Software Factory on top of Eclipse: SmartTools

Agnés Duchamp', Shouhéla Farouk Hassam®, Stephanie Mevel" and Didier Parigot?,

! Ecole PolyTech’Nice Sophia

930, Route des Collles, PB 145

F-06903 Sophia-Antipolis CEDEX, France
name@polytech.unice.fr

2 INRIA Sophia-Antipolis

2004, route des Lucioles - BP 93

F-06902 Sophia-Antipolis CEDEX, France
Didier.Parigot@inria.fr,

Tel: 33492 3850 01
http://www.inria.fr/smartool/

Abstract

For tree years, notions of Software factory or of Rich Client Platform have appeared in order to automate the
development process. Similarly, since 2000, our research team has designed an approach driven by DSL.
The SmartTools prototype is a result of this approach. It did not consider IDE (Integrated Development
Environment) aspects. In this article, describe the first experience on how our tool has been integrated into
the Eclipse Environment. First results show a perfect complementarily. Indeed, we did not modify our
application code. In addition to that, this approach enables at makes it possible to produce plug-ins quicker
or faster (especially plug-ins for a DSL). Our motivation is to offer generation mechanism to Eclipse plug-in
developers.

Introduction

With the increasing use of computer science within the information society, it is necessary to reconsider the
way in which software is developed in order to quickly produce families of flexible and reliable ubiquitous
applications. Concepts such as Component-Oriented Programming [1] (OGSi), Service-Oriented
Architecture (SOA), Aspect-Oriented Programming (AOP) [13], and Model-Driven Engineering (MDE) [6]
have been proposed to address these challenges. They can even be merged to create the notion of
Software Factory [5][7] (Microsoft Domain-Specific Language Tools) or Rich Client Platform [3] (Eclipse
Foundation).

Since 2000, inspired by our previous research works, our team developed a Software factory approach
named SmartTools [8][9][10][14]. The goal of this factory is to automate application development linking
Aspect-Oriented Programming approach [13], DSL-Oriented Programming approach [2] and Component-
Oriented Programming approach. However, the aspects only focused on development environment were
never given priority. Thus, to have Eclipse at ours disposal is an ideal context for our approach’s merger. In
this article, we explain our feasibility study for this merger.

Ouir first results show that this integration does not imply a reorganization of our approach. In addition, the
ability of our generation tools to produce plug-in seems to be very efficient. Indeed, our tools are able to
generate a model (Abstract syntax Tree based on XML Document Object Model, DOM) for a language from
the declarative description of the abstract syntax. SmartTools accepts various formats like DTD, XML
Schema, abstract syntax or UML [6].

Furthermore SmartTools is able to generate various concrete syntax or graphical views. Indeed we defined
a language to link firstly the abstract syntax and the concrete one, and secondly various graphical views. As
results for a specific DSL, on one hand we are able to generate a plug-in linked to the concrete syntax
parser and on the other hand, several XSL transformations are available to edit the DSL. In that way, we are
able to transform our components (about thirty in the SmartTools context) in Eclipse plug-ins thanks to few
code lines. The first part of the article describes briefly the progress report of SmartTools. The second part
insists on the strong features of the merger. Then we will conclude by the extension of this study.

1. Short presentation of SmartTools Software Factory

SmartTools [8] (http://www-sop.inria.fr/smartool), our research prototype, is a concrete example of a
Software Factory. Our main research interests hinge around the three following concepts:

- A development driven by the specification of Domain-Specific Language (DSL);

- A separation of concerns (AOP) directly defined on these DSLSs;

- And a Service-Oriented Architecture (SOA) based on dynamically extensible components.

One of the main ideas behind the design of SmartTools (and consequently behind the design of the

generated DSL tools) is to model the business logic of each concern in a technology-free manner which can

then be used to generate platform-specific code (see Fi gure 1Figure 1:).

The following five concerns have been taken into consideration:

- The description of the structure of the language (with a meta-language, named Absynt DSL,;

- The description of the method signatures and the traversal of the semantics analyses, (Xprofile DSL);

- The graphical representation of the model, (Cosynt DSL); Several views of a data model can be defined,
such as a structured editor in order to more easily create and update instances of this model (programs
or documents).

- The component meta-model, (Cdml DSL), It is as tightly integrated as possible with the application
requirements. In particular, it enables to specify the provided and required services.

- The GUI meta-model, (Lml DSL); It describes a possible configuration of a GUI for a given application.

