Getting SmartTools
And
VisualStudio.NET
to talk to each other
using SOAP and web services.

Visual Studio.rot

Emm <«—» Smart]ools

EQAP

A summer internship report by
Joseph George Variamparambil

Under the supervision of
Dr. Didier Parigot

At INRIA, Sophia-Antipolis

July, 2001.

Acknowledgement

I would like to express my deepest appreciation and sincere gratitude to Dr. Isabelle Attali and Dr.
Didier Parigot for giving me the opportunity to come to INRIA, Sophia-Antipolis and work with the
SmartTools team. | would also like to extend special thanks to Pascal Degenne and Dr. Didier Parigot
for explaining the ins and outs of SmartTools and to Abbondanza Thierry for working with me and

providing the SOAP message filters in SmartTools.
Joseph George Variamparambil,

INRIA, Sophia-Antipolis,

July, 2001.

joseph@cse.iitk.ac.in

1 Introduction

The main objective of this project was to investigate and explore the possibility of communication
between the .NET framework and SmartTools using web services technologies like SOAP, XML and
HTTP.

The first section of the report introduces and describes the various tools and technologies that were
used in the project. The second section details how the project work was carried out phase by phase.
The report then ends in a conclusion and the references and resources used during the project work.

1.1 SOAP and Web Services

SOAP is the Simple Object Access Protocol. The current version is 1.1, and the actual specification
can be found at www. w3. or g/ tr/ soap. SOAP is a lightweight protocol for exchange of information
in a decentralized, distributed environment. It is an XML based protocol that consists of three parts: an
envelope that defines a framework for describing what is in a message and how to process it, a set of
encoding rules for expressing instances of application-defined datatypes, and a convention for
representing remote procedure calls and responses. SOAP is based on XML and describes a
messaging format for machine-to-machine communication.

Here is a typical SOAP request (including the HTTP headers) for an RPC method call named
echoSt ri ng, which takes a string as a parameter:

POST /test/sinple.asmx HTTP/ 1.1

Host: 131.107.72.13

Cont ent - Type: text/xm ; charset=utf-8
Content-Length: |ength

SOAPAction: "http://soapinterop.org/echoString"

<?xm version="1.0" encodi ng="utf-8"?>
<soap: Envel ope xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns: tns="http://soapinterop.org/"
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body soap: encodi ngStyl e="http://schenas. xnl soap. or g/ soap/ encodi ng/ ">
<tns:echoString>
<i nput String>string</inputString>
</tns:echoString>

“lamcn. DA

Listing 1: An example of a SOAP request.
And the corresponding response:

HTTP/ 1.1 200 OK
Cont ent - Type: text/xm ; charset=utf-8
Content-Length: |ength

<?xm version="1.0" encodi ng="utf-8"?>
<soap: Envel ope xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: xsd="htt p: // www. w3. or g/ 2001/ XM_Schema"
xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns:tns="http://soapinterop.org/"
xm ns: soap="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<soap: Body soap: encodi ngStyl e="http://schenas. xnl soap. or g/ soap/ encodi ng/ ">
<tns: echoStri ngResponse>
<Ret urn>string</ Return>
</tns:echoStri ngResponse>

2l BEmmo Ded

Listing 2: An example of a SOAP response.

SOAP is a simple protocol that defines how to access services, objects, and servers in a platform-
independent manner using HTTP and XML.

A Web Service is a unit of application logic providing data and services to other applications.
Applications access Web Services via ubiquitous Web protocols and data formats such as HTTP,
XML, and SOAP, with no need to worry about how each Web Service is implemented. Web Services
combine the best aspects of component-based development and the Web.

1.2 SmartTools

SmartTools is a development environment generator that provides a structure editor and semantic
tools as its main features. SmartTools is easy to use with its graphical user interface. It is based on
Java and XML technologies and offers all the features of SmartTools to any defined language. The
main goal of this tool is to provide help and support for designing software development environments
for programming languages as well as domain-specific languages that are defined by XML
technologies. SmartTools consists of a number of independent software components that
communicate with each other through an asynchronous messaging system. The messages are
transported in the XML format. The purpose of this project is to extend the messaging system to
include remote messaging via SOAP requests and responses with clients, one of them being the
VisualStudio.NET programming IDE.

