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Abstract

In the first part of this work [4] we have studied the approximation problem of
Ef(Xr)by Ef(X}), where (X}) is the solution of a stochastic differential equation,
(X7') is defined by the Euler discretization scheme with step £, and f(-) is a given
function, only supposed measurable and bounded; we have proven that the error can
be expanded in terms of powers of %, under a nondegeneracy condition of Hérmander
type for the infinitesimal generator of (X}).

In this second part, we consider the density of the law of a small perturbation of
X7 and we compare it to the density of the law of X7: we prove that the difference
between the densities can also be expanded in terms of %

The results of this paper had been announced in special issues of journals devoted
to the Proceedings of Conferences: see Bally, Protter and Talay [2| and Bally and
Talay [3].

AMS(MOS) classification: 60H07, 60H10, 60J60, 65C05, 65C20, 65B05.



1 Introduction

Let (X;) be the process taking values in IR? solution to

X, = Xo + /Ut b(X,)ds + /Ota(Xs)dWS , (1)

where (W;) is a r-dimensional Brownian motion.

The problem of computing the expectation F f(X;) on a time interval [0,T] by a
Monte Carlo algorithm appears in various applied problems; some of them are listed in |4].
The algorithm consists in approximating the unknown process (X;) by an approximate
process (X}'), where the parameter n governs the time discretization; that process can
be simulated on a computer, and a simulation of a large number M of independent
trajectories of X" provides the following approximate value of F f(X;):

1 M .
37 2 (X @)

The resulting error of the algorithm depends on the choice of the approximate process
and the two parameters M and n.

We consider the Euler scheme:

Lo 2 o)

X(T;)-I—I)T/n = XpT/n + b(XpT/n) + O—(X;T/n)(W(P‘H)T/" o WPT/H) .
For pn—T <t< W, X/ is defined by

T

P2) + o (X ) Wi = Wyrya)

X XpT/n + b( pT/n) <t

When X, =z (resp. X{' = z) a.s., we write X,(z) (resp. X;'(z)).
The effects of n on the global error of the algorithm can be measured by the quantity

|Ef(Xr) — Ef(X7)] . (3)

This error can be expanded in terms of powers of L: see Talay and Tubaro [14] for
smooth f’s without any assumption on the 1nﬁn1t681mal generator of (X;) and for the
numerical interest of the result (i.e. the justification of Romberg extrapolations which
exponentially accelerate the convergence rate with a linear increase of the numerical cost,
which explains why we are not interested in more sophisticated schemes than the Euler
scheme since one can obtain their accuracy with a weaker numerical cost: see Talay [13]
for a discussion). Similar results hold when (X}) is the solution of a Lévy driven stochastic
differential equation, see Protter and Talay [12].



In Bally and Talay [4] the same expansion has been established for only measurable
and bounded functions f’s under a uniform nondegeneracy condition of Hormander type
on that generator (see below for a more precise formulation).

In this paper our objective is the following.

First, we prove that, when the infinitesimal generator of the process (X;) is strongly
elliptic, the density of the law of (X7) and its derivatives have exponential bounds of
the same type as the density of the law of (X) (with constants uniformly bounded with
respect to the discretization step). It seems that this natural property cannot be proven
by induction and that elementary techniques fail. This result will be very useful in the
analysis of stochastic particle methods for nonlinear PDE’s, where one often has to deal
with quantities involving the behaviour at infinity of the distribution of the location of
the particles (see Bernard, Talay and Tubaro |5| or Bossy and Talay |6] for examples of
such a situation).

Second, we treat the case where the generator is not strongly elliptic. Observe that
in this case the law of X7 may not have a density. Let U, C R? be the set of points
for which Héormander’s condition involves Lie bracketts of length less or equal to L. For
x € Uy, the law of Xy (x) has a density py(x,-) with respect to Lebesgue’s measure. We
approximate this density by the density p4(x,-) of the law of of a small perturbation of
X7(x). More precisely, for z and y in Uy, one has

1

~n 1 n
pT(l‘;y) _pT('Z‘JU) = _EWT<:EJ?/> + QRT<I7y>

n
for some function 77 (z,y) independent of n and some remainder term R (z,y) which
satisfy an exponential inequality of the type

K(T) [z -y
€ m(x < 2 —c— | .
|7TT(T7y)‘ + |RT(Tﬂ y)| — TqVL<.’E>q’VL(y>q” exp ( C T

(the functions V7, (-) and K(-) are defined below).

The above expansion and the exponential bounds for 7r(z,y) and R} (z,y) give a local
information on the approximation of the law of X (x) by the law of X(z): without any
global nondegeneracy assumption but under the hypothesis that + € U, and A ¢ R? is
a Borel set whose boundary is a subset of U, (neither A nor A® is supposed included in
Ur) we prove that

P[Xy(2) € 4] = PIX(a) € A = — (e, A) + Ry, 4)

where the functions |7y (-, A)| and |R}.(-, A)| can be bounded exponentially from above.

During the very last days of the redaction of the present paper, the authors have
received a paper by Kohatsu-Higa [9] which also deals with the approximation of pr(z,y)
for x € Uy. This density is approximated by

oo (i) + 2 )
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where G is a standard Gaussian vector independent of W, and ¢.(-) denotes a Gaussian
density of mean 0 and of covariance matrix 72Id(R?). Kohatsu-Higa shows that, for any
d > 1, there exists a constant C'(d) such that

0
sup [Bg,+(Xp(x) —y) — priny)| < 20
y€ R4 n

It is clear that this estimate and our results are of different nature.

The organization of the paper is the following: in Section 2, we state and comment our
main results; in Section 3, we prove these results, admitting technical estimates proven
in Section 4; these estimates require a non trivial modification of a result due to Kusuoka
and Stroock concerning the derivatives of pr(z, y): this work, interesting in itself, is done
in Sections 5 and 6.

Notation.

In all the paper, given a smooth function ¢(:) and a multiindex « of the form
a=(a,...,ax), a; € {1,...,d}

the notation 02 ¢(t, z, £) means that the multiindex o concerns the derivation with respect
to the coordinates of z, the variables ¢ and & being fixed. When we write 0,¢(t, z) it must
be understood that we differentiate w.r.t. the space variable z only.

When v = (77) is a matrix, 4 denotes the determinant of 7, and ; denotes the j —th
column of ~.

