March 1999 — Second Workshop on Attribute Grammars and their Applications — WAGA99

Application of AGLEARN for Hungarian
Part-of-speech Tagging

Zoltan Alexin!, Szilvia Zvada? and Tibor Gyiméthy?

1: Department of Applied Informatics, Jozsef Attila University
Arpa’d tér 2, H-6720 Szeged, Hungary

Phone: (36) +(62) 454000/3411 ext., Fazx: (36) +(62) 420292
e-mail: alexin@inf.u-szeged.hu

2: Research Group on Artificial Intelligence

Hungarian Academy of Sciences,

Aradi vértanuk tere 1, H-6720 Szeged, Hungary

Phone: (36) +(62) 454139, Fax: (36) +(62) 425508

e-mail: {zvada,gyimi}@inf.u-szeged.hu

Abstract

In this paper we present an application of the AGLEARN method to the part-of-speech (POS)
tagging of Hungarian sentences. The task of the AGLEARN is to infer the semantic functions
associated with the productions. In the learning process the grammar, background semantic
functions and examples can be used. We applied the AGLEARN method to infer context rules
to choose the correct tags. A corpus with about 100 000 pre-tagged words has been employed
for training and testing. By using AGLEARN algorithm learning data sets are generated to
the C 4.5 attribute value learner. These generated data contain information about the phrase
structure of the sentences. A background attribute grammar has been used to determine the
structural information. Our studies showed that using this structural background information the
C 4.5 learner was able to infer more precise context rules. '

1. Introduction

Attribute grammars can be considered as an extension of context-free grammars, where the attributes
are associated with grammar symbols and semantic rules define the values of the attributes. While
many different attribute grammar evaluation methods have been defined [1],[3] less attention has been
paid to the development of an efficient methodology for preparing attribute grammar specifications.
The definition of an attribute grammar usually requires a lot of effort to make a useful tool which infer
semantic rules for attribute grammars from examples. In [7] an algorithm (called AGLEARN) was
presented for learning semantic functions of attribute grammars, which is a hard problem because
semantic functions can also represent relations. The approach was motivated by the fact that
there is a close relationship between attribute grammars and logic programs [4], [5], [14]. This
relationship is based on the nonterminal-predicate correspondence and a well-known formalism in
the logic programming framework which is very similar to the notation of attribute grammars namely
definite clause grammars [15]. The concept of the AGLEARN method is based on the learning
approaches developed in the framework inductive logic programming (ILP) [6], [10], [11]. In the ILP
environment the language of logic programs is utilised to describe examples, background knowledge

1 This work was supported by the grants OTKA T25721 and FKFP 1354/97

133

Zoltan Alexin, Szilvia Zvada and Tibor Gyimd4thy

and concepts. This language is more expressive than propositional languages which are used in many
inductive learning systems. The ILP approaches effectively use background knowledge for representing
complex objects and relations. The AGLEARN method uses the same concept but has a different
representation. Moreover the background knowledge and concepts are represented in the form of
attribute grammars. The given context-free grammar and background knowledge together allow one
to restrict the space of relations and give a smaller representation of data. This is a new way of using
knowledge as a bias for learning. In AGLEARN an example contains a string which can be derived
from the target nonterminal and attributes of the target nonterminal computed in this string. In this
approach we suppose that the underlying context-free grammar is given. The task of AGLEARN is
then to infer the semantic functions associated with production. In the learning process the grammar,
background semantic functions and examples can be used. In the current approach S-attributed an
L-attributed grammars with simple rules can be learned. However, the background knowledge may
contain more complex attribute grammars, as in OAG [§].

In this paper we present an application of the AGLEARN method to the part-of-speech (POS)
tagging of Hungarian sentences. The disambiguation of possible tags is a non-trivial task because many
words may have different meanings e.g the word muil#?> can be annotated as a verb, noun or adjective
in different sentences. We applied the AGLEARN method to infer context rules to choose the correct
tags. A corpus with about 100 000 pre-tagged words has been employed for training and testing.
By using the AGLEARN method learning data sets are generated to the C 4.5 [16] attribute value
learner. These generated data sets contain information about the phrase structure of the sentences.
A background attribute grammar has been used to determine the structural information. Our studies
showed that using this structural background information the C 4.5 learner was able to infer more
precise context rules.

In Section 2 a brief introduction to the AGLEARN algorithm is provided, while in Section 3 the
POS tagging problem for Hungarian language is discussed. Then the application of the AGLEARN
method to the POS tagging problem is described in Section 4. Then, in the final section the conclusions
are drawn and suggestions for further research are given.

2. The AGLEARN method

This section briefly introduces the basic attribute grammar terminology that will be used throughout
this paper. We also provide an attribute grammar example which will be employed to demonstrate
how the learning method works. We follow the formal definition of attribute grammars can be found
in [1].

Definition 1 Attribute Grammar. An attribute grammar is a five-tuple AG =
(G,SD,AD,R,C), where

(i) G = (N,T,P,S) is the underlying context-free grammar.

(i5) SD = (T, F) is the semantic domain, where 7 is a finite set of sets (types) and F is a finite set
of functions of type 71 X ... X 7, = 179, n > 0and 73 € 7 for i = 0,...,n. Functions of arity 0
will be referred as constants.

(#91) AD = (Attr,Inh,Syn,7) is a description of attributes. Each grammar symbol X € N U T has
a set of attributes Attr(X), where Attr(X) can be partitioned into two disjoint subsets denoted
by Inh(X) and Syn(X). Inh(X) and Syn(X) denote the inherited and synthesized attributes
of X, respectively. The set of attributes will be denoted by Attr, i.e. Attr = |y Attr(X).
Attributes associated with different symbols are considered as different, i.e. if X # Y then

2 past

134

Application of AGLEARN for Hungarian Part-of-speech Tagging

Attr(X) N Attr(Y) = 0. We will denote the attribute a of the grammar symbol X by X.a, so if
a is an attribute, then 7(a) € T is the interpretation domain (type) of a.