SmartTools Generators

Data
manipulation

Figure 1: SmartTools DSLs and MDE approach.

SmartTools is heavily bootstrapped; that is it internally uses its technology to develop its own models.
Through the development of these models, our approach in integrating the mentioned paradigms and
technologies has been intensively tested and refined. Since then, SmartTools has been used to produce
tools for many diverse languages such as SVG, DTD, XML schema, CSS, WSDL, and BPEL. The
SmartTools framework represents approximately 100 000 lines of Java source code before the generation
stage and 1 000 000 lines after. This ratio shows the efficiency of this development approach based on
generative programming.

2 SmartTools components to Eclipse plug-ins

This integration has two goals:

- To help the developing plug-in with our generation tools

- It provides a real development Environment for our DSL'’s thanks to Eclipse in order to make the use of
our approach easier.

As the two systems SmartTools and Eclipse are complex, we split up our approach into three directions:

- Development of complete environment for each DSL of SmartTools;

- Immersion of SmartTools basic components for a first instantiation of our approach;

- Integration of the several concepts or techniques developed in SmartTools into Eclipse framework.

2.1 Transformation of basic SmartTools components into Eclipse plug-ins

For the second direction, it is necessary to embed SmartTools Core into Eclipse. In order to make it, we
created a first plug-in containing the core of SmartTools (st-core plug-in, see Fi gure 4). This plug-in will
certainly be divided into many shorter plug-ins later. SmartTools was already structured as component with
a particular organisation. For instance, all Java source files, XSL or CSS files generated by SmartTools are
under a specific directory called “generate” in order to differ from other data of the component. Into this
organisation, we just had to add the information link to the Eclipse plug-in concept (plugin.xml, .project,
Manifest.mf description files).

After that, the code produced by SmartTools (and also generate by SmartTools for each component) was
accessible via Eclipse. In this way, it is possible to use the SmartTools functionalities, such as code
generation in Eclipse. More precisely, the link generator_to our Cdml language (notion close to the plug-in
notion) makes it possible to call for each description (DSL) the associated generator.

At this stage, SmartTools technologies are not used for each plug-in produced. Especially, it was necessary
to make the link between the text of Eclipse editor (associated to one of our DSLs) and the tree (model or
AST) given in input of the DSL SmartTools generators.

2.2 Integration of the SmartTools generated model (AST)

From a meta-model or a language description (DTD, XML Schema, or our Absynt meta-language),
SmartTools produce a logical model. This model is based on the W3C's model DOM (Xml Document
Objects Model). We wanted to check the possibility of merging this model generation into Eclipse. Indeed,
we wanted to produce for each DSL of SmartTools a basic IDE in Eclipse environment. It is possible to call
our generator (small compiler) from edited text in Eclipse editor. To check the validity of a produced model,
we associated the Outline view (specific Eclipse view) to each editor (see Fi gur e 2). All of our models are
based on DOM. So, we created generic classes in order to offer this Outline view automatically for all the
plug-ins. In a classical way, the developer has to write these classes by himself to obtain this Outline view.

Eile Edit MNavigate Search Project Run Window Help

Itv@ & |pv0rar | BB @ vers (00O O

=4 [Resource

==, T O || @ xml.cdml 2 | @ test.Iml | & xml.absynt i E'_ 0% Outline =0
Cdml Syntax <component name="xml" EIR R component
Elecomponent type="document"” documentation
: extends="logicaldocument" = :
documentation ns="xml" £ containerclass

Fontalnerclass doc= " Xml component to edit any XML document': facadeclass

fac—ade-.otass e

formalism =

Elparser i parser
Extention <documentation> extantion

</documentation> -

Eparser parser
extention extention
extention = extention

Iml Il

Iml : — ; 1 Il

<containerclass name="XmlContainer" />

Il <facadeclass name="XmlFacade" /> Iml

Iml <formalism name="xml" file="xml.absynt" dtd="xml.dtd"/> il

behavior)

<parser type='"xml" behavior

classname="xml.parsers.XmlXMLParser">
<extention name="xml2"/>
</parser>

<parser type="userDefined" E

[2] i [ES

Figure 2: Generic view, Editor view and Outline view of Cdml DSL

2.3 Integration of the « graphical view » model generated by SmartTools

A declarative specification (Cosynt DSL) makes it to create different concrete forms and several graphical
views for a given language. The generator of Cosynt produces automatically the parser to create the model
from the text and several XSL transformations to offer graphical views (structural edition). This technology
was integrated into Eclipse thanks to the Swing technology.

