

This formalism consists in an very poor abstract syntax. We present its semantics and
some of its transformations such as partial evaluation and descriptional composition (also called
deforestation). In some sense, Equational Semantics is a kind of lambda-calculus dedicated to
program transformations.

1. Introduction

For many years, we try to promote our approach for generic programming and software reuse. It
consists in composing different basic components together in order to produce more complex ones.
Fach basic component must be robust and general, so using them in particular cases may be costly
because of some translation components or unspecialized algorithms.

Attribute grammars seems to be an interesting model to deal with this kind of generic programming
since there is an algorithm, the descriptional composition [5, 6, 12], which simplifies a composition
and produces a new and more efficient attribute grammar. However, this descriptional composition
may fail: for instance, it may produce multiple definitions for an attribute, or it may introduce a
circularity into attribute dependences.

More generally, an attribute grammar can only encode an algorithm which is linear in the number
of nodes of its input tree. A syntactic reason for this is the impossibility to dynamically compute
over attributes that are not linked to the input tree of the attribute grammar. The key point of our
approach consists in removing this impossibility.

Let us consider the following example written with a straightforward notation. It defines an
attribute grammar which computes the length of a list and its reversed list (with an accumulator).
The first part of the attribute grammar introduces type definitions:
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type list, int
constructors
cons : int x list — list
nil . — list
synthesized(list) = rev : list length : int
inherited(list) = accu : list

Then the core of the attribute grammar comes up:

cons zl z2 :
rev = x2.rev
z2.accu = (cons zl accu)
length = (+ 1 x2.length)

nil
rev = accu
length =0

In this example, there is a functional dependency between the inherited attribute accu and the
synthesized one rev: the expression z2.rev can be seen as a call to some function (or procedure, or
visit, or whichever is appropriate) which computes on the sub-tree 2 the synthesized attribute rev
with respect to the value of its inherited attribute accu.

Actually, in classical attribute grammars, it is only possible to use these “function calls” on a
sub-tree of the (static) input tree of the program. With such a restriction, it is impossible to consider
calls on dynamically-constructed trees or multiple calls on one sub-tree with different values for its
inherited attributes. This is why an attribute grammar can only encode linear algorithms. Then the
key point of our approach consists in introducing local definition, such as:

L1 = (cons x1 x2.rev)

Then, we allow to use expressions like L1.rev and to define a value for L1.accu. Thus, it becomes
possible to define the reverse of the reverse of a list :

type unit
constructors

reverse : list — unit
synthesized(unit) = r: list
reverse x1 :

r = Ll.rev

Ll.accu = (nil)

L1 =2xl.rev

zl.accu = (nil)

Here, to compute the attribute 7 of the tree (reverse l), the list [ is reversed, and this dynamically
constructed list is also reversed. This algorithm is still linear, but such dynamic constructions allow
to encode non-linear algorithm. See section 3 for more examples.

But introducing such syntactic features merely modify the semantics of attribute grammars.
Actually, we must completely redefine it. This is why we propose a new formalism, where we only
kept the essential of attribute grammars to deal with program transformations, namely the notion of
constructors and attributes.

The result is a kind of lambda-calculus, with a notation closed to the one of attribute grammars,
especially dedicated to program transformations. We called this formalism Equational Semantic and
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it is presented in the section 2 of this paper. Section 3 provides examples. Section 4 is a short
presentation of how to generate evaluators which compute the attributes of a tree. In section 5, we
define what should be a correct transformation. Section 6 describes transformations, especially partial
evaluation and deforestation.

Related Works: There exists a lot of extensions to attribute grammars. A common goal for them
is to enlarge the expressiveness of standard attribute grammars. We want to mention here higher-order
attribute grammars [14], tree-transducers [8], and dynamic attribute grammars [11]. Since all of them
are able to encode A—calculus, we will not expose in this article why and how their equivalence holds.
We are interested here in showing an extension of an attribute grammar transformation method, the
descriptional composition, which applies to non-linear programs thanks to Equational Semantics.

2. Equational Semantics

This section defines notions and vocabulary for the equational semantics formalism.

Terms: Terms are built using constructors or primitives which take variables or sub-terms as
parameters. There is no function call.

