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Abstract

Given the solution (X;) of a Stochastic Differential System, two
situations are considered: computation of E f(X,) by a Monte-Carlo
method and, in the ergodic case, integration of a function f w.r.t. the
invariant probability law of (X;) by simulating a simple trajectory.

For each case it is proved the expansion of the global approxima-
tion error — for a class of discretisation schemes and of functions f
— in powers of the discretisation step size, extending in the first case
a result of Gragg for deterministic O.D.E.

Some numerical examples are shown to illustrate the application of
extrapolation methods, justified by the foregoing expansion, in order
to improve the approximation accuracy.

1 Introduction
Let us consider the following 1t6 stochastic differential equation :
dX = b(t, Xy )dt + o(t, X )dW, (1)

where (X;) is a stochastic process in IR, (W,) is a Wiener process in IR,
b(t,x) is a d-vector and o(t,z) is a d x {-matrix.

We will denote the solution of (1) with the deterministic initial condition
» at time s (i.e X, = x), by (X7).
coefficients b and o are smooth, so that the existence and uniqueness of

(We will suppose below that the

this solution are ensured).
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Let Y be a random variable independent of any increment W, — W, of
the Wiener process, and having moments of any order. The solution of (1)
with initial condition Xy = ¥ at time 0 will be denoted by (X;).

Let us first consider the numerical evaluation of the quantity

Ef(Xr)

where T is sorne fixed time, and fa giv911 smooth function from IRY — IR,
by a Monte-Carlo method based upon the simulation of a pie¢ewise constant
approximating process (Yz,p € IN}). '

We divide the interval [0,T] in n subintervals with the same length h :
in other words 3

h=T/n

According to our notation, X" is X% ; we want to study the global error
Err(T,h) = Ef(X7) - Ef(X2) (2)

It is already known ([5] or [4]) that the Euler and Milshtein discretization
schemes (defined below) are of first order, i.e the global error satisfies : there
exists a positive constant C(T'), independent of h, such that :

|E%r(T, RY < (TR (3)

Here we want to study Err(T,k) as a function of A ; more precisely,
after preliminary results given in Section 2.1, in Section 2.2, we will give
an expansion of Err(T,h) of the form :

Err(T,h) = ef(T)h + e2(T)R® + oo + e (T)R™ + O(h™H)

This expansion justifies an extrapolation technique, described in Sub-
section 2.3 and tested in Subsections 2.4 and 2.5, which permiits to obtain
results of the same theoretical accuracy as those provided by second order
schemes. The algorithm is very simple, and our numerical experiments seem
to show also that this procedure has an interesting numerical behaviour,
and permits to save CPU time.

Another motivation of this work was a priori strange numerical results
obtained at least on the situation described in Subsection 2.5 : we consider
a (not so much) particular system (1), whose coeflicients depend on a pa-
rameter v ; for v < 1, we observe that the numerical results provided by
Euler and Milshtein schemes have the same accuracy, as predicted by the
estimation (3). For v > 1, we observe that Milshtein scheme (but not Buler
scheme) provides very inaccurate results, except for very small h. We will
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completely explain this difference of behaviour of the tvy‘& schemes, thanks
to an explicit computation of the corresponding functions eq(1).

In Section 3, an analogous work will be achieved for the numerical inte-
gration of f w.r.t. the invariant probability law of the process (X;) (in the

ergodic case).

2 The case of approximations of Ef(Xy)

2.1 Preliminary results

H N s . .
First, we introduce the following numerical scheme (Euler scheme) :

1‘;3 = X() ) (4)
Xh= XI ot o(ph, X)AL W + b(ph, X] )R

where we have set. AZHW’ = Wepnyn = Won.
Now, let us define the Milshtein scheme.
Let o; denote the j** column of o, and do; denote the matrix whose

: " ;
element of the " row and k*" column is o'y .
We begin by defining the family (U,},) of i.i.d. random variables, their

COMiINo 1'(1W b(“,illg deﬁne(l })V N
-1 i
I)([[:)‘] j— ) — I,)(lf:)‘.

and such that the ((wl':i‘l, Ag%‘ﬂlﬂ)p‘q,k'j,l’s are mutually independent.

Then we define :

Zy, %A,’;HW“AZ AWM R k<
A %A;;anmgnwi ~ 0 k>
Zi, = %((A;HWJ‘)Z - h)
and finally the Milshtein scheme by :
X, o= X+ i:aj(ph,TZI)A&,IH”. + b(ph, X )k
FES!