(iv) R orders a set of evaluation rules (called semantic functions) to each production, as follows: Let
p: Xo — Xi...X,, be an arbitrary production of P. Let us denote the attribute occurrence
a of X}, by a triple (a,p, k) (0 < k < np). If there is no confusion Xj.a can be used instead of
(a,p, k). An attribute occurrence (a, p, k) is then said to be a defined occurrence if a € Syn(Xy,)
and k = 0, or a € Inh(Xy) and k > 0. Otherwise an attribute occurrence is called a used
occurrence. For each defining attribute occurrence there is exactly one rule in R(p) which
determines how one should compute the value of this attribute occurrence. The evaluation rule
defining attribute occurrence (a, p, k) takes the form:

(aapa k) = f((alipa kl)a) (aMJpJ km))
where f € F is a function of the form
fim(Xp,-a1) X ... x 7(Xy, -0m) — 7(Xg.a).

An attribute grammar is then said to be in normal form if all defined attribute occurrences
depend only on used attribute occurrences in each production.

(v) C orders a finite set of conditions to each production, i.e. ¢ € C(p) has the form:

C((alap) kl): LR (amapa km))
where ¢ € F is a function (relation) of the form

¢:7(Xgy.a1) X ... X 7(Xp,, .am) — {true, false}.

A special class of attribute grammars introduced in [9] is the S-attributed grammars in which only
synthesized attributes are allowed.

As S-attributed grammars are too restrictive in practice a larger class called L-attributed grammars
being defined as follows:

Definition 2 L-attributed grammar. An attribute grammar is said to be L-attributed if
and only if each inherited attribute of X; in the production p: Xq — X; ... X, depends only on the
set Uy <j; Attr(X;) U Inh(Xo) fori =1,... ,myp.

Ezxample 1. We demonstrate the learning method used in an example of type checking for arithmetic
expressions [18]. We wish to solve the type determination problem for simple arithmetic expressions.
Consider the following attribute grammar:

- nonterminals: N = {Expression, Term, Factor, AddOp, MulOp}

terminals: 7T = {Real, Integer,+,—,x,/,(,)}

- start symbol: S = Ezxpression

semantic domain: 7 = {Ty,04e, Toperator } Where

135

Zoltan Alexin, Szilvia Zvada and Tibor Gyimd4thy

1. Thode = {int,real}
2. Toperator = {add, sub, mul, div}

F = {add, sub,mul, div, int, real,id, f1, fo} where

1. add, sub, mul, div, int and real are constants
2. id : Trnode — Tmode denotes the identity function
3. f1: Tmode X Tmode = Tmode
f1(op1,0p2) := if op; = real or op, = real then real

else int

4. .f2 : Toperator X Tmode X Tmode — Lmode

f2(op1, 0p2,0p3) := if op; = mul and
op2 = int and opz = int
then int
else real

- attributes
Attr = Syn = {mode, operator} so that

1. Syn(Expression) = Syn(Term) = Syn(Factor) = {mode}
2. Syn(AddOp) = Syn(MulOp) = {operator}

- productions and attribute evaluation rules

1. Expressiong — Expression; AddOp Term
R(1): Ezpressiong.mode := f1(Expression;.mode, Term.mode)

2. Expression — Term
R(2): Ezpression.mode := Term.mode

3. Termy — Term; MulOp Factor
R(3): Termg.mode
:= fo(MulOp.operator, Term,.mode, Factor.mode)

4. Term — Factor
R(4): Term.mode := Factor.mode

5. Factor — Real
R(5): Factor.mode := real

6. Factor — Integer
R(6): Factor.mode :=int

7. Factor — (Expression)
R(7): Factor.mode := Expression.mode

136

Application of AGLEARN for Hungarian Part-of-speech Tagging

8. AddOp — +
R(8): AddOp.operator := add

9. AddOp — —
R(9): AddOp.operator := sub

10. MulOp — x
R(10): MulOp.operator := mul

11. MulOp — /
R(11): MulOp.operator := div

Ezxpression
{mode = real}

Expression’ ‘ AddO

p. -, Term
{mode = int} {operator = add} {mode = real}
A \ o
Term - + Term - MulOp ~ " Factor
{mode = int} {mode = int} operator = difmode = int}
A A
Factor - Factor * / Integer
{mode = int} {mode = int}
Integer Integer

Figure 1: The decorated tree for the expression Integer + Integer/Integer

The decorated tree for the input word Integer + Integer/Integer can be seen in Fig. 2.1. The
dotted arrows denote the dependencies between attribute instances and the values of the attribute
instances in the figure are shown as well. The value of an attribute instance can be computed if all the
attribute instances it depends on have already been evaluated. Hence an evaluation strategy must be
specified for a given attribute grammar. In the case of S and L attributed grammars the evaluation
strategy is very simple and will be defined automatically. The attribute grammar in our example is
of type S-attributed because it has only synthesized attributes.

2.1. Learning Semantic Functions of S-attributed Grammars

In this section we will discuss the process of inferring semantic functions and conditions for attribute
grammars. The method presented here was motivated by an algorithm for ILP learning described in
[6]. Essentially AGLEARN can be summarized in the following three steps:

137

Zoltan Alexin, Szilvia Zvada and Tibor Gyimd4thy

(i) the learning problem of the semantic functions is transformed into a propositional form

(#4) a propositional learning method is applied to solve the problem in propositional form

(7i7) the induced propositional hypothesis is transformed back into semantic functions.

The task of the learning algorithm is to infer semantic functions of the synthesized attributes
of the target nonterminal in a given production p. Let p: Xo — X;X5...X,, be a production
and let a be a synthesized attribute of Xy to be learned. In addition, let Ef(a) and E; (a) denote
the set of positive and negative examples for Xy.a, respectively, such that if (w,(a,v)) € Ep(a)
then Xo = X1X5...X,, =" w. Note too that as we are dealing with S-attributed grammars in
this section, each example takes the form (w,(a,v)) and as we wish to learn the semantic function
associated with Xy.a a table T'(a) must be constructed, each row of this table corresponding to an
example from Ej(a). The table has a set of columns

{class,word,target} U U U Fyr U Fyor U Fur U Fucor

where for a given example e = (w, (a,v)) the columns are defined as follows:

1.