1.3 .NET Framework and VisualStudio.NET

The .NET Framework is a new computing platform designed to simplify application development in the
highly distributed environment of the Internet. The .NET Framework has two main components: the
common language runtime and the .NET Framework class library.

The common language runtime is the foundation of the .NET Framework. The runtime can be thought
of as an agent that manages code at execution time, providing core services such as memory
management, thread management, and remoting, while also enforcing strict safety and accuracy of
the code. The .NET Framework class library is a comprehensive, object-oriented collection of reusable
classes that you can be used to develop applications ranging from traditional command-line or
graphical user interface applications to applications based on the latest innovations provided by
ASP.NET and Web Services.

Visual Studio .NET is Microsoft's newest version of its Visual Studio tools . Built on the Microsoft .NET
Framework, Visual Studio .NET provides a complete development environment for building XML Web
services and applications. And, one of the key enhancements of VisualStudio.NET is the new C#
programming language.

2 Work Done

In order to investigate the communication between VisualStudio.NET and SmartTools using SOAP,
the project went through a number of phases. Starting with a simple java client and web service and
finally moving on to a more complex .NET client and a SmartTools web service. Apache SOAP was
chosen as the SOAP implementation to be used with SmartTools since it had the best interoperability
with the .NET framework.

2.1 Phase 1l
Playing around with SmartTools and getting familiar with web services technologies: SOAP.

The first phase of this project involved the investigation and understanding of how the SmartTools
messaging system worked and getting familiar with SOAP. SmartTools is made of several
independent software components that communicate with each other through an asynchronous
messaging system. The information carried in the messages are serialized in XML format. The
message controller is in charge of managing the flow of messages and delivering them to their
destinations. In this project, it was experimented if these messages could be posted remotely and by
different clients.

2.2 Phase 2

A simple web service and a java client.

In this phase of the work, a simple web service was implemented in java alled exanpl eTry. It

doesn’'t do much but it served as a starting point for using the Apache SOAP implementation. The
code for the web service is given in the listing below:

public class exanpleTry {

/* A Sinple Web Service */

public String echoString(String i){
return "Hello "+i+"!";

}

Listing 3: exanpl eTry —asimple java web service.

The above java program has a method called echoStri ng that takes a string as an argument and

returns the same string with “Hello” appended to the front of it. In order for this program to behave as a
web service, it has to be deployed in the Apache SOAP Admin client. This is shown in figure 1.

wdBLl
i [
—

D33 Ot b P - b] -]
P——r—

o

Apache SOAP Adimin A

“ Deplay a Service I

Servien Dejiley et Duncrigtor Tesjlate

] s e

Figure 1: The Apache SOAP Admin utility — deploying a web service.

Once the exanpl eTry web service was up and running, the java client to consume the web service

was implemented. Writing clients to access SOAP web services was fairly straight forward. Apache
SOAP provides a client-side API to assist in the construction of the SOAP request and in assisting in
interpreting the response. The code for the java client is listed below:

import java.net.*;

import java.util.*;

i mport org.apache. soap. *;

i mport org.apache. soap.rpc.*;

public class Client{
public static void main(String[] args) throws Exception{

URL url=new URL("http://I|ocal host: 8080/ soap/servlet/rpcrouter");

String urn="urn:try: exanpl eTry";

Cal|l call=new Call();

cal | . set Target Obj ect URI (urn);

cal | . set Met hodName(" echoString");

cal | . set Encodi ngSt yl eURI (Const ants. NS_URI _SOAP_ENC) ;

Vect or paranrnew Vector();

par am addEl ement (new Parameter ("i", String.class,"Wrld", null));

cal | . set Parans(param;

try{
Systemout.println("Client.java: invoking service...\n");
System out. println("URL="+url +"\ nURN="+ur n) ;
Response response=cal | . i nvoke(url,"");

if(!response. generatedFaul t()){
Par amet er result=response. get Ret urnVal ue();
System out. println("Result="+result.getValue());

el se{
Faul t f=response.getFault();
Systemerr.printIn("Client.java: Fault Occured!\n");
System err.println("Fault Code="+f. get Faul t Code());
Systemerr.println("FaultString="+f.getFaultString());
}

}
cat ch(SOAPException e){
Systemerr.println("Client.java: SOAPException caught!");

Quetam arr nrintlnl("EaultCnda="1a nat Eaul t Cadal) -

Listing 4: The java client that consumes the exanpl eTr y web service.