T« =h =h kj
+ L do;{ph, X Yo (ph, X p)Zer]
Jk=1
The proofs of the following two lemmas are easy, the arguments can be

found in Talay [5].
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Lemma 1 Suppose that the b;’s and the o;;’s are Lipschitz continuous func-
tions. Then, for any integer k, there exists a strictly positive constant C
such that :

EIXp[" < et

for any p between 0 and n.

Let us now consider the class Fr of functions ¢ : [0 T} x R* - IR with
the following properties : ¢ is of class C*, and, for some positive integer s
and positive C(T') :

Ve e[0,T] , Yz eR? : |$(6,2) |< C(T)(1+ |z |) (5)

A function ¢ of Fr will be called homogeneous if it does not depend
on the time variable : ¢(6,z) = ¢(z).
We will denote by £ the differential operator associated to (1) :

cv%}: (t,2)d; %Zb’(z‘ )0; (6)

where a(t,z) = o(t,z) (f z)
If ¢ € Fr then the functlon w(f;t, ), defined by

w(b;t,2) = Bg(0, X3°) = Ev (6, X1)

verifies the following equation :

Jdu _
{ 71 F1£u = 0 (7)
w(@, T, x) = ¢(0,x)

Moreover, we have the following result

Lemuma 2 Let us suppose that the functions b and o are C® functions,
whose derfvatives of any order are bounded.
For any multi-index o, there ewist strictly positive constants ko (T,

Co(T) such that :
V8 e [0,T] | B,u(ft,z)|< C AT+ |2 |k”(7)
Here by 0, we mean the mixed partial derivative of order |ex]

glel
AT 3o

where o = (ay, @3, .., ), and Ja| = oy + ... .
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2.2 Main result

In all the sequel, we suppose that the functions b and o are C*™ functions,
whose derivatives of any order are bounded. t
Consider a homogeneous function f of Fr, and u(t,z) = Ef(Xy")

which solves :
Gerow = o (8)
WTye) = f(z)
Then we have
Erv(T,h) = Eu(T, X!) - Bu(0,Y)
Let us first consider the Fuler scheme. B
We compute Eu(T, X") — Bu((n — 1)h, X" |) by performing a Taylor
expansion at the point ((n — 1)k, X! ), of the form :
2

% , 0
u(t+ A,z + Az) = u(t, ) +Af%~u atzu(l‘ , x)

+ At Z Ax® é?u(t :c)(? w(t,®)

forf=1

1 a
z )0 ult,
2At|§zAt 0t u(t,z)dult, z)

(t,z) + (Af

1 9]
2)dnu(t, @
+6At|§:2AT o u(t, z)Oult, z)

1

'O‘| [

Z Ax“O.u(t,z) + ..

=1
where o = (ay,...,a,) and Az™ means :
Az® = (Azy)™ .. (Az,)™
One gets after some easy but tedious computations (cf [5]) :
Bu(T, X%) = Bu((n — 1)h, £2y) + 12Biful(n — 1)h, ¥1_) + hRY
where
1 9. .
Pe(t,z) = 5221b’(f.,x)b’(t,x)(?,-ju(i,a')
d

+% ST b(Y, z)al (t, @) u(t, x)

4,7,k=1
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1 & . 1.97

+~S— Z ai(t, z)a) (1, 2) 0 mult, z) ,%21 (i r)
O iki=1
d d ,
- a 1 d v

+Lb( )a(")uf"r - 52 O,Ju(f xz)  (9)
i=1 - 1=1

and there exists a constant (/(T') independent of h such that :
[RL] < (1)

We can use the same expansion for w{(n — Dh, X 1) and, continuing
in this way n times, we arrive to :

n--1

Eu(T, X)) = Bu(0,Y) + h* " B (jh, £) + h2RE (10)
j=0
with
IRA < C(T)

Proposition 1 There exists a real number C(T'), independent on h, such

that :
-1

h>" Elip. ]h,X” )| < C(T)

3=0

Proof. That follows from Lemma 1 and Lemma 2. 0O

Proposition 2 For any function ¢ of Fr, there exists a real number C(Ty,
mdependent on h, such that :

E¢(0, X}) = E¢(6, Xz) + Rr(h)
with |Ry(h)| < C(T)h.
Proof. This easily follows from Proposition 1 and equality (10). O

Proposition 3

n-1

N T
hZEd’e(jh,Xj’.’)—-/ Ev.(s, X, )ds| = O(h).
i=1 /0
Proof.
th (b, X1 - / B (s, X, )ds| <
=1
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n-1 : H’:‘
hy 2 Be(h, X7) — By (5h, Xjn)|+
i=1

n—1 T
Hi S B (Gh, X0) — /U Ev. (s, X,)ds|.
i=1 ’

Now we have for the first term:

n—1 -1

(jh, XT) — Z (b, Xin)

) = O1)

because one may easily check that the function (¢, ) belongs to Fr, and
therefore Proposition 2 implies :

B, ik, X2) = B (iR, Xl < C(T)h.