When V is a vector, 9V denotes the matrix (9;V7)".

We will use the same notation K (), ¢, ¢, u, etc, for different functions and positive real
numbers having the common property to be independent of T" and of the approximation
parameter n: typically, they will only depend on L*-norms of a finite number of partial
derivatives of the coordinates of b(-) and o(-) and on an integer L to be defined below.

As usual, we denote by P, the law for which X' = Xy = z a.s. and we denote the
corresponding expectation by F..

In all the paper, we reserve the letters x and y for elements of a set Uy, defined below.

2 Main results

2.1 Density and local density.

Consider the stochastic differential equation (1).

In all the paper we suppose:



(H) The functions b(-) and o(-) are C>(R?) functions whose derivatives of any order are
bounded.

Denote by Ay, Ay, ..., A, the vector fields defined by

For multiindices o« = (v, ..., ) € {0,1,.. r}k define the vector fields A® (1 <i <)
by induction: A? = A; and, for 0<j<r, A" = [A7, A?].

For L. > 1, define the quadratic forms

—Y Y <A >

j=1lal<L-1
and set
Vil€) = 1A inf Vi(€n) (@)
Denote by U, the set
Up :=={& V(&) > 0} . (5)

Kusuoka and Stroock (Corollary 3.25 in [10]) have shown: for any integer L > 1 and
any x € Uy, the law of X (z) has a smooth density py(z, -); besides, for any integers m, k,
for any multiindices @ and [ such that 2m+ |a|+ || < k, there exist an integer M (k, L),
a non decreasing function K () and real numbers ¢, ¢ depending on L, T, m, k, o, 3 and on
the bounds associated to the coefficients of the stochastic differential equation and their
derivatives up to the order M(k, L), such that the following inequality holds!:

K(T)

otm = taVy (x)at2a/l b

2
( u> VO<t<T,VzeR" VYeeU,.
(6)

‘—aw 5pi(, 2)

A complementary result also holds whose proof is postponed to Section 5.

Proposition 2.1 Assume (H). Let L be such that Uy, is non void. Then there exists a
smooth function
(t,2,y) € (0,T] x R x U, — qu(2,y)

such that, for any measurable and bounded function ¢(-) with a compact support included
wn the set Ur, one has

Eg(X) = [ ¢©alz e . (7)

J Supp(¢)

'In the statement of Kusuoka and Stroock, the constants v;, u,(L) are equal to 0 under (H).
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Let L > 1, m be arbitrary integers and let o, 3 be multiindices. There exist positive
constants u, ¢ and there exists an increasing function K(-) such that, for any 0 <t < T,

ﬂexp< ||zy||2>_ 5

Vye Uy, Vze R, —az

2.2 The perturbed scheme.
If the uniform ellipticity condition
(H1) Ja >0, |lo(t,x)o*(t,z)|| > a, Y(t, x)

holds, then the law of X7(x) has a density p/.(z, ) w.r.t Lebesgue’s measure. It may be
false even if there exist L > 0 and o > 0 such that V7 (§) > o > 0, V€. That leads us to
consider a small perturbation of X7 whose law has a density.

In the whole paper, we refer to the following

Definition 2.2 Let py(-) be a smooth and symmetric probability density function with a
compact support in (—1,1). For § >0 and £ € R we define:

We now define a new approzimate value of Xp(z), denoted by Xi(x): let Z" be a
R*-valued random vector independent of (W;,0 < t < T) whose components are i.i.d.
and whose law is py,(§)dE; we set:

VO<t<T, XMax):=X"(x) ; Xi(z)=Xp(z)+2". (10)

We denote by pi(x,-) the density of the law of X}(x) w.r.t. Lebesgue’s measure.

2.3 Convergence rate for the density.

In [4] we have proven that, if inf,.ze V. (2) > 0 for some integer L and if the functions
b(-) and o(-) satisfy (H), then for any measurable and bounded function f(-),

Cy(T, x) N Qn(f, T, x) (11)
n n? ’

E,f(Xr) — FE,f(X}) = —

the terms Cf(T,x) and Q,(f, T, z) having the following property: there exists an integer
m, a non decreasing function K(-) depending on the coordinates of o(:) and b(-) and on
their derivatives up to the order m, and a positive real number ¢ such that

K(T)

Cr(T, )| + supn|Qu(f, T, )| < || f]loc (12)



(in fact, the estimate given in |4] is slightly different: the simplified version (12) takes the
boundedness of b(-) and o(+) into account). To get an expansion for pr(z,y) — ph(x,y),
it is natural to fix y, to choose f5(§) = ps(y — &) and to make § tend to 0. But the above
result is not sufficient since, when § tends to 0, (|| fs ||«) tends to infinity. Nevertheless,
if Fs(-) is the distribution function of the measure fs(£)d€, the sequence (|| Fs ||oo) is
constant: this gives the idea of proving inequalities of type (12) with || F' ||, instead
of || f |l~c when f(-) has a compact support, F(-) being the distribution function of the
measure f(&)d¢.

Before stating our main results we need to introduce some definitions.

2.4 Definitions.

Definition 2.3 Let (a"(t,z)) denote the matriz o(t,z)o*(t,z).

Let ¢(-,-) be a function of class C*([0,T) x R). We define the differential operator U
by

d d
Ut 2) = % S B () (2)6(t, 2) % Z )Bd(t, 2)
ij=1 k=1
1 d 2
+5, 2 EHE0u ) + 50002
d ) a 1 d
FYHO) S 00(,2) 3 3 ()5 06(2) (13)
Definition 2.4 We set

Proposition 2.1 shows that, if f(-) is a measurable and bounded function with a compact
support included in a non void set Uy defined as in (5), the function u(-,-) is of class
C>([0,T) x R%). We set

U(t, ) :=Uu(t,-) . (15)

Definition 2.5 Let L € IN — {0} such that the set Uy, is non void. For any measurable
bounded function f(-) with a compact support included in U;, we set

virp = inf Vi(£) >0 16
I E€Supp(f) T(g) ( )

and we denote by df(&) the distance of € to the support of f(-).
We also denote by ;.1 (§) any function defined on Uy, of the form

Sf,[l(f) = %exp (cdfgf) > : (17)

for some strictly positive constants ¢, q, q', Q) and some positive increasing function K(-).