When the client ran, it gives the following output shown in figure 2.

I;I:'\-.\mluj\.w ..;-...:-1 Pt |

Figure 2: Output of the java client consuming the exanpl eTr y web service.

2.3 Phase 3
The SmartTools web service and a java client.

After understanding how the Apache SOAP APl works and how SOAP messages are transmitted
between machines for communication, a more complex web service was implemented in which a java
client sends a SOAP Sel ect Msg to SmartTools. A Sel ect Msg is one of the numerous messages
that is used in SmartTools. It is posted when a SmartTools user selects a block of code in the
SmartTools interface and the SmartTools Ul responds by highlighting the portion of code that was
selected. Hence, in this phase the goal was to send a Sel ect Msg remotely using SOAP and for
SmartTools to highlight it. The portion of code that is to be selected is specified by treepath of a node
in the syntax tree of the program being analyzed in SmartTools.

For a client to communicate with SmartTools via SOAP messages, it is required that both Apache
Tomcat and SmartTools be in the same JVM instance. In order to do that, the static method start ()
of Start Tontat.java is called from Snmart . j ava:

package fr.smarttools;

import org.apache.toncat.startup. Tontat; Listing 5: St art Tonctat . j ava—-A
) class to start the Tomcat servlet
public class StartToncat { engine from within SmartTools.

public static void start(){
String[] argy={"-h","/ulsolida/0/oasis/jvarianp/lib/tontat-3.22"};
Tontat. mai n(argy) ;

Another change that had to be made to SmartTools for the web service to work was to make the
method get MsgCont rol er () of the class St Mbdul e static so that SOAPWebSer vi ce could get a
refernce to the bus and post messages to it. The listing below shows the code to implement the web
service. And, as in Phase 2, the SOAPWebSer vi ce has to be deployed in the Apache SOAP Admin
utility before it can be used.

package fr.smarttool s. webServi ce;

inport fr.smarttools.nmsg. SoapMsg;
inmport fr.smarttools.comm MsgControl er;
inmport fr.smarttools. St Modul e;

public class SOAPWebService inplenents SOAPWebServi cel nterface{

publ i c SOAPWebSer vi ce(){
}

public void reci eveSOAPMsg(String XM.String){
SoapMsg soapnsg=new SoapMsg(XM.Stri ng);
System out . printl n("SOAPWebService - Posting...\n"+XMSring);
MsgCont r ol er bus=St Modul e. get MsgControl er();
bus. post (soapnsg) ;

Listing 6: The SmartTools web service.

Listing 7 shows the code for the client that consumes the SOAPWebSer vi ce web service.

import java.net.*;

inmport java.util.*;

i nport org.apache. soap. *;

i nport org.apache. soap.rpc.*;
inport java.io.*;

public class Test Snartt ool sSOAP{
public static void main(String[] args) throws Exception{
URL url =new URL("http://]ocal host: 8080/ soap/servlet/rpcrouter");
String urn="urn: Smart Tool s: SOAPWebSer vi ce";
StringBuffer XMLString=new StringBuffer();

try{
Fil el nput Stream fs=new Fi | el nput Strean(" Sel ect Msg. xml ") ;
Buf f er edl nput St ream i n=new Buf f er edl nput Strean(fs);
whi | e(in.available()!=0){
XMLString. append((char)in.read());
}

in.close();
}catch(Exception e){}

Call call=new Call();
cal | . set Target Obj ect URI (urn);
cal | . set Met hodName("reci eveSOAPMsg") ;
cal | . set Encodi ngStyl eURI (Const ants. NS_URI _SOAP_ENC) ;
Vect or paranrnew Vector();
par am addEl ement (new Par amet er ("XM.String", String.class, XM.String.toString(),null));
cal | . set Par ans(par am ;
try{
System out.println("Test Smarttool sSOAP. java: invoking service...\n");
System out. println("URL="+url +"\ nURN="+ur n) ;
Response response=cal | .invoke(url,"");

if(!response. generatedFaul t()){
System out. println("TestSmarttool sSOAP. java: SOAP nsg sent successfully!");

el se{
Faul t f=response.getFault();
Systemerr.println("TestSmarttool sSOAP. java: Fault Occured!\n");
System err.println("Faul t Code="+f. get Faul t Code());
Systemerr.println("FaultString="+f.getFaultString());

}

}
cat ch(SOAPExcenti on e){

Listing 7: The java client that consumes the SmartTools web service.