Variables: They name or represent terms. A variable can have several forms:

e .k (k is an integer) represents the k-th sub-term of (the term represented by) the variable x.
e z.a (a is an attribute name) represents the attribute a attached to the variable z.

e z.L;, (k is an integer) represents a local variable associated to the variable z.

The special variable « is used as a root variable.

Attributes: An attribute a represents a computation and the variable z.a represents the result of
this computation on the term represented by the variable x.

Equation Systems: The considered equations are of the form x = ¢, where the left-hand-side is
restricted to be a variable. A system ¥ is a set of equations.

Properties and Program: A program is defined by a set of properties that rely on attributes. For
instance, incrementing an integer is represented by the following property about the attribute inc:

(Vz) zianc=(+=x1)

We will only consider properties which depend on the constructor appearing at the head of a term.
For instance, the length attribute defining the length of a list verifies the two following properties:

z = (cons ...)=
(Vz) f.le@gth = (+ 1 z.2.length)
z = (nil) =
z.length =0
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To simplify notations, the universally quantified variable x is denoted by the special variable a.
This yields the following specification, which is (a piece of) a program in equational semantics:

cons —

a.length = (+ 1 a.2.length)
nil —

a.length =0

The complete syntactic definition of a program in equational semantics is given below :

N, Att, Cons and Prim are respectively the
sets of integers, attributes, constructors and

(ct*) ce€ Cons
(wt*) w € Prim

primitives.
P ou= (c—p)”
p u= z=t
T n= o«
| z.a a€Att
| zk keN
t =
|
|

Deduction Rule: A deduction rule ¢ is a function which takes a system and generates new equations
according to it. The basic deduction rules are described below.

(psub(z) = {mk =t
|z=(cty...ty) € E}

Oprim(T) ={z =t
|z=teX tot'}

Pprog(P)(X) = {plz] , Vpe A
lz=(c...)€X,(c— A) € P}

> is a rewriting rule over terms. The substitution
[z := t] replaces the full occurrences of variable
x by t (i.e. = is not substituted in z.a, z.k or
x.L;). The substitution p[z] replaces each text
occurrence of « in the property p by the variable
x.

The deduction rule g, is used to have access to sub-terms; for instance, if £ = (¢ ¢1 t2) then
the variable x.1 represents the sub-term ¢;. The deduction rule p,,ps¢ Substitutes a variable by a
term. The deduction rule @p,in handles primitive computations; for instance z = (+ 1 1) gives
x = 2. The deduction rule ¢,,,, depends on the program P and applies its properties (this notion is
defined below). The program transformations described section 6 will be carried out by adding more
deduction rules to this basic kernel.
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Execution: While a program is defined by a set of properties, its execution! is a system of equations.
This system is constructed by applying deduction rules to an initial system which represents the input
data of the program.

The execution of a program involves the following
definitions:

P = p*
P(E)=2U U »(%)

pEY
Zy= U ¢"(®)
neN

The result of executing the program P with the
initial system X and the set of deduction rules v
is the system X,,. The basic kernel of deduction
rules is:

wbasic = {‘Psub: Psubst; Pprim Soprog(P)}

The semantics of a program according to the set of deduction-rule % is the function which associates,
to an input system X, the system 3.

Such a semantics can be computed, and with a large amount of technical improvement?, it
can be computed efficiently. We have implemented a prototype, called EQS, which performs such
computations, and more generally, manipulates and transforms programs in Equational Semantics.

3. Examples

This section intuitively presents how to encode various kind of algorithms with equational semantics.
The example of executions come from the ones automatically computed by our implemented prototype
EQS.