2.

3.

_ [+ ifee Ef(a)
class(e) = { — otherwise (i.e. e € E, (a))

word(e) = w

target(e) is the value of a in e, i.e. target(e) =v

. Let X}.b be an attribute instance, 0 < k¥ < n,. Then there is a corresponding column X.bin i.

The value of this column is computed using the semantic functions in the background attribute
grammar. With the example e = (w, (a,v)) this computation is performed like so:

(a) An attributed tree is built on the input string w using grammar G and semantic functions
R.

(b) If the subtree derived from symbol X} contains only nodes corresponding to rule instances
belonging to the background rules, then the attributes of this subtree can be evaluated.

(c¢) If the subtree derived from symbol X contains a node corresponding to a rule instance
that has unknown semantic functions the values of the attributes of this node are then
asked from the user (oracle) for the given derivation.

. Let Xy, .a1,...,Xp-a1 (0 < ki,...,ki < np) be applied attribute occurrences and let f:

T1 X ... X1 — {true, false} be a Boolean function (f € F) such that ; = 7(Xy,.a;) (1 <i <1).
Then there is a column for the relation f(Xy,.a1,...,Xk,.a;) in Fyg.

. Let Xj.b be an applied attribute occurrence (0 < k < n,), and let {c1,...,¢m} be a set of

constant values occurring in the column Xj.b of #. Then for each ¢; there is a corresponding
column for the relation X3.b = ¢; in Fyor (1 <i <m).

. Let Xy, .a1,...,Xp-a1 (0 < k1,...,ki < np) be applied attribute occurrences and let f:

71 X ... %X 7 — 79 be a function (f € F;) such that 7, = 7(Xy,.a;) (1 < i <) and 10 = 7(a).
Then there is a column for the relation a = f(Xy,.a1,..., Xk, @) in Fyp.

. Let {c1,...,cm} be aset of constant values occurring in U or in the column of target(e). Then for

each ¢; there is a corresponding column a = ¢; in Fycp if and only if 7(a) = 7(¢;) (1 <i < m).

138

Application of AGLEARN for Hungarian Part-of-speech Tagging

Ezample 2 continued. We now demonstrate how to construct the corresponding table T'(Termg.mode)
for the recursive production:

Termg — Termy MulOp Factor.

The same method can be applied for the productions 1, 2 and 4. The attribute instances
Termy.mode, MulOp.operator, and Factor.mode denote the type of expression derived from Term,
the type of the multiplicative operator, and the type of the expression from F'actor, respectively. As
the underlying production is recursive we have to ask the oracle for the value of attribute instance
Terms.mode for a given input. Table 1 shows the learning problem transformed into propositional
form. In the column U; the sign '*’ denotes the values were asked from the oracle. In this particular
example we have no item for Fyg as F; does not contain any relation.

class word target u Fucr Fur | Fucr
T() .m U1 U2 U3 R1 R2 R3 R4 R5 Rﬁ F1 F2 Cl 02

+ 3x25 real || inty, mul real| T F T F F T|F T|F T
+ 5x3 int || inty, mul int | T F T F T F|T F|T T
+ 15x4 real (realy, mul int | F T T F T F|F T |T F
+ 25/3 vreal ||realy, div int|F T F T T F|F T|T F
+ 2/3 real || int, div int|T F F T T F|F T|F F
+ 6/34 vreal || int. div redl|T F F T F T|F T|F T
— 2x3.2 int inty mul real| T F T F F T |T F|T F
— 43/2 int |real. div int |F T F T T F|T F|F T
- 8/3 int || int, div it | T F F T T F|T F|T T

Table 1: The generated propositional table

- Uy: Termi.mode

- Us: MulOp.Operator

- Us: Factor.mode

- Ry: Termi.mode = int

- Ry: Termi.mode = real

- R3: MulOp.Operators = mul

- Ry: MulOp.Operators = div

- R5: Factor.mode = int

- Rg: Factor.mode = real

- F1: Termg.mode = int

- F5: Termg.mode = real

- C1: Termg.mode = Termi.mode
- Cy: Termg.mode = Factor.mode
- T: true

- F: false

Ezxample 38 continued. We suppose an attribute learner to be able to find the solution

®1: Ry = true & Rz = true & Rs = true & F; = true
@®o: Fy = true

139

Zoltan Alexin, Szilvia Zvada and Tibor Gyimd4thy

The final step of the learning procedure is to transform these rules into semantic functions. The
transformed semantic function R(3) has the form of

if Termi.mode = int & MulOp.Operators = mul & Factor.mode = int

then

Termg.mode = int // from @1
else

Termg.mode = real // from @2

which is a correct solution.

In this paper we discussed only the learning of the semantic functions for S-attributed grammars
because this approach was used to the POS tagging problem. The learning of semantic functions for
L-attributed grammars was investigated in [7].

<par from=’0Ohu.1.2.1°>
<s from=’0hu.1.2.1.1’>
<tok type=WORD>
<orth>Derü ;1t</orth>
<disamb><base>derü ;1t</base><msd>Afp-sn</msd><ctag>AN</ctag>
</disamb>
<lex><base>derült</base><msd>Afp-sn</msd></lex>
<lex><base>derü ;1</base><msd>Vmis3s---n</msd></lex>
</tok>
<tok type=PUNCT>
<orth>,</orth>
<ctag>COMMA</ctag>
</tok>
<tok type=WORD>
<orth>hideg</orth>
<disamb><base>hideg</base><msd>Afp-sn</msd><ctag>AN</ctag></disamb>
<lex><base>hideg</base><msd>Afp-sn</msd></lex>
</tok>
</s>
<s from=’0hu.1.2.1.2°>
</par>
<par from=’0hu.1.2.2°>

Figure 2: The main structure of the corpus SGML file

3. The Hungarian POS tagging problem

The part-of-speech tagging is an important step in natural language processing. When a sentence is
read each word is labeled by its morpho-syntanctic description (e.g. csindltam® is a verb: past tense,
singular, 1st person). This process is called tagging and has key-role in the parsing of the sentences.
Since in each language there are words that may have several (2-4) different taggings a working tagger
must contain a disambiguation module besides the morphological analyzer.