We can highlight a mechanism of SmartTools, the graphical object selection which enables the views to
communicate by the means of the logical model (by using XPath for instance). In fact, when an item is
selected in a graphical view, the item calculates its path to the root and a selection message is sent to the
logical model. Then, when the message is received, the logical model informs all the graphical views linked
to this model that the item is selected. For instance, the Figure 3 show three graphical views (SmartTools
views) of xml.cdml with a selection on a Container item (node). As the result, this mechanism of selection
driven by the logical model is very simple and offers for free to plug-ins developers. Moreover, the
syntactical colours are directly defined on the notion of the logical model, the AST. Furthermore, each entity
of the AST is described by a particular CSS (colour, height, font ...) which use by SmartTools graphical view

W ja\r;l -xml.cdml-

Eile Edit MNavigate Search Project Run Window Help
& (50 [BEGE B Bl @060

= [+ Resource

| P i
'J'

Vue XML 2 | ¢ xml.cdm| x =0|®GENE.. % |0 @cDMLSY.. 8| = 0O
Ve ¥ML X % sl version="1.0" end& legm| Syn...| x % [[|Cdml Syrtax
[l<component doc= ¥ml component to 42| |[Elcomponent [component:xml of typei|
extends=logicaldacument documentation ||| /**
name=xml containerclass ||/
ns=xml <component name="xml" s facadeclass [Container class: XmlConte
type=document type="docume esFRElTER Facadeclass: ¥mlFacade
<documentation /> extends="1og Formalism: xml
o HR= a1 parser ;
<containerclass name=xmlContainerf> 2 Parser: xml.parsers.xm
<facadeclass name=xXmlFacade/> doe=: ! Xml eompe Eparser Parser: xml.parsers X
<formalism dtd=xml.dtd T it = et Lml: DEFAULT in File:
file=xml.absynt ; Iml Lml: EDITICN in File: r
name=xml TS T Il Lmi: HTML in File: res
[H<parser classname=xml.parsars Xm </documentation> Iml Lml: XML in File: reso
type=xml behaviar Behavior: resources:bg
<fparsers
Fl<parser classname=xml.parsers. M
type=userbefined
<;‘pars§r> <containerclass nam
<lml file=resources:imlfxml-default.ln PnrunaeliRn ey
name=DEFAULT <formalism name:"xm:é
<lml file=resources:iml/xml—edition.In
name=EDITION =l <parser type="xml" [] :
AT] Il] Al T B T+ | || K T [*!

| Writable | Insen |21:15

Figure 3: Generic XML view, Eclipse Editor, Generic View, Concrete Syntax view of an Cdml| DSL
example: xml.cdml .

2.4 Generic plug-ins conception

In order to encapsulate these two techniques of generation, we made basic plug-ins (generics ones). Our
plug-ins (made thanks to our approach) depend on these generic plug-ins (for instance st_editor plug-in in
Fi gure 4). This factorization enables to reduce the code to write in order to obtain all the functionalities
(see in Fi gure 4, the size of Editor class with this factorization). For instance, to make a graphic view, we
only need to write a single line of code.

2.5 PDE extension within the SmartTools context

In order to get a better integration of our automatic production of plug-ins, we have extended the Plug-in
Development Environment (PDE) for our context (our generated code). Especially, this extension calls

SmartTools generation code during the plug-in creation and produces java source files in order to obtain an
editor.

2.6 Transformed SmartTools components:
In this context, we have transformed and produced, in few months, ten plug-ins: (see Fi gure 4)

L]a\r;l - Editor.java - Eclipse Si

Eile Edit 5Source Refactor MNavigate Search Project Run Window Help
e H @ o o0 [gwe e [l | f-i-o e = B

(= Package Explorer x"\\\Hierarchyé Navigator | = *Editor java %

& oo @l e <:'{> = package Iml.editors; el [}

[‘.l.ﬁjpabsvnr [cvs-sop.inria.fr] G®import 1m1.Lm1FacadeFacade;H
b wdscdml [cvs-sop.inta.fr
bt J>Comp0r’|entsgeneramr5 ek “public class Editor extends StEditor implements IEditor{