3.1. Attribute Grammars

As an example of encoding attribute grammars, we choose the example of reversing a list with an
accumulator. The attribute accu is used to accumulate the elements and the final result is returned
through the attribute rev. In the beginning, accu must be set to the empty list (nil). This program
is specified in equational semantics as follows:

cons —

a.rev = a.2.rev

a.2.accu = (cons a.1 a.accu)
nil —

.TeV = Q.accu

Actually, a program which never use local variables looks like an attribute grammar. Now, let us
consider the following initial system:
z = (cons 1 (cons 2 (nil)))
z.accu = (nil)

IMore precisely, it is the trace of an execution of the program.
2We do not describe them in this paper
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The application of the basic kernel deduction rules yields the following execution. However, the entire
execution is too large to be reported here, so we only report some new equations. For each of them,
the deduction rule which produced it is noticed inside brackets.

x.rev = x.2.1eV [prog]
z.2.accu = (cons x.1 z.accu) [prog]
zl=1 [subd]
x.2 = (cons 2 (nil)) [sub
z.2.1ev = 1.2.2.1€V [prog
z.2.2.accu = (cons x.2.1 z.2.accu) [prog]
z.2.1=2 [subd]
z.2.2 = (nil) [sub
x.2.2.1ev = £.2.2.accu [prog
x.2.accu = (cons 1 (nil)) [subst
x.2.2.accu = (cons 2 (cons 1 (nil))) [subst]
(-..) [subst]
x.rev = (cons 2 (cons 1 (nil))) [subst]

To define a function that reverses a list, the constructor reverse is introduced. It stands for the
call of this function while the attribute r is defined to catch the result of this call.

reverse —
a.r =a.l.rev
a.l.accu = (nil)

Now, given a list [ and the equation 2 = (reverse 1), the reversed list is represented by the variable
z.r.

3.2. Dynamic Trees

In the previous example, the recursion is driven by the constructors cons and nil. For functions like
factorial, the recursion is only driven by a conditional expression. First, as like as in the previous
example, a constructor factorial and an attribute r are used to represent a call to factorial. Second,
for all variable x such that z = (factorial t) the new local variable x.L; represents the result of the
comparison (< 1 t) which drives the recursion. The computation is then continued on the constructor
true or false through the attribute fact.

factorial —
a.r = a.Ly.fact
a.Lin=a.l
a.l; = (< 1 a.l)
true —
a.fact = (* a.n a.La.r)
a.Ly = (factorial (— a.n 1))
false —
a.fact =1

To illustrate how conditional recursions work with the local variable a.L;, we present now the
execution from the initial system {2 = (factorial 2)}:
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z.r = x.L1.fact [prog]
z.Lin=21l1 [prog]
.l =(< 12.1) [prog
xz.Li.n=2 [sub, subst
z.Lh =(< 12) [sub, subst]
x.Li = (true) [prim
x.Lq.fact = (x x.L1.n x.Ly.Ly.1) [prog
x.L1.Ly = (factorial (— x.Li.n 1)) [prog
IL'.Ll.LQ.T:]. []
x.Ly.fact = (x 2 1) [subst]
x.r =2 [prim, subst]
3.3. Composition

The example we present here does not belong to the scope of classical attribute grammars. More
precisely, it can be encoded with two attribute grammars composed together, but the composition
itself can not. Let n be a Peano integer, we build with the attribute bin a balanced binary tree of
depth n with a first attribute grammar. Then a second one counts the leaves of this constructed
tree with the attributes s and h, producing a new Peano integer m. Thus, we have m = 2". The
composition is computed in the attribute r of the constructor ezxp.

The first attribute grammar is:

succ —

a.bin = (node a.1.bin «.1.bin)

zero —
a.bin = (leaf)

The second one is:

node — leaf —
a.s =a.l.s
a.l.h = a.2.s
a.2.h = a.h

The composition is defined by :

erp —
a.r =a.Ls.s
a.Ls.h = (zero)
a.Lz = a.l.bin

a.s = (succ a.h)

Thus, if n and m are Peano integers such that m = 2", then the initial system {z = (exzp n)}
produces the equation x.r = m. Both “attribute grammars” are linear algorithms, but the size of the
tree produced by the first one is an exponential of the size of the input tree. Thus the composition of
these two attribute grammars produces an exponential algorithm. The composition itself can not be

encoded with one attribute grammar.

Notice that the previous specification is transformed by our deforestation method into:
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suce — erp —
a.s' =a.li.s ar=ao.l.s
a.ly =a.l a1l.n' = (zero)
a.Li.h =a.l.s
a.l.h = a.h'

zero —

a.s' = (succ a.h')

This result could not be encoded with classical attribute grammar since the visit which computes s’
from h' is called twice with two different values for the attribute A’ (look at the constructor succ). Here,
the local variable a.L; is identical to a.1, but a.L;.h' and a.1.h' represent different values. Notice that
the classical descriptional composition composition failed in composing these two attribute grammars.