31 did

140

Application of AGLEARN for Hungarian Part-of-speech Tagging

There are two main approaches which exist for the disambiguation module: the probabilistic
(HMMs — hidden Markov models) and the rule based ones. This paper focuses on a rule-based
disambiguation module of a tagger for which the rules are learned by machine learning algorithms.
Two learning algorithms, the C 4.5[16] and the AGLEARN]7] were tested and the results compared.
The following section is now devoted to the TELRI Hungarian corpus that has been used as training
and test data for learning algorithms.

3.1. Preprocessing the Corpus

The "MULTEXT-East” (MULtilingual TEXT tools and Corpora for Eastern and Central European
Languages) Copernicus Project lasted from 1995-1997. The aim of this project was to establish a
Corpus Encoding Specification (CES) and to propose a tag system for most European languages, the
results of this project having been published on two CD-ROMs[17]. The material contains George
Orwell’s novel 71984” translated into many East European languages: Bulgarian, Czech, Estonian,
Hungarian, Romanian and Slovene. Each translation is approximately 100 000 words including
punctuation characters. All corpora meet the CES (Corpus Encoding Specification) standard and
were tagged with the proposed MSD tagging system.

The Hungarian corpus itself is an SGML file. The file contains a precise reference to particular
sentences, each sentence being denoted by a label like ’Ohul.1.2.1’ (e.g. Orwell, Hungarian, 1st
chapter, 1st section, 2nd paragraph, 1. sentence). The novel consists of four chapters, Chapter 1 and
2 having been used as training data while chapter 3 and 4 served as test data.

In Figure 2 the main structure of the corpus file is shown, the whole novel having been divided into
paragraphs, sentences and tokens. The paragraphs are delimited by <par >, </par> tags, sentences
delimited by <s >, </s> tags, and the tokens are delimited by <tok >, </tok> tags. Each paragraph
and sentence is uniquely identified. Each sentence consists of a series of tokens. Tokens are not
numbered.

3.2. The MULTEXT-East Morpho-Syntactical Description (MSD) Cate-
gories
In the "MULTEXT-East” project a coding convention was introduced that could be used for coding

word attributes for a wide variety of languages. A code string represented a word and all of its
syntactic attributes (type, gender, number, case, definiteness, etc).

| Category | Code | Category | Code |

adjective A particle Q
conjunction C adverb R
determiner D adposition S
interjection I article T
numeral M verb A%
noun N residual X
pronoun P abbreviation Y

Table 2: The main categories of words in MSD

For example the Hungarian word asztalnak will get the Nc-sg------ code, which means: noun,
common, single, genitive. Those attributes that are not present or not applicable are denoted by
hyphens. The first position is reserved for the main word categories. (See [12] for a detailed description
of the MSD encoding method.) The main word categories can be seen in Table 2. In Figure 2 the

141

Zoltan Alexin, Szilvia Zvada and Tibor Gyimd4thy

word “hideg” (cold) is tagged to Afp-sn. (The trailing hyphens were cut Afp-sn-------). This means
the word is an adjective that has the following attributes: qualificative, positive, singular, nominative.

Number of tokens

Category Training | Test | Altogether
adjective 7157 | 2382 9539
conjunction 5408 | 1994 7402
determiner 0 0 0
interjection 72 17 89
numeral 1046 323 1369
noun 14881 | 5170 20051
pronoun 4552 | 1923 6475
particle 0 0 0
adverb 7869 | 2969 10838
adposition 827 280 1107
article 6856 | 2336 9192
verb 10288 | 4254 14542
residual 13 12 25
abbreviation 66 13 79
59035 | 21673 80708

punctuation 12484 | 5235 17719
71519 | 26908 98427

Table 3: The number of tokens in the Hungarian corpus

Words in the Hungarian language may have many attributes. For example a noun might have
1324 different MSD codes according to its stems, adjectives 2772 and pronouns approximately 3000
different codes. The number of so many subclasses of words makes the learning task very hard along
with the understanding and evaluation of the results.

In Table 3 the distribution of main word categories in the corpus is presented. The training and
testing part is shown separately.

3.3. The Corpus Tag (CTAG) encoding for Hungarian language

In order to reduce the number of MSD classes the CTAG encoding scheme was introduced [13]. There
are 120 word tags, 4 punctuation tags and 1 tag for unknown words. A complete list of the CTAGs
shown in Figure 3.

The first letter of a CTAG denotes the main category of the word like in MSD, while the remaining
long suffix is cut and replaced by new suffixes. For example NPNX means noun that has the following
attributes: plural, nominative, and some possessive ending. The second letter P or N encodes the
number, namely plural or singular, while the third letter N, A, D, 0 encodes the case, namely
nominative, accusative, dative and other respectively. The fourth letter stands for some possessive
stems not referring to the person and number of possessive person.

3.4. The initial data set

The original Hungarian corpus was converted into prolog. First a lexicon of words was established.
The lexicon contained all words in the same form as it had appeared in the corpus along with all of
its stems and its CTAG. If a word could be annotated by more than one CTAG it was then added

142

Application of AGLEARN for Hungarian Part-of-speech Tagging

several times to the lexicon. In the second pass the whole SGML file was converted to prolog using
the lexicon. The conversion was performed sentence by sentence, sentences being recognized upon the
<s > and </s> tags. For example the Hungarian sentence ”Deriilt, hideg dprilisi nap volt, az ordk
éppen tizenhdrmat dtéttek.” * is converted to the following prolog fact.

s(’0Ohu.1.2.1.1’, [(asn, [asn, vmis3s]), wpunct, asn, asn, nsn,
vmis3s, wpunct, (t, [psn, t]), npn, rg, ms, vmis3p, spunct]).