The method reci eveSOAPMsg of SOAPWebServi ce is called remotely by the java client above.
reci eveSOAPMsg takes as an argument a string which is in XML format, an example of which is
shown in listing 8. It then proceeds to post the Sel ect Msg to the SmartTools bus after the string has
been transformed into the appropriate class using the message filters of SmartTools. In the SOAP
request that is sent by the client, several things are specified such as the type of message (in this
case, a Sel ect MsQ), the destination and source identities for the message and the the treepath.

<?xm version="1.0"?>
<SOAP- ENV: Envel ope
SOAP- ENV: encodi ngStyl e="htt p://schenas. xnl soap. or g/ soap/ encodi ng/ "
xm ns: SOAP- ENC="ht t p: / / schenas. xnl soap. or g/ soap/ encodi ng/ "
xm ns: SOAP- ENV="ht t p: / / schemas. xnl soap. or g/ soap/ envel ope/ "
xm ns: xsd="htt p: / / www. w3. or g/ 1999/ XM_Scherma"
xm ns: xsi ="http://ww.w3. org/ 1999/ XM_Schena- i nst ance" >
<SOAP- ENV: Header >
<cl asse xsi:type="xsd:string">fr.smarttools. msg. Sel ect Msg</ cl asse>
<destld xsi:type="xsd:int">7</dest|d>
<srcld xsi:type="xsd:int">8</srcld> Listing 8: The SOAP
</ SOAP- ENV: Header > Sel ect Msg.
<SOAP- ENV: Body>
<treePath xsi:type="xsd:string">1.1.1</treePath>
</ SOAP- ENV: Bodv>

When the client is executed, it consumes the SOAPWebSer vi ce web service and passes the above
XML as an argument to r eci eveSOAPMsg and the SmartTools Ul responds by highlighting the code
as specified by the treepath in the SOAP request as shown in figure 3.

o iy e e e
PR G R

dnmait ey

Trev R

ot | Lmaarhiag [rpelberder

Figure 3: The SmartTools Ul after the Sel ect Msg has been posted.

2.4 Phase 4

Consuming the SmartTools web service with a .NET C# client

In this phase of the project, the same SmartTools web service is consumed by a .NET client (a web
page client implemented in C#). The client sends a SOAP Sel ect Msg and a portion of the code is
highlighted specified by the treepath in the SOAP request. The steps that were followed to achieve
this are given below:

?? Step 1. To generate the SDL(Service Description Language) document of the SmartTools
webservice.

.NET (beta 1) requires the SDL document of a web service in order for clients to communicate
with that web service. And the simplest way of doing this was to create a web service in .NET that
was identical to the SmartTools web service except that the reci veSOAPMsg method was left
empty. This was the easiest way of getting the SDL description of the SmartTools web service.
Listing 9 shows the code for the web service in .NET which is identical to the java SmartTools web
service.

namespace SOAPWebServi ce

usi ng System Listing 9: .NET web service identical
using System Col | ecti ons; to the SmartTools web service.

usi ng System Confi guration;
usi ng Syst em Conponent Model ;
usi ng System Dat a;

usi ng System Di agnosti cs;
using System Web;

usi ng System Web. Servi ces;

public class WebServicel : System Web. Servi ces. WebService
public WebServicel()
{

InitializeConponent();
}

private void InitializeConponent ()

}

public override void Dispose()
{
}

/1 This webservice is identical to the SnartTools web service except that
// the recei veSOAPMsg nethod is enpty

And the generated SDL after modifying the namespaces to fit the SmartTools web service is shown in
Listing 10 below:

<?xml version="1.0"?>
<serviceDescription xmIns:sO="urn:SmartTools:SOAPWebService" name="SOAPWebService"
targetNamespace="urn:SmartTools:SOAPWebService" xmIns="urn:schemas-xmisoap-org:sdl.2000-01-25">
<soap xmlIns="urn:schemas-xmlsoap-org:soap-sdl-2000-01-25">
<service>
<addresses>
<address uri="http:/solida:8070/soap/servlet/rpcrouter"/>
</addresses>
<requestResponse name="recieveSOAPMsg" soapAction="">
<request ref="s0:recieveSOAPMsg"/>
<response ref="s0:recieveSOAPMsgResult"/>
</requestResponse>
</service>
</soap>
<httppost xmins="urn:schemas-xmisoap-org:post-sdl-2000-01-25">
<service>
<requestResponse name="recieveSOAPMsg" href="http://solida:8070/soap/servlet/rpcrouter">
<request>
<form>
<input name="XMLString"/>
</form>
</request>
<response/>
</requestResponse>
</service>
</httppost>
<httpget xmins="urn:schemas-xmisoap-org:get-sdl-2000-01-25">
<service>
<requestResponse name="recieveSOAPMsg" href="http://solida:8070/soap/servlet/rpcrouter">
<request>
<param name="XMLString"/>
</request>
<response/>
</requestResponse>
</service>
</httpget>
<schema targetNamespace="urn:SmartTools:SOAPWebService" attributeFormDefault="qualified"
elementFormDefault="qualified" xmIns="http:/Aww.w3.0rg/1999/XMLSchema">
<element name="recieveSOAPMsg">
<complexType>
<all>
<element name="XMLString" xmIns:q1="http://mww.w3.0rg/1999/XMLSchema" type="g1:string" nullable="true"/>
</all>
</complexType>
</element>
<element name="recieveSOAPMsgResult">
<complexType/>
</element>
</schema>
</serviceDescription>

Listing 10: SDL document describing the SmartTools web service.
?? Step 2: Creating a proxy web service object.

Figure 4 below shows how a .NET client may communicate with aweb service using a proxy
object.

ﬁ T)
lksnr regued T
-

HTTI GET or Mosi &
call

SOE gaEr NTTR T e ——sonp s HTTP —i =

Proy -~ Intemet InY P
Object W A :JE

L " WL ——— E Sonden

0™

Wil Browes

Location A Location B

Figure 4: Client & web service communication through SOAP.
(fromBuilding Client Interfaces for .NET Web Services By Chris Peiris at www.15seconds.com)

The functionality of the web service at Location B is replicated at Location A. A proxy object is
created to act on behalf of the original web service. This is done in the .NET framework by using
the utility called “WebSer vi ceUti | . exe”.

Figure 5 below show how the SmartTools proxy object was created in MS-DOS using the
generated SDL in step 1.

Figure 5: Generating & compiling the proxy object.

The first command creates the SOAPWebSer vi ce. cs file in the current directory. And the next
command is to compile the C# class to generate a DLL to link to the client.

?? Step 3: Building the web application.

Building the web application and adding the reference to the DLL that was generated is pretty
straight forward in VisualStudio.NET and is shown in figure 6.

=lfl 2

| A W S 1 T
P [T
|

| s wis

E!
L3 | K § o+

Figure 6: The web application in Visual Studio.NET Beta 1

and the code for the client is given in the listing below:

nanespace SOAPWebServi ceCli ent
{

using System

using System Col | ecti ons;

using System Conponent Model ;

using System Dat a;

using System Draw ng;

usi ng System Web;

usi ng System Web. Sessi onSt at e;

using System Web. Ul ;

using System Web. Ul . WebControl s;

using System Web. Ul . Ht nl Control s;
usi ng Smart Tool sSOAP;

public class WebForml : System Web. Ul . Page
{
protected System Web. Ul . WebControl s. Text Box Text Box1;
protected System Web. Ul . WebControl s. Label Label 1;
protected System Web. Ul . WebControl s. Button Buttonl;
public WebFormi()
{

Page. I nit += new System Event Handl er (Page_Init);