4. FEvaluators

In this section, we show how to construct an evaluator for an equational semantics specification. An
evaluator is a set of recursives wvisits that computes, for any tree ¢, the values of some attributes
associated to ¢t. By definition, the visit-call denoted by [h1 ...~y — $1...8,] (t) computes all the
attributes s; of ¢ if and only if all the attributes h; of ¢ have been already computed. A visit is defined
for each constructor by an ordered list of actions. An action could be either a call to a visit or the
evaluation of an equation.

For instance, the following evaluator reverses a list :

[accu — rev]
cons —
eval a.2.accu = (cons a.l a.accu)
visit [accu — rev] (a.2)
eval a.rev = a.2.rev
nil —
eval a.rev = a.accu
[— 7]
reverse —
eval a.l.accu = (nil)
visit [accu — rev] (a.1)
eval a.r = a.l.rev

The construction of the evaluators is performed by a fix-point algorithm. The main idea is to
compute step by step a pool of available visits. We first define the following operations:

e Vcons(P,c): it finds all the visits that computes attributes on a constructor ¢. To make these
visits, all the visits in pool P are assumed to be available on the sub-terms of ¢ and on its local
variables.

e Vall(P): it computes (P',T) where P’ is new pool of visits, and T is a table which associates each
constructor to its visits. The result of Vall is such that for all constructor ¢, T'(c) = Vecons(P, ¢)
and P'=JT(c)

o Vwerify(v,T): for the visit v = [H — §], it verifies that for each constructor ¢ such that at
least one attributes of S is defined on ¢, there exists a visit [H' — S] in T'(¢) and H' C H. A
visit that verifies this property is called “verified”. If it is not the case, then the visit v may be
undefined on a constructor and should be eliminated.
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With such basic components, the fix-point algorithm is defined as follows:

Py = {[—a]|ae€ Att}
Pu1 = F(P)

where F' is defined by:

F(P)={v| wveP, Vverify(v,T),
(T, P") = Vall(P)}

When the fix-point is reached, the remaining visits correctly compute the values of the attributes.
As an example, here is the first iteration to compute the visits to reverse a list :

Py = {[— rev], [— r]}

The computations of Veons lead to:

Veons(Py, cons) =
[— rev]
visit [— rev] (.2)
eval a.rev = a.2.rev
Veons(Pg, nil) =
[accu — rev]
eval a.rev = a.accu
Veons(Py, reverse) =
[ 7]
visit [— rev] (a.l)
eval a.r = a.l.rev

Thus, after the first computation of Vall the visit [— rev] must be removed since it is not “verified”
for cons. However, the new visit [accu — rev] is “verified” by cons and nil. Of course, since the fix
point has not been reached, the evaluators found are not correct. Thus we have:

P, = {[accu — rev], [— 7]}

Then, the second step produces the right evaluators and the fix point is reached.

Of course, this simple algorithm have to be improved to be efficient. The critical point is the
computation of Veons which seams to be highly exponential. However, a large amount of the
constructed visits are identical (modulo permutation), and it is possible to compute them together.
In practice, with our implemented prototype EQS, the complexity of the entire algorithm remains
reasonable.

5. Safe Transformations

Intuitively, a transformation is correct if the transformed program produces the same results as the
original one. In section 2 we define the execution of a program according to an input system ¥;.

However, this execution is a system which contains many intermediate computations mixed with
the expected result. Thus, we have to define which equations of the execution belong to the output
system. For instance, consider the input system:
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= (coms 1 (cons 2 (niD)
ity

If we suppose that the interesting attributes are rev and length, the interesting output system is:

a.rev = (cons 2 (cons 1 (nil)))
°1 a.length =2

Let R be a given set of the interesting attributes. The output system of an execution is the set of
equations of the form: a.a = t, where t is a term with no variable, and a € R.

With such a definition, a program transformation is safe (or correct) if and only if, for all input
system, the output systems of the original program and of the transformed one are equal. Thus,
additional computations may exist and internal computations may change, but the final results have
to remain identical.