2.5 Statements.

Theorem 2.6 Assume (H). Let L € IN—{0} be such that Uy, is non void and let x € Uy,.
Let f(-) be a measurable and bounded function with a compact support included in Uy,.
Let F(-) denote the distribution function of the measure f(&)d§.

Let W(-,-) be defined as in (15) and for x in U}, set
T
— / / e, 2)W (¢, 2)dzdt . (18)
0 JRd

The perturbed Euler scheme (10) satisfies: there exists some function ¢ r(-) (for some
efri(’fly positive constants Q, ¢, q, ¢ and some increasing function K(-)) and for each

n> - ( 5 there exists Ry (x) such that
G 1 s 1 pns
B f(X0) ~ BLf(X7) = —Lxl@) + LR () (19
and
g ()| + 1Ry ()] < F oo Ep i) - (20)

The function K (-) entering in the definition of £; 1(+) depends on the L™ (R norms (for
some integer m) of a finite number of partial derivatives of the function py(-).

Under (H1), i.e. when the generator of (X;) is strongly elliptic, (19)-(20) also hold
for X" instead of X" and any bounded measurable f(-) with a compact support:

B f(X1) = Bof(X]) = —wh(2) + R} (0) 1)
and
@) + 7] <l F e g e (20 ) (22)

Corollary 2.7 Assume (H). Let L € IN — {0} be such that Uy, is non void and let x and
y be in Uy, so that

Set
(T, y) / / pe(z, 2)Uagr (-, y))(2)dzdt (24)

where the operator U is defined as in (13) and the function qr_(-,y) is defined as in (7).

There exists a non decreasing function K(-), there exists some strictly positive con-
stants ¢, q, ¢', ¢" and for each n > there exists a function R}.(x,y) such that the
perturbed Euler scheme satisfies

||$ yll”

pr(.y) — Bhry) = () + R () (25)



with @ | ||2
K(T Ty
R < ez 0 ) 26

The function K(-) depends on the L™ (R") norms (for some integer m) of a finite number
of partial derivatives of the function py(-).

Under (H1), (25)-(26) also hold for all (x,y) and for p}(x,y) instead of pip(z,y):

1 1
V(z,y) € R x R?, pr(z,y) — ph(z,y) = ——mr(z,y) + 5 Ri(v,y) (27)
e K(T) lo—y |2
o)+ RG] < S e (12200 (29

Theorem 2.6 and Corollary 2.7 cannot be seen as extensions of (11) which holds for
the Euler scheme itself and for unbounded coefficients b(-), o(:). Nevertheless, the expan-
sion (25) can be used to get a result similar to (11) when Vi (-) is bounded below by a
strictly positive constant uniform. Even weaker assumptions are admissible as shown by
the following proposition.

Proposition 2.8 Assume (H). L et A be a Borel set such that A (the boundary of A)
is included into a non void set Uy, for some integer L > 1 (neither A nor A® is supposed
included in Uy,). Let x € Uy,.

Set .
mr(x, A) = /0 //Rd pe(z, 2)U(Pp_y La)(2)dz .
Then A Rho A
P, [XT c A] _p, [X;f c A] _ _71'7“(37, ) + T(q;a ) . (29)
n n
Besides,
) K(T
oo, ) + 1Ry ) < S0 e g ) (30)

Proof. Since Uy, is an open set and 0A is included in Uy, one can find a smooth function
¢(+) such that ((-) = La(-) on Uj. As Iy = ¢+ (L4 — (), the result follows from
Theorem 2.6 applied to f(-) = LLa — ((-) (since the support of f(-) is included in U}
by construction) and from Theorem 1 of Talay and Tubaro [14] applied to the smooth
function ¢(-) (the proof in [14] must be combined with the classical inequality (42) below
to get the exponential in (30)). W



3 Proofs of Theorem 2.6 and Corollary 2.7

For the sake of simplicity, in this section we use several technical estimates whose proofs
are deferred in the next sections. Besides, we do not treat the restrictive case where (H1)
holds, for which the arguments below can be used with some simplifications.

3.1 Proof of Theorem 2.6.

We recall the lemma 4.4 of [4]. The function ¥(-,-) being defined as in (15) there holds

2n2

E.f(X]) ~ Eof(Xr) = 5 Y BV (’“T /) + Zrk , (31)

where
o1 (w) = B, f(X}) — Ew(PT/nf)( ;LT/n) ’

and for k£ < n — 1, r}(z) can be explicited under a sum of terms, each of them being of
the form

(k+1)T/n
Em |:Q0h (X]T:T / / / 8 71(93,X )(]93(192(19]
o\ kT J KT /n k:T/n

T/n
(k+1)T/n

+o! (Xt /m) /kT/n

/kT/n /k:T/n (10,1 53)6 u(S% 53)d5‘;d82d51 (32)

where |a| < 6 and the ¢f’s, ©8’s, ¢l’s, ©’’s are products of functions which are partial
derivatives up to the order 3 of the a”’s and b'’s.

Thus,
E,f(XD) — B f(Xy) = Z/TEI\II(S,XS)CZS

T? 2 kT T (7
Ev (% x n——/ET\IJ‘,XSdE
nQZ ( kT/) nJo (5, X)ds

FRE(E) o)
+ Z (@) + Eof (X7) — Eo(Pryuf)(X7 1)

—. —/E\IJsX)d9+A”+B”+Zrk )+ . (33)

k=0

We observe that the estimate (38) below ensures that [ IE,|¥ (s, X,) |ds is finite.

10



First consider A": using It6’s formula and the estimate (38), we get

Z E \If(%T,XkT/n> / E, (s, X,)ds| < ||F||w5f;( z) | (34)

nk<n 1

Now we treat B". For 1 < k < n — 2, one applies the expansion (33), substituting the

function T
fus() =W ( )

to ().

Set up, 1 (t, 2) := Prrjn—tfor(-) and denote by W, (¢, -) the function defined in (15) with
U, x(t, ) instead of u(t, ) and kT /n instead of T. Thus, for some functions g,(-) € C;°(R?)
one has that, for ¢t < %T,

KT
Ul ) = 3 gr()0n [Pmn ‘I’<n )]
A
There holds:

kT kT T2 k2 3T n.
E, U ( XkT/n> - FE, U (7,ka,> = 7 ZE VA ( 7T/n> + Zr "(x) |

where the 77 *(2)’s are sums of terms of type (32) with u,  instead of w.