On the other hand

n-1

(iR, Xn) — / Ev.(s, X,)ds| = O(h),

since the function

s = Ed’e( 5, )(s )

has a continuous first derivative. O
We can conclude, sununarising (and extending in an obvious way) the

preceding results, with the

Theorem 1 (i) For the Euler scheme, the error is given by :
Err(T,h) = — h/ Ev. (s, X,)ds + O(h?) (11)

where () ts defined by (9).

(ii) The same result extends to the Milshiein scheme :
T
Errn(T, k) = 41/ Ev(s, X, )ds + O(h?)
Jo
where P, (-) 1s defined by :

1 1 P i2
Pn(tw) = del(tye) + 5 S a(ta)do ()0 (@) B pult, )
iy,12,0,k,0
1 { T2 i3 ;
+‘2' Z }:(f,:l’)O'j;(f,:t‘)!)‘i(f,{[‘)ak(rjz(f,m)ai!i2{3ll.(f,(l‘l)2)
Wk
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(1ii) For the second order schemes of [5], the global error can be written

T
Ere(T, h) = h?/ Ey(s, X,)ds + O(h%)
0

for some smooth function ~.

(iv) Moreover, for all these schemes, it is possible to obiain an ezpansion

of the form :

Err(Tyh) = e(T)N + e, (T 4 o+ en(T)R™ + O(R™) (13)

Remark

Gragg [2] has obtained an analogous result for the expansion of the global
error of a very large class of discretization schemes of ordinary differen-
tial equations (which correspond to the particular case a(-) = 0). But the
method of Gragg, consisting in searching O.D.E’s whose solutions are the
functions e;(t), here is hopeless. Of course, our method provides an alter-
native proof of the result of Gragg (for the schemes treated in the previous
Theorem).

2.3 Some applications

Just as in the case of ordinary differential equations, it is possible to carry
on to the stochastic case some usual applications of the expansion of the
error.

First, we can control the discretization step size, choosing at each step
a new h, on the base of an estimate of e;(T) : for example, (cf [2] e.g.),
we first perform an approximation with the step size h, then a second one
with the step size h/2. By (13) we have

BA(X) ~ BA(XY?) = ey(T)5 + O(A?)

from which we can estimate e1(T) : now again by (13), we can choose a
new / in order to get the error less than a given tolerance e.

The second application is the use of polynomial (or rational) extrapo-
lation methods, (again see [1] e.g.), to improve the approximation to the
true solution : it is essential for this purpose to have an expansion such as
(13).

Let us consider a scheme such that -

Err(T,h) = e1(T)h + O(h?)
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and consider the following new approximation (the Romberg extrapolation)
z} = 2Bf(X7"") - Bf(X}) (14)
then it is easy to check that
Ef(Xr) — Z7 = O(h?)

That is, it is possible to get a result of precision of order A? from results

given by a first-order scheme .
Actually, it is possible to extend the argument if (13) is verified. In such

a case consider a sequence
ho>hy>hy > ... > hp
and the corresponding values
Zio = Ef(j%)

We can construct the following scheme

Zoo
Zoy
Z1o Zoy
Z1 ! Zum
Zg() H Zmz
H Zml
Zmo
where
Zik = Zig-1 + ————————-—-Zl'k‘;“k Zt"l’k_l-
R 1
Then

Ef(Xr) = Zmm(h) = O(A™).