6. Transformations

6.1. Partial Evaluation

Applying deduction rules and collecting the new equations produced stands for a kind of partial
evaluation. For instance, suppose that we have the following program:

test —
a.r = (+ a.l a.Lg.result)
a.Lg = (factorial 3)

Then from the initial system x = (test z.1) it is possible to obtain the following equation:

z.r = (+ z.16)

This equation can be generalized on the variable z since we only use the fact that = = (test...).
Thus, a new property on the constructor test can be added, and finally we obtain the new program :

test —
a.r = (+ a.l a.Ly.1)
a.r =(+ a.16)
a.Lg = (factorial 3)

Now, there exists two properties associated to the variable a.r for the constructor test. The two
properties are correct according to section 5. The proof of such a correction comes from two ideas.
Firstly, the property a.r = (+ .1 6) only comes from the original program. Secondly, adding this new
equation does not modify the execution of the original program, but some equations will be deduced
with less applications of 1.

Actually, partial evaluation is the real kernel of the other transformations we define in this paper.

6.2. Reduction

In a program, there are often several properties for a unique variable. In the previous example test,
there are two properties for the variable a.r (the original and the generated one). In this case, it is
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interesting to eliminate the first one which involves too much other equations to be computed. To get
benefit from a program transformation, many properties must be eliminated.

It is not always possible to eliminate a property. More precisely, an elimination will be safe if and
only if it never produces undefined variables during an execution.

In most cases, many solutions exist and we have to choose an efficient one. Reaching optimality is
a very difficult problem. However there are simple and intuitive heuristics (which were implemented
in our prototype) to obtain reasonable results. In the previous example test the reduction leads to:

test —
ar=(+ al6)

6.3. Specialization

With functional notations, this transformation is defined as follows: suppose that f is a function of n
parameters 1 ... T,, the specialization of f when the parameter x; is equal to the constant K is the
new function h defined by:

(hzy...zp)=(f K zy...2,)

This is the first step of the transformation, where a new definition is introduced. The second step
of the transformation consists in recognizing where f can be replaced by h. More precisely, it consists
in the following term-replacement everywhere in the program:

(f Kt ...tnfl) = (h t1 ...tn,]_)

These two steps can be translated into equational semantics in a systematic way. For the first
step, a new attribute is introduced for the computation of A and new attributes are introduced for its
parameters. Additional properties are automatically generated in order to link the new attributes to
the old ones. For the second step, a new deduction rule is added to the basic kernel, which simply
translates the old attributes into the new ones whenever it is possible.

For instance, consider the example of mapping the function factorial to a list. Let mapf be the
new attribute that computes this specialization of map. Since the attribute map is defined on the
constructors cons and nil, the properties verified by mapf must be reported on these two constructors.
The additional program corresponding to the first step is then:

(Ve € {cons, nil})

C —
a.mapf = a.Ly,.map
a.Ly,.f = (fact_ho)
a.L, =«

The local variable a.L,,, must be fresh for each additional program, that is, not already used. The
second step automatically produces the new following deduction rule:
Yspe(X) = {z.map = z.mapf |
z.f = (fact_ho) € £}

At this point, the specialization of the attribute map in the special case where f is equal to
(fact_ho) is done and safe. The interesting point is now that partial evaluation and reduction will get
benefit from the introduction of these new attributes, properties and deduction rules. For instance,
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let us describe how simplifications occur for the constructors cons. We only report some equations
produced by partial evaluation and related to this specialization :

z = (cons z.1 2.2)

z.mapf = x.Ly,.map [prog|
x.Ly, = (cons z.1 z.2) [prog, subst]
x.Lp,.f = (fact_ho) [prog]
2.Ly,.map = [prog]
(cons x.Ly,.Ly.call ©.Ly,.2.map)
2.Ly,.Ly.arg = x.1 [prog,...]
x.Lpy,.Ly = (fact_ho) [..]
2.Ly,.Ly.coll = x.L,,.Ly.Ls.r [prog, ...]
%.Ly,.Ly.Lg = (factorial x.1) [...]
2.Ly,.2.f = (fact_ho) [prog, ...]
2.L,,.2.map = x.L,,.2.mapf [spe]

The two last blocks show how the constant fact_ho is propagated, and how the map attribute is
transformed into mapf. After generalization and reduction, the following properties are generated for
the constructors cons and nil :

cons —
a.mapf = (cons a.Lig.r a.2.mapf)
a.Lyo = (factorial x.1)

nil —
a.mapf = (nil)

The new local variable a..L1o has been introduced to rename (safely) the local variable a.Ly,.L4.L3.