We use the inequalities (36) and (37) of the next section to upper bound the right
side; we get:

B kT . kT Erp()
B" < — > EN( mn> E,V <— XkT/n) < Pl 5= (35)
" k=0 n?
n—2
We proceed similarly to upper bound |»_ r}/(z)| and we apply (40) below to upper
k=0

bound C™. That ends the proof. B

3.2 Proof of Corollary 2.7.

Fix y € Uy, and choose § small enough to ensure that the support of the function

d i
E— ps(E—y) = Him(f 5y>

1=1

11



is included in the set Uy, (as V7 (+) is continuous the set Uy, is an open set).

Apply the estimate (19) with f(-) = ps(-—y). Then F(+) is the cumulative distribution
function of the measure ps(§ — y)d§; we denote by mrs,(-) and Ry, (-) the functions
appearing in the right side.

There holds:

1 1
E.ps(X7 —y) = E.ps( X7 —y) + EWT,(S,y(m) - ﬁRfr(sy(T) :

From Proposition 2.1 it is easy to check that 7y s,(x) tends to 7p(z,y) when 0 tends
to 0. Besides, as || F' [|< 1 it comes

: n K(T) [z —y|?
S sup OWW?J('T)‘ + ‘RTﬁvy(m)D = TV, () V()7 " (C# '

That ends the proof. B

4 Upper bounds uniform w.r.t. n

In this section we prove some technical propositions which have permitted us to upper
bound the remaining terms of the expansion (33) (cf. the inequalities (35) and (34)).

4.1 Statements.

The following proposition was used to treat the term B" of (33).

Proposition 4.1 Let z, L € IN — {0}, U, and the function f(-) be as in Theorem 2.6.

Let g(-), gx(*) be smooth functions in Ci°(R?, R). Let X\ be a multiindex. Then there
exist strictly positive constants ¢, q, ¢', Q, a positive increasing function K(-) and the
corresponding function E; 1(+) such that

T
Bulg(X)Ou(t, XD S| F oo Ep2(2) , VOSE<T = — (36)

and more generally, for any 6 in [t, T — %], for any function Wy(t,-) of the form

\Ijn‘)(ta ) = g)\(')a)\[Pé)ft\Ij(ea )] s
one has

T
B[ Vo(t, X <[ F floe Epp(a) , VOSE<O<T = — (37)

12



Similar inequalities hold for the processes (X;) instead of (X['); in that case, one may
take 0 <t <O <T:

B [g(Xi)oau(t, X)]| <[| F [loo Eprw) , VO<E<T (38)

and
|EL[Wo(t, Xo)l| <[| F' ||loc Erp(x) , VOSESOLST . (39)

The next proposition was used to treat the term C" of (33).
Proposition 4.2 Assume the hypotheses of Proposition 4.1. Then
B f(X7) = Bo(Prynf) (X7 )| S| F |l Eru(2) - (40)
Before proving the two above propositions, we need to prove the two following technical
lemmas, easy to obtain. The second one is interesting by itself.
4.2 Preliminary lemmas.

Lemma 4.3 Let x € R? and A C R? a closed set. The distance of x to A is denoted by
d(xz,A). Let ¢ > 0. For some strictly positive constants Cy, Cy and Cy uniform w.r.t. n,
T and 0 € (0,T], one has

d(Xr, A)? d(z, \)?
FE, exp (c%) < Cyexp (CHHCE%) , Vo< O <T. (41)

Proof. 1f d(z, A) = 0, the right side of (41) is larger than 1 for Cj > 1, thus the inequality
is true. If d(xz,A) > 0, one splits the left side in two parts corresponding to the events
A= X§ —z ||< 3d(z,A)] and A°. On A one has that (X}, A) > 1d(x, A), which gives

Xn A2 A2
(X5, A)” 09’ ) > < Cpexp (C’gd@j;} ) > :

FE, [ 04 exp (c

On the other hand,

A(Xp, A)?
0

1
E, [ Ty exp ( )] <P (I X30) 2 > gda,A)

Since b(-) and o(-) are bounded functions, we can use a standard inequality for certain con-
tinuous Brownian semimartingales (obtained from a Girsanov transformation combined
with Bernstein’s exponential inequality for continuous martingales):

d(z, \)?
)

P X5() - 211> 5d(x, A) (42)

S CO exp (C]H — CQ

13



Lemma 4.4 Under the hypotheses of Theorem 2.6, there exist some strictly positive con-
stants Q, q, ¢ and p such that

K(T d 2
VI >t>0, Vz€ R, |07u(t,2)] < || F |l Wexp (—c 1(2) ) . (43)
- fL

Proof. If d¢(z) = 0, the inequality is a consequence of (6) since Supp(f) C U,. We now
fix 2 € R? such that d;(z) > 0.

We first observe that since V() is a continuous function, one constructs a smooth
function (. s, : R® — [0,1] such that

(a) if ds(2) < /T —t then (. ;1 (y) =1 for all y;
(b) if ds(z) > VT —t then:

(b1) C.rr(y) = 0if Vi(y) < % or ds(y) > 52,

(b2) Cpu(y) =1if y € Supp(f),

(b3) Jpa Cpr(y)dy =1,

(b4) for any multiindex v with 1 < [y] < d, [0Y(;1.(y)| < dfc(z)q < (cht”)q/z , where C,
is uniform with respect to d(z) and vy, and where ¢ is positive and depends
on the dimension d only.

Since the support of f(-) is included in {£; (. ;.(§) = 1}, one has (see Proposition 2.1
for the definition of the smooth function gy_(-,-)):

Gult2) = [ BB ()
(1 [ By, g A0iar (2 9)C 10 F ()

We now use the inequality (8) proven below. For some constants ¢ and pu, for some
increasing function K (-), it comes

VI >t>0, Yz € R,

K(T) [ 2=g 17\ G (@),
Ot 2) < I Flle o Y [exp ( 717 19:Ces @y
(T*t)“ Oﬁz’;ﬁd' T—1t Vp(y)“
From the definition of . ;. (), one has
_ s 4y(2) ViL
10:Cepn ()] > 0= 2 =g [|2 == and Vi(y) 2 5=

14



Using the above conditions (a) or (b3) and (b4), we deduce (changing the definition of
K(-) from line to line and remembering that vy, < 1):

z K(7) e
Pt < I e (s

ds(z)° 1
exp(c)exp | —¢ T ¢ Ly o<yt t dy(2)a Doy (zy>vTi
K(T) dy(2)”
< F |- —C
|| || (T t)QV}l,L exp ( cC T ¢

4.3 Some recalls on Malliavin calculus.

Now we are in the position to prove Proposition 4.1. The proof uses some material of |4]
and some wellknown results which for convenience we first recall in this subsection. We
refer to Nualart [11] for an exposition of Malliavin calculus and the notation we use here
concerning the stochastic calculus of variations.