The first argument of the s predicate is the sentence identifier, the second is the list of CTAGs of
words. If the tagging of a particular word is ambiguous then the CTAG is represented by a pair of
the right CTAG and the list of other possible tagging according to the lexicon. In this way both the
training and the testing parts of the corpus can be converted to this simpler form. In our case there
were 4583 sentences in the training set and 2185 sentences in the test data set, i.e. 6768 sentences
altogether.

The learning examples for C 4.5 and AGLEARN were generated by prolog programs from the
above data. °

The number of noun CTAGs
CTAG | Training | Test | Altogether
NPA 304 | 106 410
NPAX 106 30 136
NPAY 0 0 0
NPD 50 9 59
NPDX 37 7 44
NPDY 0 0 0
NPN 832 279 1111
NPNX 193 70 263
NPNY 4 1 5
NPO 470 | 128 598
NPOX 119 36 155
NPOY 1 3 4
NSA 1310 | 475 1785
NSAX 555 | 206 761
NSAY 4 0 4
NSD 359 90 449
NSDX 131 35 166
NSDY 0 0 0
NSN 5286 | 1928 7214
NSNX 1319 445 1764
NSNY 13 10 23
NSO 2686 | 932 3618
NSOX 1098 | 380 1478
NSOY 4 0 4
all 14881 | 5170 20051

Table 4: The distribution of noun CTAGs in the corpus

4Tt was a bright cold day in April, and the clocks were striking thirteen.
5 All programs mentioned in this paper were written in SICStus Prolog 3.7.1.

143

Zoltan Alexin, Szilvia Zvada and Tibor Gyimd4thy

The word CTAGs: APA, APAX, APAY, APD, APDX, APDY, APN, APNX, APNY, APO, APOX,
APOY, ASA, ASAX, ASAY, ASD, ASDX, ASDY, ASN, ASNX, ASNY, ASO, ASOX, ASOY,
CP, I, MD, MP, MPX, MPY, MS, MSX, MSY, NPA, NPAX, NPAY, NPD, NPDX, NPDY, NPN,
NPNX, NPNY, NPO, NPOX, NPOY, NSA, NSAX, NSAY, NSD, NSDX, NSDY, NSN, NSNX,
NSNY, NSO, NSOX, NSOY, PPA, PPAX, PPAY, PPD, PPDX, PPDY, PPN, PPNX, PPNY, PPO,
PPOX, PPOY, PSA, PSAX, PSAY, PSD, PSDX, PSDY, PSN, PSNX, PSNY, PSO, PSOX, PSOY,
RG, RO, RP, RQ, RV, ST, T, VA, VMCP1P, VMCP1S, VMCP2, VMCP2P, VMCP2S, VMCP3P,
VMCP3S, VMIP1P, VMIP1S, VMIP2, VMIP2P, VMIP2S, VMIP3P, VMIP3S, VMIS1P, VMIS1S,
VMIS2, VMIS2P, VMIS2S, VMIS3P, VMIS3S, VMMP1P, VMMP1S, VMMP2, VMMP2P, VMMP2S,
VMMP3P, VMMP3S, VMN, X, Y.

The punctuation CTAGs: OPUNCT, CPUNCT, WPUNCT, SPUNCT.

The unknown CTAG: UNKNOWN.

Figure 3: The list of Hungarian CTAGs

4. The application of the AGLEARN method to the POS
tagging problem

4.1. Learning by C 4.5

In POS tagging a Hungarian sentence, a so-called removable predicate is learned. Such an approach
having been first presented in James Cussens’ paper [2]. What happens is that whenever a word
is tagged to more than one CTAG, some of them (hopefully all but one) can be removed. Such a
predicate can be learned by the C 4.5, the training data having been taken from the training part of the
Hungarian corpus. The learned predicate will say that e.g. PSN can be removed from the ambiguities
if some conditions hold, these conditions coming from the neighbouring CTAGs. A window of 7
CTAGs have been set, 7 CTAGs before and 7 CTAGs after the current ambiguity. Narrowing the
window to a smaller size can be done later inside the C 4.5 by setting some columns in the data file
to ignore.

The ambiguity-classes and their occurences in the corpus are presented in Table 5. The most
frequent ambiguity-classes cover 6667 from the 7229 ambiguity occurences (92.22%) in the training
set, and cover 2443 from the 2677 cases (91.60%) in the test set. The learned tagger is generally
tries to remove as many ambiguities as it can, and the remaining ones can be eliminated upon the
orthographies of the words perhaps in a probabilistic way.

Most ambiguities are caused by few (1-10) words. There are only 3—4 major classes that contain
more words. The [PSN,T] and [MS,T] classes contain only one word each.

Learning removable rules for an ambiguity-class

For generating learning examples for the C 4.5 the prolog form of the corpus was used. Learning
rules for removing the T ¢ CTAG from the [PSN,T] ambiguity-class is presented in the following to
illustrate how the whole process works.

s(’0Ohu.1.2.6.3’, [(ms, [ms, t]), asn, nso, nsnx, wpunct,
(t, [psn, t]), nsn, vmis3s, asn, npox, aso, t, asn, nsn, st, spunct]).

6The T CTAG in the Hungarian language is equal to the Tf---- MSD class that contains the articles in the Hungarian
language. Only 3 words belong to this class: a(the), az(the), egy(a, an). In the [PSN,T] ambiguity-class there is only
one word: az that means that and the.