& = .| E:
b i¥>cosynt [cvs-sop.inria.fr] private LmlFacadeFacade fFacade;
b S#>Iml [cvs-sop.inria.fr]) private String url;
=y . e % public Editor()[]

i > st_editor [cvs-sop.intia.f] s public LogicalDocumentImpl getFacade() {
I jg:§>5t-c0re [cvs-sop.inria.fr] return fFacade;
b edstjar [cvs-sopiinria.fr] _ 1 =

i ! p. @ * Action du bouton 0L1T1'1ne|._| =
b iexml [cvs-sop.inria.fr] e public veid outlinedction(){
[5,%‘_-’7>-xproﬁle [evs-sop.inria.fr] url = "Iml";

super.outlineAction(url, fFacade);
1
* Action du bouton generatelj_
public void generateAction(){||
Action du bouton sa\'eD
2 public woid saveAction(){
super.savelAction(dir_eclipse+'/generate/tmp/Test2_save.lml",fFacade);

}
'
[+]
[7] 7]
‘.Problemsfja\fadoc‘ Declaration: Dabug | Search | & Console &2 ____ gt B~ O™ =)

Witable Smart Insert 3733

Figure 4: List of plug-ins of SmartTools components and the Editor Class of Lml DSL plug-ins.

But over all, thanks to the integration of these two technologies, all our components and theirs views can be
easily integrated into Eclipse. This represents more then thirty plug-ins.

3 Conclusion

This first immersion shows perfectly that the Eclipse environment and our approach are complementary.
Indeed, this integration does not require any modification of the SmartTools code. For each plug-in, the
developed code corresponds to associate parts of Eclipse environment. Moreover, we have developed in no
time our plug-ins associated to our DSLs thanks to generation. So we are planning a new distribution of
SmartTools thought a set of plug-ins.

However, we have not worked on plug-ins communications yet. Especially extensions and entry points
associated to plug-ins are currently studied to transpose our Component approach. Indeed, our Service-
Oriented Architecture might be transposable to these notions. We want to offer the OSGi platform support to
our components. After this first study, we have to work on: using all of Eclipse’s capacity and diffusing our
approach in Eclipse environment. Then our research on Aspect-Oriented Programming and program
automatic transformation will be downloading by this way.

References

[1] C. Szyperski with D. Gruntz and S. Murer, Component Sofiware : Beyond Object-Oriented Programming, Addison-
Wesley/ACM press 2002, ISBN 0-201-74572-0

[2] Arie van Deursen , Paul Klint , Joost Visser, Domain-specific languages: an annotated bibliography, ACM
SIGPLAN Notices, v.35 n.6, p.26-36, June 2000

[3] Eclipse. http://www.eclipse.org

[4] J. Arthorne and C. Laffra, Official Eclipse 3.0 FAQs, Eclipse series, p. xxxiv + 386, pubAW, 2004.

[5] Software Factories. http://www.softwarefactories.com.

[6] F. Budinsky, D. Steinberg, R. Ellersick and B.Grose, Eclipse Modeling Framework, Addison Wesley Professional,
2003.

[7] J.Greenfield, K. Short, S. Cook and S. Kent, Software Factories : Assemblig Applications with Patterns, Models,
Frameworks, and Tools, John Wiley & Sons, 2004.

[8] D. Parigot and C. Courbis, Domain-driven developpment: the SmartTools Software Factory, Technical Report RR-
5588, INRIA, Sophia Antipolis, July 2005.

[9] C. Courbis, P. Degenne, A. Fau et D. Parigot; Un modeéle abstrait de composants adaptables. Systéme a
composants adpatables et extensibles, numeéro thématique de la revue TSI, 23(2), 2004.

[10] C Courbis, P. Degenne, A. Fau et D. Parigot. L'apport des technologies XML et Objets pour un générateur
d'environnement: SmartTools. Revue I'Objet, numéro thématique XML et les Objets , 9(3), 2003

[11] K. Czarnecki and U. W. Eisenecker, Generative Programming : Methods, Techniques, and Applications, Addison-
Wesley, June 2000.

[12] E Gamma R. Helm, R. Johnson et J. Vlissides. Design Patterns. Addison Wesly, Reading. MA, 1995.

[13] G.Kiczales, J. Lamping, A Menhdhekar. C. Maeda, C. Lopez. J-M. Loingtier et J. Irwin. Aspect-Oriented
Programming, ECOOP '97, volume 1241 de LNCS, pages 220-242, Juin 1997.

[14] D. Parigot, C. Courbis, P.Degenne, A. Fau, C. Pasquier, J. Fillon, C. Held, and I. Attali, Aspect and XML-oriented
Semantic Framework Generator: SmartTools, In ETAPS’2002, LDTA workshop, Grenoble, France, April 2002,
ENTCS