6.4. Deforestation

In functional terms, this transformation occurs when functions are composed. Basically, the problem
involves two functions: f with parameters x; ...z, and g with parameters y; ...yn,. If f and g are
composed, for instance through the first parameter of f, a new function A is defined :

(hyr-Ym T2 2n) = (f (GV1---YUm) T2--.Tp)

This is the first step of the transformation, where a new definition is introduced. The second step
of the transformation consists in recognizing when f is composed with g and then in replacing such a
composition by a call to h. More precisely, it consists in the following term-replacement everywhere
in the program:

(f (g 81...Sm) tl...tn,1)2> (h 81...8m tl...tnfl)

From an equational semantics point of view, this transformation is performed in two steps as like
as for specialization. In the first step, we introduce a new attribute for h and new attributes for its
(m+mn —1) parameters. New properties (a new program) are also automatically generated to link the
new attributes to the old ones. For the second step, a new deduction rule is added to the execution
kernel, which simply translates the old attributes into the new ones.

As a preliminary remark, a composition is detected in equational semantics when the variable x.b
is used while the equation or property z = y.a holds. In such a case, the composed attributes are a
and b.
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However, there are actually two kinds of deforestation. In the first kind, named wupward
deforestation, the attribute a is the result of a computation. In the second kind, named downward
deforestation, the attribute a is a parameter of a computation.

We choose an example which involves these two kinds of deforestation: the reversion of the
reversion of a list. For this purpose, the following program is specified :

foo —
a.r = a.Lqj.rev
a.Ly1.accu = (nil)
a.Li1 = a.l.rev
a.l.accu = (nil)

We present now the two steps of the two kinds of the deforestation transformations.

Upward Deforestation: The composed attributes are rev and rev. We denote by 72 the attribute
for the result of the composition, and by a; and as the two attributes needed for the two accumulators
of rev and rev. The first step defining these new attributes corresponds to the following program:

[for ¢ = cons and ¢ = nil)
C —
a.ry = a.Ly.rev
o.Ly.accu = a.ay
o.Ly, = a.Lg.Tev
o.Lg.accu = a.ay
oLy =a

where L, and L, are fresh. This requirement is important to safely add these properties to the original
program. The second step produces automatically the new following deduction rule which detects
where 72 could replace a composition:

Pacto-un(E) = {
z.rev = T.Lpy,. 1o
z.L,,.a1 = z.accu
z.Lpy.a0 = y.accu
z.Ly, =y
| z=y.reveX

where L,, is a fresh variable for each application of the deduction rule. The deforestation definition is
done and safe. Now, partial evaluation and reduction will perform the expected simplifications. For
instance, for the constructor foo, the following equations are deduced :

z = (foo x.1)

z.r = x.L1.T€v [prog
z.L1, = x.2.1ev [prog
x.L11.accu = (nil) [prog
z.2.accu = (nil) [prog

x.Ly1.Ly.a1 = x.Lyg.accu  [defo_up
z.L11.Ly,.a0 = .2.accu [defo_up

]
]
|
z.Li1.rev = 2.L11.Lpy,.72 [defo_up]
|
z.Li1.L, =x.2 [defo_up)
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After generalization and reduction, the following properties are obtained :

foo —
ar=a.l.ry
a.l.a; = (nil)
a.l.ay = (nil)

In the same way, for the constructors cons and nil we obtain:

cons —
a.ry = @.2.19
a.2.01 = a.ay
a.2.a3 = (cons a.1 a.az)
nil —
a.ry = a.Lys.rev
a.Lis.accu = a.aq
OL.L12 = .ay

Downward Deforestation: After the deforestation above, the second kind of deforestation appears
on the constructor nil. The composed attributes are as and rev, where as is a parameter-attribute
instead of a result-attribute. Such a deforestation through accumulative parameters is known to be
difficult [2], but is naturally handled in equational semantics.