144

Application of AGLEARN for Hungarian Part-of-speech Tagging

The number of ambiguity classes
Occurence Occurence

Class Training | Test Class Training | Test
[ASN,MS] 55 12 | [MS,RG] 70 19
[ASN,NSN] 96 27 | [MS,T] 751 | 222
[ASN,NSN,PSN] 52 22 | [NSN,PSN] 111 52
[ASN,NSN,VMIS3S] 50 30 | [NSN,RG] 59 18
[ASN,PSN] 68 33 | [NSN,RG,RP] 112 46
[ASN,RG] 92 23 | [NSN,VMIP3S] 52 41
[ASN,VMIS3S] 490 | 182 | [PSN,PSO] 69 38
[ASO,RG] 74 32 | [PSN,RP] 143 57
[CP,PSO] 50 30 | [PSN,T] 1867 | 620
[CP,PSO,RG] 87 44 | [PSO,RG] 217 85
[CP,RG] 880 | 294 | [PSO,RG,RP] 93 45
[CP,RG,VMIP3S] 247 | 125 | [RG,RP] 150 59
[CP,RP] 334 | 149 | [RG,ST] 285 | 100

[CP,VMIS3S] 113 38
Altogether 6667 | 2443

Table 5: The most frequent ambiguity classes (which occured more than 50 times in the training data)

Each time a [PSN,T] ambiguity occurred in a sentence a learning example was generated. In the
previous sentence the tagging of the sixth word was ambiguous, as it could have been either PSN or T.
From this sentence the following example was generated for the C 4.5:

Ohu.1.2.5.9, xxX, XXX, XXX, XXX, XXX, XXX, XXX,
nsd, pso, t, nso, vmis3s, vmn, wpunct, c_t
Ohu.1.2.6.3, wpunct, nsnx, nso, asn, ms, XXX, XXX,
nsn, vmis3s, asn, npox, aso, t, asn, c_t
Ohu.1.2.6.4, wpunct, nsnx, nsn, asn, t, wpunct, nsn,
asn, nsny, wpunct, psn, nsn, nsox, t, c_t

The first column in the data file is the sentence identifier, the last being the target class (here c_t)
because the right tagging was T. One training example is generated for each ambiguity. The data file
contains 16 attributes. The neighbouring tokens’ window could be found between the first and the
last column: before,...before; and after;...after;. A new xxx token was introduced to denote
missing tokens. In Table 6 the results are presented. The learned rules are shown in if statement form
below:

if ((tokenl_after == ’cp’) ||

((tokenl_before == ’wpunct’) && (tokenl_after == ’rg’)) ||

((tokenl_before == ’xxx’) && (tokenl_after == ’rg’)) ||
(tokenl_after == ’spunct’) ||

((tokenl_before == ’wpunct’) && (tokenl_after == ’st’)) ||
(tokenl_after == ’t’) ||
(tokenl_after == ’vmcp3s’) ||

((tokenl_before == ’wpunct’) && (tokenl_after == ’vmip3s’)) ||
(tokenl_after == ’vmis3s’) ||
(tokenl_after == ’vpunct’)) then Class = c_psn else Class = c_t

145

Zoltan Alexin, Szilvia Zvada and Tibor Gyimd4thy

Accuracy

Window | Number of | Training examps. (1867) | Test examps. (620)
size rules % | #errors % | #errors

1 25 98.50% 17 97.30% 28

2 21 98.90% 15 97.60% 35

3 20 98.90% 16 97.40% 34

4 18 99.00% 16 97.40% 35

5 18 99.00% 16 97.40% 33

6 20 98.90% 17 97.30% 32

7 20 98.90% 17 97.30% 32

Table 6: The results of C 4.5 on learning removable t__psn_t

4.2. Learning by AGLEARN method

In the method presented in the previous section the training examples contained CTAGs. The C 4.5
system was used to infer decision rules to solve the [PSN,T] ambiguity problem. The rules learned by
the C 4.5 system only having contained tests for the values of CTAGs.

When applying of the AGLEARN method to this problem an attribute grammar was constructed
which had the following starting (target) production (a larger part of this attribute grammar being
listed in Appendix A):

Sentences — Sentence_id ”.” BeforeCtags ”,” AfterCtags Sentences
Sentences — A

The nonterminal Sentences has an attribute psn_or_t. This attribute may have two values (psn,t)
so we learned rules using AGLEARN to determine the correct tag for the sentences where the [PSN, T]
ambiguity problem appears. The input sets for this attribute grammar were the training examples
described in the previous section. The nonterminal Be foreCtags processes those CTAGs that precede
the [PSN,T] ambiguity position in the sentence. In our case we only investigated the value of the
nearest preceding CTAG (BeforelCtag) the other CTAGs having been skipped. The CTAGs were
partitioned into groups according to their role in the sentences, these groups being listed in the
Appendix B. Then by using the background attribute grammar the group value for the BeforelCtag
was computed. Similarly, the nonterminal AfterCtags was for the processing of the CTAGs following
the ambiguity position. The group value for the After1lCtag was also computed. In addition in the
subsequent CTAGs we tried to identify a characteristic phrase structure called syntagma using the
background attribute grammar. A list of the possible syntagmas is described in Appendix B. Table 7
below contains a description of the attribute instances that can be used at the initial production.

| Name | Type | Description |
BeforeCtags.beforel ctag | CTAG CTAG value of the Beforelctag
BeforeCtags.group GROUP group value of the Beforelctag
AfterCtags.afterl_ctag CTAG CTAG value of the Afterlctag
AfterCtags.group GROUP group value of the Afterlctag
AfterCtags.syntagma SYNTAGMA | a recognized syntagma
in the subsequent CTAGs

Table 7: The main attributes used by AGLEARN

The learning table generated by the AGLEARN method contains these attribute columns and
146

Application of AGLEARN for Hungarian Part-of-speech Tagging

two further columns for the relations:

BeforeCtags.beforel _ctag = AfterCtags.afterl_ctag and
BeforeCtags.group = AfterCtags.group.