Let us underline that, in Talay [5], the Romberg extrapolation was used
in a very different way, since the extrapolation was not performed on the
expectations corresponding to the Euler scheme, but on the process de-
fined by the Milshtein scheme, in order to construct a second order scheme
{the MCRK scheme). Like other second order schemes (and the Milshtein
scheme), the MCRK scheme involves the first derivatives of o (contrary t:o
the Euler scheme), and also (when the dimension of the Wiener process is
larger than 1) requires the simulation of random variables other than the
increments of (W,) : this scheme requires a larger number of computations
than the total one of the Euler scheme with the step-sizes h and %, and
therefore a larger CPU time. '

In the next Sections, we will numerically compare the two strategies.
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2.4 Numerical tests : first example

Let us consider the first of our two exatnples ; the second order schemes
numerically behave as predicted by the theory, i.e obviously are better than
the first order schemes (Euler e.g.). )

The function b is defined by :

bl(ml’mZ) — _1_2

B(e!,2?) = 2!
and the matrix o is defined by :
all(ml,rcz) = 0

oyt 2?) =

a
oAzt 2?) =
oli(z',2?) = 0

It is easily proved that :
E|X,[* = E|Xo|” + log(1 + t)

Now, we compute E[X,|? by simulating 10,000 independent paths of the
Markov chain defined by a scheme, with the initial condition Xo = (1,1).

The two following figures permit to compare results given by Euler
scheme, Milshtein scheme, and a Romberg extrapolation.

The first figure shows the evolution in time of the true value (thin line)
and of the approximate value computed using the Milshtein scheme with a
step size h = 0.01 (thick line), for which the bad behaviour of the Milshtein
scheme is patent. C

The second one shows the evolution in time of the error corresponding to
a Romberg extrapolation of the values given by the Buler scheme with step
sizes h = 0.02 and h = 0.01 (thick line) and of the error corresponding to
the Euler scheme with A = 0.01 (thin line). The extrapolation has notably
improved the accuracy. Moreover, obviously the numerical stability has
also been improved.

These figures show that the Euler and Milshtein schemes lead to almost
equal errors, quickly negative, and whose absolute values are almost strictly
increasing functions of the time. This is completely explained by the results
of Theorem 1. Indeed, from the above expression for BE|X,|%, it is easy to
check :

E|X7")? = |of* + log(1 + T) - log(1 + 1)
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and therefore :

e for the FEuler scheme, the function e1(T) is defined by :

' 1 1
- /T Ev.(s, X,)ds = (1-B|Xo|))T —(1+T)log(1 +T) -~’2‘+m

¢ and, for the Milshtein scheme, by :

—/T Etbo(s, X,)ds = (1 — B|Xo[)T — (1 + T)log(1 + T)

EFXT:5/h=0.020/16000 simulstionyEULER  solution

EFXT:5M=0.010/10000 simulstionyEULERZ EULER
O FRE < ] AW

.

.

-005 - ‘\\‘
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Now, we compare the errors due to the above Romberg extrapolation
(thick line) and to a second order scheme (the MCRK scheme of Talay [5] :
thin line), with a step size k = 0.003 : they are equivalent. But the CPU
time corresponding to the extrapolation algorithm is about 3 times less
than the CPU time corresponding to any of the second order schemes we
have used, for the reasons indicated at the end of Subsection 2.3.

210 7 EFXT:5/h=0.010/10000 simulationyEULERZ MCRK
4

i

2
>

a by

Of course, if the step sizes are too large, the results of the extrapolation
may also be very bad : below we show the approximate solution due to
an extrapolation of values due to Euler scheme with & = 0.05 and h = 0.1
(thick line), and the true solution {thin line).

EFXT:S/h= 0.030/10000 simulstions/ EULERZ ,solution
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2.5 Numerical tests : second example

In the second example, a strange fact occurs : FEuler scheme gives re-
sults equivalent to those given by second order schemes, whereas Milshtein
scheme, which also is of first order, may lead to extremely inaccurate re-
sults. We will explain why ; moreover, an interesting point is that the
extrapolation even based on bad results permits to obtain a good accuracy
!

We first define the functions «(#) and 3(¢) by :

32 — 2Qsin(Qt) — 12
4(2 + cos(1t))
6v2 —6

4(2 + cos(2t))

B(t) =
The function b is defined by :

o= o)t + B(t)e?
b = Btz + aft)?

and the matrix o is defined by :

U}(zlvmz) = sin (1/ (:cl + 1;2))
U%(ml’mz) = (08 (I/ (:[11 +1‘2))
ol(a*,2?) = sin <V (;1:‘ + 1:2) + %)
o(z',2?) = cos (1/ (1_1 + g;z) + g)

It is easy to check that, if the initial law is gaussian with zero mean and
covariance matrix equal to

o 4y ] -

then the law of X (¢) is also gaussian with zero mean and covariance matrix
2+cos{{1t)
equal to ==2—=1C
We compute E|X!|? = 2—“%5(-%
The two next figures compare the results given by the Euler scheme,
the Milshtein scheme, and Romberg extrapolations.
The first figure shows the time evolution of the error due to the ex-

trapolation based on the Euler scheme with the 2 step-sizes h = 0.05 and
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h = 0.1 (thick line), and of the error due to the Euler scheme itself with

the step-size b = 0.05 (thin line) : the extrapolation has still improved the
accuracy.