For G := (G',...,G™) € (ID>*)™, we denote by 7 its Malliavin covariance matrix,
i.e. the m x m-matrix defined by

”}/g =< DGl, _l)G7 >L2(U,T)

Definition 4.5 We say that the random vector G satisfies the nondegeneracy assumption
if its Malliavin covariance matriz is a.s. invertible and U the determinant of the inverse
matriz T := ;' satisfies

lee (N IP(Q) . (44)

p>1

Our analysis deeply uses the following integration by parts formula (see the section
V-9 in Tkeda-Wanabe [8] for the proof of (46) and see [4] for the proof of (47)):

Proposition 4.6 Let Gy € (D)™ satisfy the nondegeneracy condition of Definition 4.5
and let G in D>

Let {Hg} be the family of random variables depending on multiindices (8 of length
strictly larger than 1 and with coordinates B; € {1,...,m}, recursively defined in the
following way:

= > {G < DI, DG} >1201) +T¢, < DG, DG} > 1201
j=1
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+I¢, - G- LGY}
H/J’(GOJG) = H(ﬂl ----- ﬂA:)(GUJG)
= Hﬁk(GOJH(,B] ----- ﬁk—l)(GU?G))‘ (45>

Let ¢(-) be a smooth function with polynomial growth.

Then, for any multiindex c,
E[(0.¢)(Go)G] = E[p(Go)Ha(Go, G)] - (46)

Besides, for any p > 1 and any multiindex 3, there exist a constant C(p,3) > 0 and
integers k(p, 3), m(p, 3), m'(p, ), N(p,3), N'(p,), such that, for any measurable set
A C Q and any Gy, G as above, one has

1

E[|Hs(Go, G)I” Lalr < C(0.8) ITay Lallws) G nesymms) |Goll vy mms - (47)

In this paper we need the following “local” version of the preceding, where (5, satisfies
the nondegeneracy condition of Definition 4.5 only locally:

Proposition 4.7 Let Gy € (D>)™ and let G in D>,

Suppose that for some multiindez o, vyq, s tnvertible a.s. on the set

G#0] U [D°G #0]

181<le|

and that, for any p > 1,

E {FGO Lier01U gy (D7670]

,,} <. (48)

Let {Hgz} be defined as above.
Let ¢(-) be a smooth function with polynomial growth.
Then
E[(aa¢)(G0)G] = E[¢(G0)HO(G07G) ﬂ[G;ﬁo}UWSM[DﬂG;&o}] . (49)

Besides, if A C |G # 0]Ujp<|a)[D°G # 0] then the inequality (47) holds for  such that
18] < |al.

Proof. Consider a Gaussian standard variable G independent of (G, G) and define
G. := Gy + eG. Since

I <

~ 3
€2d

16



we may apply (46):
E[(0.9)(G:)G] = E[$(G:)Ha(G:, G)]
= F ¢(G6)H0(G57G)] ﬂ[G#O}UWSM[DﬁG#U}

Observe that
¢(G-)Ho (G-, G) D—[G;&O}Uwg‘a‘[DﬁGio}] — ¢(Go)Ho(Go, G) L2010 [PPG0] @S-

Besides, for all p > 1,

p

~

p
E e, Digsoy, .. 00z =F

La, Lias01, . [PPG0]

Thus, the hypothesis (48) and a uniform integrability argument lead to the conclusion.
|

4.4 Proof of Proposition 4.1.

We only prove (36): the arguments to add in order to get (37) follow the same guidelines
as those we used in the proof of Lemma 4.2 in [4]. We also limit ourselves to the process
(X/"): for (X;), the proof below can be simplified, in the sense that a localization procedure
is unnecessary (which explains that the result holds for 7' — £ <¢ < T also).

We also suppose ds(z) > 0: the case ds(x) = 0 only differs by some simplifications in
the proof.

We successively will consider the cases where ¢ is “small” (less than L) and “large”

2
between £ and T — L).
2 n

4.4.1 Small #: ¢ in [0, 1].

Since g(+) is a bounded function, in view of (43) it comes

" n K(T) n)2q — Lth)Q
1B, [g(X)dau(t, X1 < || F o W—_WﬁJr/Emd_f(xt) E, lexp( et )] .

Use the fact that 7> T —t > % Then the inequality (41) permits to conclude.

17



4.4.2 Large #: t in [£,7 — Z].
Let ¢ € C;°(IR) such that ¢(z) =1 for |z < 1, ¢(z) =0 for [z| > 1 and 0 < ¢(z) < 1 for

2| € (3,3)-

Let ; (resp. v7') be the Malliavin covariance matrix of X; (resp. X'), and let 4, (resp.
47) be their determinants. Define

. (3 — %)
i
Consider
E,[g(X{)0ou(t, X7)] = E[(1— o(r})g(X;)Oau(t, X[')]
+ B [o(ri)g(X{)Daul(t, X))
= A+B. (50)
Using the inequalities (41) and (43) and then the fact that 2 < - < 2 since

T T
5 < T — —, one gets

(NI

Al

IN

K(T) ds(@)’ e
I F e g e (c;_t) (B.1 - o]

| F oo Eru(Tow) (Bl = 8(r) ]

IN

Slightly modifying the proof of Lemma 5.1 in [4] to take the boundedness of b(-) and o(-)
into account, we can prove that for any p > 1, there exists an increasing function K(-)
depending on p such that

[E|1— ¢(rM)?]? < K(T)n %, V0<t<T. (51)
It remains to choose p = 4u to get the expected upper bound for A:

Al <[ F oo E0(T' ) (52)

Let us now treat B which is the really interesting term.