For each sentence in the training examples a row was generated for this table. This table was used
by the C 4.5 system to help generate decision rules to the [PSN,T] problem. From the generated rules
the following semantic function could be prepared for the attribute psn_or_t. A part of the generated
C 4.5 data is shown below:

Ohu.1.2.5.7, rg, Oth, cp, Oth, AttSynt, false, true, c_psn
Ohu.1.2.14.1, cp, 0th, t, Oth, SubjSynt, false, true, c_psn
Ohu.1.2.14.2, wpunct, Oth, t, Oth, noneSynt, false, true, c_psn
Ohu.1.2.15.1, wpunct, Oth, vmis3s, Pred, AccSynt, false, false, c_psn
Ohu.1.2.1.1, wpunct, Oth, npn, Subj, SubjSynt, false, false, c_t
Ohu.1.2.2.1, =xxx, none, nso, AdvOth, noneSynt, false, false, c_t
Ohu.1.2.2.6, cp, 0Oth, nsn, Subj, SubjSynt, false, false, c_t
Ohu.1.2.2.9, mnsax, Acc, asn, Att, AttSynt, false, false, c_t
Ohu.1.2.2.10, vmip3s, Pred, nsa, Acc, AccSynt, false, false, c_t

The learned semantic rule can be seen below:

if ((afterl_ctag == ’t’) ||
(afterl_ctag == ’wpunct’) ||
(afterl_ctag == ’spunct’) ||
(afterl_ctag == ’cp’) ||
((beforel_ctag == ’rg’) && (afterl_group == 0th) &&
(afterl_syntagma == AdvOthSynt)) ||
((beforel_ctag == ’wpunct’) && (afterl_group == Att) &&

(afterl_syntagma == noneSynt)) ||
(afterl_group == Pred))
psn_or_t = c_psn ;
else
psn_or_t = c_t ;

5. Conclusion and Future Work

In Table 8 the results of the C 4.5 and the AGLEARN algorithms on the largest ambiguity classes
(more than 100 elements) are displayed. The sign — in the column MARK denotes those classes where
the two methods have the same results. We denote by + if the use of AGLEARN led to certain minor
improvements, while ++4 was used to denote more significant improvements. We can conclude that
by using AGLEARN the accuracy of the inferred rules can be increased. The main reason of this is
that AGLEARN makes intensive use of the background knowledge incorporated in the background
attribute grammar rules. Note that the attribute grammar described in the previous section can also
be applied to learn decision rules for any ambiguity class where only the name of target attribute and
the training examples have to be modified. Furthermore this attribute grammar can be used as a final
tagger tool. In this case the all decision rules (semantic functions) inferred by AGLEARN have to be
integrated into the target production and the learning table generation functions must be removed.

147

Zoltan Alexin, Szilvia Zvada and Tibor Gyimd4thy

Results by C 4.5 Results by AGLEARN
Ambiguity Training Test examples Training Test examples
class #err | % Ferr | % #err | % #err | % Mark
[ASN,VMIS3S] 40 8.2% 18 9.9% 40 8.2% 18 9.9% -
[CP,RG,VMIP3S] | 14 5.7% 31 24.8% 14 5.7% 31 24.8% -
[CP,RG] 142 | 16.8% | 74 | 25.2% | 141 | 16.0% | 70 | 23.8% +
[CP,RP] 41 | 12.3% | 16 10.7% 19 5.7% 8 5.4% ++
[CP,VMIS3S] 2 1.8% 0 0.0% 2 1.8% 0 0.0% -
[NSN,PSN] 24 | 216% | 16 | 30.8% 2 1.8% 5 9.6% ++
[PSN,RP] 9 6.3% 3 5.3% 9 6.3% 3 5.3% -
[PSN,T] 25 1.5% 17 2.7% 21 1.1% 16 2.6% +
[PSO,RG] 73 | 336% | 34 | 40.0% | 35 | 16.1% | 19 | 224% | ++
[RG,RP] 57 | 38.0% | 15 | 25.4% 57 | 38.0% | 15 25.4% -
[RG,ST] 104 | 36.5% | 44 | 44.0% | 84 | 29.5% | 40 | 40.0% | ++

Table 8: Comparison of the results obtained by C 4.5 and AGLEARN

We are going to built a complete tagger for Hungarian language which integrates a morphologic
analyser with the disambiguation rules generated by AGLEARN. With the help of linguists these rules
should be carefully investigated, and we also plan to develop more relevant background rules for the
syntactical structures of the Hungarian language.

The authors would like to thank Csaba Oravecz and Tamds Vdradi at the Research Institute for
Linguistics of the Hungarian Academy of Sciences for their kind assistance and discussion.

Bibliography

[1] ALBLAS, H. 1991. Introduction to Attribute Grammars. LNCS 545, Springer Verlag, 1-16.

[2] Cussens, J.: Part-of-Speech Tagging Using Progol in Proc. of the Seventh International Workshop
on Inductive Logic Programming (ILP97) Prague, Czech Republic, in the LNAI series Vol 1297
37—44 Springer Verlag (1997)

[3] DERANSART, P.,JOURDAN, M.,LORHO, B. 1988. Attribute Grammars - Definitions, Systems
and Bibliography. LNCS 323, Springer Verlag.

[4] DERANSART, P.,.MALUSZYNSKI, J. 1985. Relating Logic Programs and Attribute Grammars.
Journal of Logic Programming 2, 119-156.

[5] DERANSART, P.,MALUSZYNSKI, J. 1993. A Grammatical View of Logic Programming. The MIT
Press.

[6] DZEROSKI, S.,LAVRAC, N. 1993. Inductive Learning in Deductive Databases. IEEE Transactions
on Knowledge and Data Engineering, Vol. 5. No. 6.

[7] GymMOTHY, T.,HORVATH, T. 1997. Learning Semantic Functions of Attribute Grammars. Nordic
Journal of Computing 4(1997), 287-302.

[8] KASTENS, U. 1980. Ordered Attribute Grammars. Acta Informatica 13 (1980), 229-256.

[9] KnuTH, D.E. 1968. Semantics of Context-Free Languages. Mathematical Systems Theory 2, 2,
127-145. Correction: Mathematical Systems Theory 5, 1, 1971, 95-96.