EFXT:3/nu= 2.000/omega= 3.000/k= 0.030/10000 simulations/ FULER2 FULER

*10”

°
<>\\
=
S~
e

The second figure is devoted to the Milshtein scheme.

Numerical experiments show that, for v < 1, it behaves as the Euler
scheme ; but, for v > 1, the error becomes very large, as illustrated by
the next figure (corresponding to the situation v = = 2), which compares
the time evolution of the errors due to the extrapolation based on the
Milshtein scheme with the 2 step-sizes h = 0.05 and h = 0.1 {thick line),
and to the Milshtein scheme itself with the step-size h = 0.05 (thin line) :
the extrapolation has extremely improved the accuracy.

EFXT:3/au=2.000fomega= 5.000/h= 0.050/10000 simutationyMILSHTEIN2 MILSHTEIN
005 |

ks

=
g%;::?
~
o

vé\// To

-0.05

0.2

03
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The following Proposmon explains why the Milshtein scheme may be
so bad.

Proposition 4 Let v, (t) and P, (t) be (leﬁned by (9) and (12).
Let K (1) be :

AXt):J[Qt<PW]

27
and y(t) be defined by :

¢ 1
) = — . d
() / 21 cos(Qs) -
K(t tan |-t (Qt K(f)w)])
= an .
\/_Q( ()7r+arc an \/§ >
Let A and B denote :

18 — 92

A = 3
3V24+6
p - 22E6

Then

,llr,y;(t,:c) . 71[’ (t ©) _ -
3022 + cos(QT)

[3 —AAT)=AE) . o~ BOT)~ v(f))]
8 24 cos(§2t) ‘

and the difference between the errors due to the Milshtein and Euler schemes
is given by :

Errp(T)h) — Er're(T,ﬁ) .

e*A'y(T)) 1 84B7(T)

v? 3(1 —e .
= —h %—(2 + cos(Q1T")) [ ( I + 5 ] +O(RY)

Before giving the proof, let us remark that the above result explains the
increasing of the error due to the Milshtein scheme as v increases.

It also explains why, in the case of the previous figure, the Milshtein
scheme errvor is much larger than the Euler scheme one, and why the ab-
solute value of the difference between these two errors oscillates (when ¢
increases from 0 to 10) between 0.1 and 0.3
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Proof.

Using It6 formula, we obtain easily that the function
E|X'(6)]?
o — | ECC0)X7(9))
E|X*(6)]*
solves the following differential system :

p 2a(8) 28(8) 0
Ev(e) =] B(8) 2a(8) B(6)
0 26(8) 2a(6)

b3 et

V(6) + (

) (16)

It is possible to compute explicitly the evolution operator V(8,t) of the
homogeneous system : remarking

2a(6) 25(9) 0 0 2 0
B(8) 2a(8) B(6) } = 2a(0) + 3(6) [ 1 01
0 26(6) 2a(8) 0 20

one gets :

6 0 0
V(8,t) = ex o ex
t p(2 / (ﬁ)dé) p ( | B [(1]

and therefore easy computations lead to :

NSO N
O - D
[
A ——

Vi(e,t) V6,t) V3(6,1)
V(0,0) = | 1VX(6,1) Vi(8,t) Lv(6,t)
V3(0,t) V(6,t) V(4,1

with V(8,1),V%(6,t),V3(8,t),V*4(8,t) defined by :

Vi) - i(s(H,t) +d(6,1)) + %exp <2 A/to a(f)df)

VB = 5(s(6,1) — d(0,1)

1 1 ¢
VO = Z(s(6,0) +d(8,0)) — 5 exp (2/ a(f)df)

VUG = S(s(6,0) + d(8,1)
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where

0. = e (2 [ (et + A6
a0, = exp (2 [ tote) - AeDat)

As already mentioned, if the initial law is the centered gaussian law of
covariance matrix C defined by (15), then the law of (X,) is gaussian, of co-
variance matrix zico—;U—lﬂC . This provides the solution of (16) corresponding
to the initial condition (1, —‘g—i, 1). The solution corresponding to the initial
condition (|z!|?, z'z?, |2%}?) at time ¢ will be :