}
protected void Page_Load(object sender, EventArgs e)
if (!lsPostBack)
// Evals true first tinme browser hits the page
}
protected void Page_| nit(object sender, EventArgs e)

InitializeConmponent();
}

private void InitializeConponent()
Buttonl.Click += new System Event Handl er (this.Buttonl_Click);
Text Box1. Text Changed += new System Event Handl er (this. Text Box1_Text Changed);
this.Load += new System Event Handl er (this.Page_Load);

}

public void TextBox1l_Text Changed (object sender, System EventArgs e)
}
public void Buttonl_Click (object sender, System EventArgs e)

SOAPWebSer vi ce wservice = new SOAPWebServi ce():

Listing 11: .NET web application to consume the SmartTools web service.

After the above code has been built, the result can be viewed in a browser shown below with the
SOAP Sel ect Msg to be sent filled in the textbox:

D 3 G| Dreterter Grane Jretoiem | S Sl o] o

e e — —— o = F (L
Bondd BOAP hassagel | il
<7rml version="l.0"7> =]

S0P -EHY : Ervm lopa
BORP-ERV e noodingEt yle=*hoep 1 f S sehena s, euls0ap . DOgd S0 NpS BT o LEgL
xlns; SOLF-ERC="hitp:/ f schepe=. xol soap, org soap f encoding! *
xminm :E00A-Ef=*hetp: /! /wchenax. xnlacep . ocg! scwp f enve Lopa £ F
FRIng XA "hTupE /A UT . a3 . e s 105 SALArhers”
mnlns ;Esi="htups f A v, w3 ocgf 1995 XALSCheos-Lns canoe "

“BOLE-ENV 1 Header
<o lEEEE xElinypE=Tysd;stpingTsiD, Emec it oo e ey, e lect gy o lam e
<dawtId xmi:cype="xwd: inc"rT deacIdx-
<arpld Zaiicype=rysdlinc™x A< aro i =
< FINFP-ENV Deacer>

<A0LP-ENV': Bosd e
<tre=Pmth xsi:bppe="x=d;=tcing™=1.1:l<fcresFach=
=/ I AP-ENW : Bodys

</ GOLP-ENY rEmes Lopes|

| 5™

-d__"l Tarmi & ﬁ Irkr aret local - &
Figure 7: The .NET web application in a browser.

?? Step 4: Solving interoperability issues — the problem of the xsi:type attribute

According to the SOAP specification, the various elements contained in an envelope may optionally
use the xsi:itype attribute to identify the type of data that the element contains. If the provider and
requester have some other means of communicating this information, then it needn't be included in the
envelope. The xsi:itype attribute was only be used if these data types can not be communicated by any
other means. To solve this problem, Microsoft built a dependency on an external service description
document, that described the data types and could be accessed by both the requester and provider.
Apache required that the xsi:type attribute be included at all times. Both approaches are "legal SOAP",

but they were incompatible with each other. Apache SOAP did not understand the SDL(Service
Description Language) used by Microsoft.

In order for Apache to remove the restriction that requires the xsi:type attribute to be present, the
SmartTools web service had to be redeployed to allow Apache SOAP to work without the xsi:itype
attribute being present. This was done manually and not through the Apache SOAP Admin utility. The
deployment descriptor for the SmartTools web service is shown below:

<isd:service xmns:isd="http://xm .apache. org/ xnl - soap/ depl oynment "
i d="urn: Smar t Tool s: SOAPWebSer vi ce" >
<i sd: provi der type="java"
scope="Request"
nmet hods="r eci eveSOAPMsg" >
<isd:java class="fr.smarttool s. webServi ce. SOAPWebServi ce" static="fal se"/>
</isd: provi der >

<i sd: faul tLi st ener>org. apache. soap. server. DOMFaul t Li st ener</i sd: faul t Li st ener>

R

Listing 12: The Apache SOAP deployment descriptor file for the SmartTools web service.