Consider X" as an element of (D). Apply the “local” Malliavin integration by parts
formula (49). Setting
H(t) == Ha(X{, g(X7)e(r]))

it comes

B = E,[u(t,X])H" ()]



Consider a process (X;) which is a weak solution of (1) independent of (X;); denote
by (Q, F, P) the probability space on which (X,) is defined, and F the expectation under
P. Tt comes: . .

B=FE,[H(t)E.f(Xr )B._x;]| .

Now, choose a C*(R?) function with compact support (, s () such that %
(a) if df(z) < VT then (. ;1. (&) =1 for all &;
(b) if ds(x) > /T then:

(b1) Cpn(€) =0if ds(€) > 42,
(b2) Csr(€) =1if €€ Supp(f),

(b3) for any multiindex v |09(; 1 (§)] < dﬁ—;)q < (TC)V—;’/Z, where C, is uniform with
respect to ds(z) and where ¢ is positive and depends on the dimension d and

on v only.

The role of this localization function is to keep the memory of the support of f(-) in the
Malliavin integration by parts procedure, in order to make the exponential term of & 1 ()
appear.

Then,

I
I
=

3
—
~
S—
i
&
§QJ
<
=3
—~
<
i
N
&
=
h
—
<
i
=,
=
i
>
3

.....

We now apply the proposition 5.2 in [4]: let Xg(-,d}) denote a version of class C> of
the stochastic flow 2 — Xy(2,w); let Yp(-,@) denote its Jacobian matrix and Z,(-, @) the
inverse matrix of Yy(-, @); there exists processes (Qj) such that

(0r...0a ) (X0(2) = D2 Qg (2)00{ 00y F 0 X+, D)} (2) a5, (53)

Al<d

and Q) (z) is a polynomial function of the coordinates of Zy(z,»). Thus, choosing z = X'
and § =T — t, one gets

B= Y EE, [HI(N0{F o Xr (= )}Q} (2)Cs1(Xroi(.5))Bexy]

AI<d

As in Section 5.1.2 of [4] we observe that H!(¢) is a sum of terms, each one being a
product which includes a partial derivative of ¢(-) evaluated at point r}’; we thus may

2At the beginning of the proof we have supposed that d;(x) > 0.
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again apply the integration by parts formula (49) with Gy = X|'; we obtain for some
processes (H} \(1)),

B=3) EE, [ﬁg,)\(t)F o XT,t(z,G))BZ:th] )
A

from which

BI<|| Flle Y2 EE, [H (1) -
A

Observe that ﬁ[gv)\(t) is a sum of terms, each one being a product which includes a

partial derivative of (, s () evaluated at a point )N(T,t(z)l’)’z:x;m and of a partial derivative
of ¢(-) evaluated at point r}". Thus,

HY () = HY (1) Loaya(rd']) Lsupp(co sr) (XTft(Za‘:})Bz:Xf(w)) :
On |r}| < % one has g’yt > A0 > %’yt and therefore

Hi (1) = Hyy (1) D34, 550515, Lsupp(c,.z.0) (XTft(Zad})Bz:Xt"(wO -

We fix @. The inequality (47) (remember Proposition 4.7) leads to the following
inequality, where the Sobolev norms are computed w.r.t. P on 2:

FE,

ﬁz,)\ (fa (:))

< CHF?(”’) Ly (a)>Lau(@)] Lsupp(Ca.s.n) (XT*t(Z’J’)BZZWW)

> I
X7 @l [H2AD@ () s 1B o2 2) By

(54)

N'm'
for some integers k, N, m, N',m'. We are now going to treat each term of the right side.

First, it is clear that

LS K(T)

Second, let us check that

[P (2) Lppap>y5

E H L Supp(Ca.s.1) (XT’t(Z’ (D)BZZX?(JU)) HQk -

Indeed,

i i - dy(x)
E [ ILS'upp(Cz,f,L) (XTft(Zaw)Bz:Xf(z))] < P® P [H XTft(Z)BZ:XZ’(w) -z ||2 f2

N
=

3
IV

Po P [n K (2B — X0 |

w7 - 2 47
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Using (42) again, we get,

B[ Loupmic ) (Xr (2 0)Bospin)] < K (T) [p (cdf;f)?) t e (c;fuf)] |

We now use the fact that 7' > ¢ > %

Next, proceeding as in the proof of Lemma 5.1 in |4] and using the additional hypoth-
esis that b(-) and o(+) are bounded, we get

sup |17 () wm < K (1)

Obviously, from the above condition (b3) of the definition of (, ;. (-) there holds (see
the detailed arguments in the proof of Lemma 4.4):

E HHZ,)\(t)Q%—t(Z)Cm,f,L(XTft(Za w))B.=xp ()

K(T) 4y (o)
Nt W exp (C T .

Combining all the preceding remarks, we have got that

B <|| F e S0 o (cd-f<”“”>2) .

T4 T

In conclusion, the preceding estimate, (50) and (52) prove that the inequality (36)
holds for % gth—%. [}

4.5 Proof of Proposition 4.2.

With ¢(-) and 7} defined as in the preceding proof, consider

A= B[P 607 r.)]

B = E, [(u(T, X3) = u(T = T/n, X} g + 2607 770)]

c* = B, [(u(T —T/n, X7 g+ Z") = u(T = T/n, XE?,T/n))@ﬁ(T?*T/n)] ;
D* = E, [U(T —T/n, X7 _7/,)(1 — ¢(7“777¢7“/n))} '

Clearly, it is sufficient to prove that |A*|, |B*|, |C*|, |D*| can be bounded from above
by the right side of (40).

Let us start with A*. We again consider the smooth function ¢, ;. (-) of the preceding
proof. We observe that, for a certain set A of multiindices of length smaller than d,

AT = B (1 005 ) [ FOX7 4 2Gga (X7 + 2)pu(2)d2]

AEA

- FE, {(1 — O(rr_7/n)) > / F(X7 4 2)0x(p1/n(2)Co (X7 + z))dz}
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Remembering that we have supposed n > ﬁ, we deduce that, for some constant C

linearly depending on the L%(IR?)-norm of the 0\py’s, for some ¢ > 0 and Q > 0 there
holds

C 1
A% < —Ta | F oo \/E;C(l — ¢(r’72T/n))2JIP$ [d_f(Xﬁ S5 ﬁ] :

Observe that
dy(z)
2

C

x5 <

I ol > 447

We then conclude by applying the inequalities (42) and (51):

. K(T) 42’
|A|<W||F||ooexp(c W

Next, we observe that

. T’ n n n
B*— —F, [W(T — T/TL, XTfT/n + 7 )¢<TT7T/n)j|

n2

is a sum of terms of the type (32). We then apply the arguments used in the subsec-
tion 4.4.2, especially the integration by parts formula (49) with Gy = X7 1, (2). Of
course, we also use the fact that Z” is independent of the process (W,).