148

Application of AGLEARN for Hungarian Part-of-speech Tagging

[10]

MUGGLETON, S. 1992. Inductive Logic Programming. Academic Press, London.

[11] MUGGLETON, S., DE RAEDT, L. 1994. Inductive Logic Programming: Theory and Methods.
Journal of Logic Programming, 12.

[12] Specification and Notation for Lexicon Encoding Copernicus Project 106 "MULTEXT-EAST”
Work Package WP1 — Task 1.1 Deliverable D1.1 F Task leaders: Tomaz Erjavec, Monica
Monachini

[13] Oravecz, Cs.: Part-of-Speech Tagging in the Hungarian National Corpus — a Case Study

[14] PAAKKI, J. 1990. A Logic-Based Modification of Attribute Grammars for Practical Compiler
Writing. In Proc. of the Seventh Int. Conference on Logic Programming (D.H.D. Warren,
P.Szeredi, eds.), Jerusalem, 1990. The MIT Press, 203-217.

[15] PEREIRA, F.C.N.,WARREN, D.H.D. 1980. Definite Clause Grammars for Language Analysis -
A Survey of the Formalism and a Comparison with Augmented Transition Networks. Artificial
Intelligence 13, 231-278.

[16] QUINLAN, J.R. 1993. C 4.5: Programs for Machine Learning. Morgan Kaufmann Publisher.

[17] East meets West — A Compendium of Multilingual Resources
Eds: Tomaz Erjavec, Ann Lawson and Laurent Romary
http://www.ids-mannheim.de/telri/cdrom.html

[18] WILHELM, R. 1971. Attribuirte Grammatiken. Informatik Spektrum 2, 123-130.

Appendix

Appendix A: A part of the background attribute grammar

Sentences = Sentence_ID "," BeforeCtags "," AfterCtags Sentences ;

do

end

Sentences = ;

do

end

AfterCtags = Acc_Group "," Synt_Acc;

do

end

syntagma = Synt_Acc.syntagma;
ctag= Acc_Group.ctag;
group = Acc;

AfterCtags = AdvDat_Group "," Synt_AdvDat;

do

end

syntagma = Synt_AdvDat.syntagma;
ctag= AdvDat_Group.ctag;
group = AdvDat;

AfterCtags = Adv0th_Group "," Synt_Adv0th;

149

Zoltan Alexin, Szilvia Zvada and Tibor Gyimd4thy

do
syntagma = Synt_AdvOth.syntagma;
ctag= AdvOth_Group.ctag;
group = AdvOth;

end

Synt_Acc = Pred_Group "," Ctags;
do
syntagma= AccSynt;
end
Synt_Acc = NonPred_Group "," Synt_Acc;
do
syntagma= Synt_Acc.syntagma;
end
Synt_Acc = Class_ID;
do
syntagma= noneSynt;
end

Synt_AdvDat = Pred_Group "," Ctags;

do
syntagma= AdvDatSynt;
end
Synt_AdvDat = NonPred_Group "," Synt_AdvDat;
do
syntagma= Synt_AdvDat.syntagma;
end
Synt_AdvDat = Class_ID;
do
syntagma= noneSynt;
end

Synt_AdvOth = Pred_Group "," Ctags;

do
syntagma= AdvOthSynt;
end
Synt_AdvOth = NonPred_Group "," Synt_Adv0th;
do
syntagma= Synt_AdvOth.syntagma;
end
Synt_AdvOth = Class_ID;
do
syntagma= noneSynt;
end

Synt_Subj = Pred_Group "," Ctags;

do
syntagma= SubjSynt;
end
Synt_Subj = NonPred_Group "," Synt_Subj;
do
syntagma= Synt_Subj.syntagma;
end
Synt_Subj = Class_ID;
do

150

Application of AGLEARN for Hungarian Part-of-speech Tagging

syntagma= noneSynt;
end

Appendix B: The list of CTAG groups

% group of ctags which might be the subject of the sentence
Subj_Group =

npn ,npnx,npny,nsn,nsnx,nsny,

PPD,pPpnx,ppny,psn,psnx,psny;

% group of ctags which might be the predicate of the sentence
Pred_Group =

vmcpls,vmcplp, vmcp2, vmecp2s, vmecp2p, vimcp3s , vimcp3p,
vmipls,vmiplp,vmip2,vmip2p,vmip2s,vmip3s,vmip3p,
vmisls,vmislp,vmis2,vmis2p,vmis2s,vmis3s,vmis3p,

vmmpls, vmmplp, vmmp2, vmmp2p , vmmp2s , vmmp3s , vmmp3p,

va;

% group of ctags which might be the accusative of the sentence
Acc_Group =

vmn,apa,apax,apay,asa,asax,asay,

npa,npax,npay,nsa,nsax,nsay,

ppa,ppax,ppay,psa,psax,psay;

% group of ctags which might be the dative adverb of the sentence
AdvDat_Group =

apd,apdx,apdy,asd,asdx,asdy,

npd,npdx,npdy,nsd,nsdx,nsdy,

ppd,ppdx, ppdy,psd,psdx,psdy;

% group of ctags which might be the other adverb of the sentence
Adv0th_Group =

apo,apox,apoy,aso,asox,asoy,

npo,npox,npoy,nso,nsox,nsoy,

PPO,PPOX,Ppoy,ps0,psoxX,psoy;

% group of ctags which might be the attribute of the sentence
Att_Group =

apn,apnx,apny,asn,asnx,asny,

mp ,mpX , Mpy ,MS ,MSX ,MSY ;

% group of other ctags in the sentence
0th_Group
md,i,cp,cpunct,spunct,wpunct,
rg,ro,rp,rq,rv,st, t,

unknown,X,y,XXX;

Groups = Subj, Pred, Acc, AdvDat, AdvOth, Att, Oth, none ;

Syntagmas = SubjSynt, PredSynt, AccSynt, AdvDatSynt,
Adv0thSynt, AttSynt, OthSynt, noneSynt ;

151

March 1999 — Second Workshop on Attribute Grammars and their Applications — WAGA99

152