Let r3 be the new attribute introduced for the result of the composition, and a3 the new attribute
introduced for the related accumulative parameter. The first step still consists in the automatic
generation of the program which defines these attributes: everywhere the attribute a2 is computed,
the attribute r3 must be equal to rev on as with accu being equal to az. In the example, a, is computed
on «.2 for the constructor cons, and on «.1 for the constructor foo. So the first step corresponds to
the following additional program:

cons —
a.2.r3 = a.L,,.rev
a.Ly,.accu = a.2.a3
a.Ly, = a.2.as

foo —
a.l.rs = a.Ly.rev
o.Ly.accu = a.l.a3
o.Ly, =a.l.as

where Ly, and L, are fresh local variables. The second step of the transformation is the automatic
generation of the following deduction rule which detects where r3 could replace a composition:

(Pdefo_down(z) = {
.76V = Y.T3
Y.a3 = T.acCU
| £ =y.a2

}

Multiple applications of this deduction rule on the same variable y is not allowed. This technical
point is not explained here since it is too specific to this kind of deforestation. After partial evaluation
and reduction, the following program is obtained:
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foo —
ar=a.l.ry
a.l.rs = a.l.as
a.l.a; = (nil)
cons —
a.ry = @.2.19
a.2.r3 = a.r3
a.az = (cons a.1 a.2.a3)
a.2.01 = a.a

nil —
.12 = Q&.T3
a.a3 = o.ap

Notice that the deforestation really succeed since only one list is constructed. Moreover, the result
is a copy of the first list, as it is expected to: in fact ro is always equal to 73, and a3 appends a;
(initialized to nil) to the end of the list.

6.5. Elimination of Identity

Consider the properties about 72 and a3 on the constructor nil. They are both equalities. The
elimination of identity try to prove whether these equalities are verified for all constructors or not.
The transformation is performed in two steps. First, the equality is automatically proved or refuted
by induction. Second, for the proved equalities, a new deduction rule is automatically defined.

In the example below, the induction proof on the constructor cons consists in assuming the
properties on variable «.2, and prove them on variable a. The proof will be automatically performed
by partial evaluation. Assuming the induction hypothesis on «.2 corresponds to the following system :

x = (cons z.1 2.2)
T.2.r9 = 2.2.13
T.2.a3 = x.2.01

The partial evaluation produces the following execution :

T.r9 =2.2.79 [prog]
2.2.r3 = .13 [prog]
z.a3 = (cons z.1 x.2.a3)  [prog]
z.2.01 = z.0q [prog
T.ry = 1.2.73 [subst
z.a3 = (cons z.1 £.2.a1) [subst
T.ry = T.T3 [subst
z.a3 = (cons .1 x.a1)  [subst]

The inductive hypothesis is verified for the equality a.rs = «.rs, but the other equality is not
verified. So, for the second step of the transformation there is only one new deduction rule defined :

pid(X) ={z.ry = .13 | T appears in X}

After partial evaluation, we obtain the following program :
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foo —
a.r =a.l.ag
a.a1 = (nil)
cons —
a.az = (cons a.1 a.2.a3)
a.2.01 = a.a
nil —
a.az = a.a;

Now, we have succeed in proving automatically that reverse composed with itself is equal to the
function copy, which duplicates its input list.

7. Conclusion

This work comes from a large comparative study of various existing methods to perform deforestation
and partial evaluation in various programming paradigm. Historically, we compared [3, 2, 1] the
deforestation of attribute grammars [5, 6, 12], the Wadler deforestation [16, 13, 7] in functional
programming, many works about folds [4, 9] and hylomorphisms [10, 15]. In each of these formalisms,
there were many interesting ideas. But they were sometimes restricted to one particular class of
algorithms but sometimes more powerful than another method on the same class. However, attribute
grammars seems to provide a kind of declarative notation able to gather all of them in an homogeneous
way.

Actually, we think that the key of our approach is to define a program only by the set of the
properties it verifies. Functions, procedures, data types, control statements of real programming
languages are here considered as syntactic sugar to define properties as equations. In this context,
Equational Semantics is a minimal but powerful framework to manipulate these properties and
translate them back into a more efficient program.
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