For the term C* we directly apply (49). For the term D* we use the same arguments
as for A*. B

5 An exponential bound for the local density ¢
The objective of this section is to prove Proposition 2.1. For convenience we recall it.

Proposition 5.1 Assume (H). Let L be such that Uy, is non void.

(1) Then there ezists a smooth function
(t.2,6) € (0.T) x R* x U, — q1(2,€)

such that, for any measurable and bounded function ¢(-) with a compact support
included wn Uy, one has

E.6(X,) = /g oy POz 0)E V2 € R (55)

22



(ii) Let L > 1, m be arbitrary integers and let o, f be multiindices. There exist positive
constants i, ¢ and there ezists an increasing function K(-) such that, for any
0<t<T,

LpS

K(T —y||?
VyeU,, Vze R, ‘atm L0501 (2,y)| < (7)#exp (—0M> . (56)

~ (tVi(y)) t

Inequalities of this type are classical when the infinitesimal generator of (X;) is strongly
elliptic: for example, see Friedman |7]. We have not found (8) in the literature under our
hypotheses. Observe that nevertheless it is a variation of (6): the roles of z and y are
permuted.

To prove the result, we first note that the Fokker-Planck equation permits to only
consider the case of spatial derivatives: from now on, we set m = 0.

Theorem 2.1 in Bally and Pardoux [1] provides a “localized” version of Malliavin’s
absolute continuity criterion and permits to construct a smooth function ¢(z, -) for each
(t,2) € (0,T] x R%. Here we prove the differentiability with respect to all the variables.

Proof. (i) Consider the sequence of open sets

Us = {€ ; VL(£)>6}ﬂB<0,%> |

Let ¢¢(-) be a smooth function with a compact support in Uy, and such that (*(§) =1 in
U;j. Consider the finite measure

dPx,)(§)C(§)dz .

Let (2, &) be a smooth function with a compact support in R? x R? and let a, (3 be
multiindices. One has:

[ (0:050) (2, )¢ (€)Px, -2
= B [ [(0:050) (2 Xu(2))¢"(Xul2))] d2
= E [ [(90) (2, X(20)0 {C (Xi(2))}] d2

oy [(a};w) (5 X2) 3 (0:¢) (Xil2)Qs z>] ‘

I7I<]e]

for some polynomial functions Q. (t, z) of the derivatives of the flow of X*(z). We now
apply Proposition 4.7: for some positive constant C' independent of ¢(+) it holds that

[ (0:050) (2,0 ()P ey ()2

< Ol poe(ra s mey -
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Thus, the measure (“(§)dPy,(-)(§{)dz has a smooth density ¢;(z, {) with respect to Lebesgue’s
measure. Therefore, for any € > 0 and ¢ > 0, for any smooth function ¢¢(-) with a compact
support in Uj, one has

E.v'(X) = [ ai(z )0 (§)dg .
For y € Uy, set e(y) := sup{e;y € Us}. Now for (z,y) € R? x U, define

a(zy) =" (2,9) .
By construction this function is a smooth function and satisfies (55).
(ii) We now turn our attention to (56). Let y € Uy.

Define ps(-) as before and set ¢ > 0. We consider the case m = |a| = 0 and || > 0:
one can treat the other cases with analoguous arguments (for m > 0 one must use the
Fokker-Planck equation in addition).

As q;(+,-) is a smooth function,

3q:(2,y) = }sigg)/pé(f)agqt(z,wf)dﬁ :
Thus, integrating by parts we get

1950:(2, y)| = [1im E[(33p5.-)(Xe(2) = )l

where
Poy= () = ﬁ] % {Po (fi 3 y) Ljyising + (Po (fi = y) - 1) ﬂ[yizigo}} .
Define
Ay = {611 > )}

Bl = {& V9> 31}

Since the application V7,(+) is continuous, the closure of By (y) is included in A.(y) and
one may find a function ¢, .(-) in C*°(R?) taking its value in [0, 1] such that

(@) Cyr(z) =0if z € Aj(y) or d(z, Br) > Vi(y),
(b) Guilz) =1if z € Br(y),

(c) for any multiindex A,

C
05 <

| )\Cy,L(Z)‘ = VL(,U)LD‘

where ' and ¢, are positive and uniform w.r.t y € U, and L.
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Observe that, for all § small enough, for all £ € R?,

0% 05,42 (& — y) = 0pps,y.- (€ — 1)y (E) -

Consequently,

E.[(0505.y.-)(Xi = y)] = E-[(0ps,4.2) (Xs — y) Gy 1.(X0)] -

We again apply Proposition 4.7: the Malliavin integration by parts formula implies that
the right side is equal to

E.[®5,.(X: —y)Ha(Xe, G0(X0))]

with ¢ ¢
1 d
Do o(€) i= [ [ s
Thus, making § tend to 0, we get
d

ath<Z> U) = FE. [Hﬁ(Xta Cy,L(Xt)) H { ]1[0,+oo)<X: - UZ) ]]-[yifzi>0}

1=1

— ]l(,oc,g}(XZ — y’) ]l[yi,zigg}}] .

Hs(X4, (,.0(X:)) is a sum of terms, each one containing (, 1,(-) or a derivative of ¢, 1(-),
functions which vanish on the set Ay (y), so that

Hy(Xy, Cyr(Xy)) = Hg( Xy, Gy n(Xy)) Tay)(Xy)

whence

Baz)| < B [Ha(Xe Gua(X0)) L, ) (X0)]

d
\IEZ II [ Do ooy (Xi = ¢") Ly zine) + L oo 0)(X{ = ¥') ]]-[yifzig[]ﬂ :
i—1
Using the inequality (42) and standard computations (see [10] or [4]) one gets
- Iz —ylP
050 (2,9) | < K(T) | Lap)(Xe(2))Te(2) e Y- 103Gy (Xe(2)) ], e3P (Ci

A€EA t

for some integers k, N and m, and a finite set A of multiindices.