The above deployment descriptor explicitly specifies the type of the parameter KMLStri ng) of a
method call so that Apache SOAP has no problems when deserializing it and no longer has to rely on
the xsi:type attribute. And, the web service is deployed manually as shown below:

A T — V
. D Dgom Hilg

A\ el v o Lamp At jaa ary.spachs. toen . seruer, Sere dcefleragerl Liank. it] ozl ook S0 mars ver 66
aLet /rpcrouter cordoy Temd oapeort Domoript or oml
L3 forea M-y:lai'
i
|
=

Figure 8: Deploying the web service using the descriptor.
?? Step 5: Running the web application

With the xsi:type attribute requirement removed from Apache SOAP, the web application was run and
the following figure shows the output:

+ .
- —_ TEER

Application Erro

The masasr IRl S1t STTP siame coste M0 vin Wes v weaaggs - o Pamy vermaane ' O aasadiage U TE 7% eR06R QWY Ervwings
g BOAA-SA T TIED CROARTIE ETUROST OF SRR S0P pnint @ne R wes b o tead L Sore e irg e

L TS TR Ve i v] B o 2514 Ry STH s S R

A 78 Ty AT gk * Y, i P A R L, AMAS CP LA T

e Bt b A Py B S IARA BT Sty r BN SR Ervepiyetie -

Figure 9: The output of the .NET application.

Although the application responds with an error as described in the above figure, the SOAP request
did get sent successfully and code was highlighted in SmartTools. The reason for the above error is
due to the non-interoperability between the Apache SOAP and .NET SOAP implementations. The
error arises due to the fact that the client doesn’t “understand” what Apache SOAP has sent back in
the response and it expects something else. Hence, the application flagged that an error has occurred,
even thought the communication took place. This is described more in detail below about what .NET
expects and what it receives instead.

. NET Request :

<?xm version="1.0"?>
<soap: Envel ope xm ns: soap="http://schenmas. xm soap. or g/ soap/ envel ope/ "
xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns: xsi ="http://ww. w3. org/ 1999/ XM_.Scheng- i nst ance"
xm ns: xsd="http://ww. w3. or g/ 1999/ XM_Schenma" >
<soap: Body>

</ soap: Body>
</ soap: Envel ope>

What . NET expects :

<?xm version="1.0" encoding="utf-8"?>

<soap: Envel ope xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schena"

xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/ "

xm ns:tns="http://soapinterop.org/"

xm ns: soap="http://schemas. xnl soap. or g/ soap/ envel ope/ ">

<soap: Body soap: encodi ngStyl e="http://schemas. xnl soap. or g/ soap/ encodi ng/ ">

</ soap: Body>
</ soap: Envel ope>

What Apache SOAP sends back :

<?xm version='1.0" encoding="UTF-8' ?>

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsi ="http://ww. w3. org/ 1999/ XM_.Scheng- i nst ance"

xm ns: xsd="http://ww. w3. or g/ 1999/ XM_Schenma" >

<SOAP- ENV: Body>

Listing 13: .NET Beta 1 and Apache SOAP interop.

.Net expects that the response from the method invocation be between <Ret ur n> tags but instead
Apache SOAP puts the response in between <r eci eveSOAPMsgResponse> tags and this is why the
application reports that an error has occurred.

3 Conclusion

The main objective of this project was to investigate the possibility of communication between
VisualStudio.NET and SmartTools using web services technologies like SOAP through HTTP. This
objective was satisfied but due to the problems of SOAP interoperability between .NET and Apache
SOAP, the .NET client complained of errors. The SOAP Sel ect Msg was sent successfully by the
.NET client, received by Apache SOAP, the SmartTools web service was invoked and the SmartTools
Ul responding by highlighting the specified portion of code.

The interoperability issues have been solved in the Beta 2 version of VisualStudio.NET with a new and
very flexible SOAP implementation which includes better support and lower-level control over the
composition of the SOAP Envelope and with support for WSDL. The result has been two tools, .NET
and Apache SOAP, that can communicate freely with one another.

4 References

Web services and SOAP articles at IBM DeveloperWorks - www-106.ibm.com/developerworks/
Building Client Interfaces for .NET Web Services by Chris Peiris -
http://www.15seconds.com/Issue/010530.htm

Resources and articles at www.xmethods.com

.NET, XML & Web Services at msdn.microsoft.com

The Apache SOAP user mailing list

VisualStudio.NET help documents

NI

NI IS