We now use the condition (c¢) of the definition of ¢, (). To conclude, it remains to
apply the inequality (58) below with A = A (y) using the fact that Vi (A) = V,(AL(y)) >
Vi(y) > 0. We then get (56). W
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6 An LP-estimate for the inverse Malliavin covariance
matrix

The aim of this section is to prove the following

Proposition 6.1 Assume (H).

Fiz two arbitrary integers p and L in IN —{0}. Then there exists a positive constant
and an increasing function K, ,(-) both depending on p and L which satisfy the following:
for any Borel set A, if

Vi(4) = inf Vi (€) > 0 (57)

then, for all0 <t < T, for all z € R?,

Ky p(t)

AT (58)

I Da(Xe(2)7e(2)  [lp<

Proof. First we show that it is sufficient to prove that, for all p > 1 there exist strictly
positive constants u, @, Q' and an increasing function K ,(-) such that, for all z € R,
for all 7>t > 0, for all 0 < £ < min(¢~%,t9"), for all Borel set A for which (57) holds,

KL,p (t) 6p+2

P.|TL,(X) | <e, X e Al < ————— 59
[ A( t)|/7t|75 t € ]7 (YLVL(A))“ ( )
Indeed, we would then have

E. [ ]]-A(Xt)|/?t7]|p} = Z E. [ TA(Xt) "Yf ! k< TLa(Xe)3; M <k+1] ]]-[Xf,EA}:|

< 1+ ];(k +1)PP. <[ DA (Xe) %] < ﬂ X € A])

K (1) n K (1) i (k+ 1)

<
- tQ" VL (A)H kp+2

Thus, as by definition 0 < V;,(A) < 1, we would have obtained (58) (with a new function
K ,(-) and a possibly new constant p).

Thus, we are going to prove (59).
We start with some localizations.

Under (H), the function Vi (+) is uniformly Lipschitz. Thus, there exists a constant d,
depending only on L, b(-) and o(-) such that

Vi(A)

(60)
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Set

(61)

and
Bo =[] Xo = Xoove |[< 0LVL(A)] (62)

A Girsanov transformation and Tschebycheft’s inequality show that under (H), for
any ¢ > 1 and for some increasing function K ,(-) uniform w.r.t. A,

KL,q(t)é"Yq

P(Q-B.)< v, (A

(63)

We introduce another set of localization. Again denote by Y;(z) the matrix 0% X,(z)
and denote by Z;(z) the inverse matrix of Y;(z). Set

CE = ”éﬁlﬁ] || Z;LE-th ||Z 1 ) (64)

An easy algebraic computation shows that

1
inf Z*7 f = 3
l€l=1 I 2a it ] SUP|i¢|=1 | Yieni€ |

so that for any ¢ > 1 and for some increasing function K,(-) only depending on b(-), o(-)

and q,
2q

POQ-C)<E < K, () . (65)

sup ||Y;757t£||
l€l=1

Thus, (63), (65) and 0 < V7,(A) < 1 reduce the proof of (59) to the proof of

P [ 14(X)5% <e; [X, e AJNC.NB] < Ko, (1)

+2
< t”VL(A)ng : (66)

Instead of keeping 7, we will use a new matrix 7, which we now define. Set

- i'/Ot(Zsa’:(Xs))(Zsai(Xs))*ds .
Observe that, by the variation of constants formula, one has
Ve =YimY;
Since, for all ¢ > 1, there exists an increasing function K,(-) such that
VD)™ < Ky (8)
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it is sufficient to prove (66) with 7; instead of ~,.

For any symmetric nonnegative definite d x d matrix M, one has:

det(M)"* > Hlﬁlf < MEE> .

Therefore (observe that 0 < e <1 by definition),

> Iénf]/f Z,0"(X,)(Z,0' (X,))"€ds
i=1

> Z inf E(Z,0'(X,))(Z0' (X)) Eds .

i=1 lEl=1 Je—ert
Observe that, for ¢t — 7t < s < t the inverse matrix of Y;(x), Z(x), satifies:

Zs(ﬂ?) = thsﬂf(m)zsf(tfe“ft)(thswf(x)) )

so that
71> i [ Tty 7 (X 2
; Hgll 1Jt—evt <& e, Si(tigwt)(y)a ( Si(t*avt)(y)) = ‘y:thswdS '
On C., for ||£]| = 1 one has ||€*Z;_.~|| > 1. Thus, on C,,
d t
A > inf <E Lo 1y ()T (X ey () > d
" B ;Héﬁlz] t—evt & s=(t=e t)<y)a< a(t=e t)(y)) ‘yixtﬂw °
= zd: lnf ; < ga Zs(y)07(Xe(y)) >2 ‘ dS
“el=1Jo y=X; e
=: Gl/d .
Therefore, a sufficient condition for (66) is
K
PZ Gtﬂggg;[XtEAﬂB]_%ng—?_ (67)
I

Let us now turn our attention to the localization in B.. On B. N[X; € A], one has

Vi(A)
T

VL(Xt—aw) >
Thus, a new sufficient condition for (66) is

et .
/P [ 1nf <&, ZS(IZ(XS) > ds <eg II'[VL(y)ZVLéA)}dPthﬂt(z)(y)

i lEll=1.
Kﬁ,p(t) ePt2
OtV (A)H '
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We finally observe that the preceding inequality follows from the estimate (68) in the
theorem below (with 7 = #E+1gl/CGLA1) )\ — LD =(L4+1)/CL41) an(
£ < min(tFEHD = (EFDERLFDY) y being defined as in (61), which ends the proof. W

We have just referred to the following theorem (Theorem 2.17 in [10]):

Theorem 6.2 (Kusuoka-Stroock) Assume (H). There ezists a positive constant C' de-
pending only on b(+) and o(-) and for any L > 1 there ezist positive constants uy,, C, such
that, for any 0 < 7 < 1, for any A > 1,

d /AL (E4D) ' L
P, [Z inf <€ Z,0'(X,) > ds < | < Crexp (—CVi(y) D N
=1 =1.0
(68)
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