1
V2
2
1

le‘z __ 24cos(fit
3
V(&,l‘) 2le? — ﬁ2+cﬁos!ﬂt)
Imziz _ 2+cos(ft)

3

4 2 cos(926)

Therefore, if we define the function w(¢,z) by :

u(t, ) = Byl | X1

then :
1 12 2+ cos(§2) 2 L2 V2(2+ cos(ut))
w(t,z) = VT, ¢) ||z R R + VT, &)z I
-os{ ¢ Qr
VT, (!{62‘2‘2—%«?05( )) +2+cos( )
3 3
To conclude, it just remains to remark :
1 ! i i
d"m(t’m) - 7/’6“’7"”) = 7 Z ak(t7m)algjl(tvm)6k0j (t»m)aixizu(tam)
i14d2,d kil

i

%”i(ss(T,t) +d(T,1))

and to use the above expressions for the functions s(,t) and s(6,¢). O
Finally, we compare the extrapolation method based on the Milshtein

scheme (thick line) and the second order MCRK scheme (thin line). For

h = 0.05, the MCRK scheme is also numerically unstable, therefore the

results due to the extrapolation are much better.

)
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3.000/h= 04 imutati SHTEIN2,MCRK

EFXT:3/nu=
o005 }

3 The ergodic case
We consider the system (1) with time independent coefficients :

Let us suppose that the process (X,) is er godic : it has a unique invariant
probability law g, and for any deterministic condition Xo = z, and any u-

integrable function f :

a.s. lim —/ F(X) dsw/f(y (dy)

With an analogous aim to that of the previous Section, now we want
to prove the following expansion for the Euler and Mllshteln schemes, with
any deterministic initial condition X

a.s. hm Zf X" p) = // (ildy) + erh -+ O(R?)
where e; is independent of h.

3.1 Preliminary results

First, we state the Hypotheses.
We suppose :
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(H1) the functions b, ¢ are of class C* with bounded derivatives of any
order ; the function ois bounded ;

(H2) the operator L is uniformly elliptic : there exists a positive constant

« such that :

Vo, £ € R, Y al(E)a'e’ > ale|’
. i

(F3) there exist a strictly positive constant § and a compact set K such
that :
VeeRE—- K , z-blz) < —pFlz|?

It is well known that (H1) and (H'S) is a {even too strong) sufficient

condition for (X,) to be ergodic (see Hasminskii [3] e.g.).
We introduce the class F of functions ¢ of class C™, such that, for some

positive integer s and positive constants ¢, A :

Ve R, , Yze R ¢ |4(8a)|<Ce (1 + [e) (17)

We will use the results collected in the

Theorem 2 (Talay [6]) (i) Under (H1) and (H3), the following holds :

YnelN, 9C, >0, 3y, >0
BIX[" < Cu(l + [ef?e™) , VE, Ve

The same Lind of estimate holds for the L'u/m and Milshtein schemes :
iof (Xp(ﬁ) denotes the process starting at )( =¢,
YnelN, 3C, >0, 3y, >0, 3H >0,
(X, ()" < Ca(1 + Je["e ™), Vp , Ve
(ii) The Markov chain defined by the Euler (resp. Milshtein) scheme ts

ergodic. Its unique invariant probability law has finite moments of any
order, as well as the unique invariant probability measure of {X,),

(iii) For the Euler and Milshtein schemes, if f is a function of the class
F, there exist positive C, )\ such that, for any deterministic initial

condition £ :

N
| Jim 3 F(0,T506) — [ A wnldy)] < e as.
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Remark

In Talay [6], the part (i77) is obtained only for homogeneous functions
f (in that case, A = 0 of course).

It is not difficult to check that the proof can be adapted to the non
homogeneous situation.

Let us just give an indication concerning the crucial step of this proof,
which is the following Lemma : if f is a homogeneous function, and v(t, z)is
defined by v(t,z) = Ef(X;), then, under (H1), (H 2), (H3), for any multi-
index I indexing a time and space differentiation, there exist an integer s;
and strictly positive constants I} and 47 such that the derivative arv(t, )
satisfies :

[Oru(t,@)] < Tr(1 + |=*)e ! (18)

In fact, it is not difficult to show that the constant I'; can be choosen
proportional to [f|2(,). Therefore :

Theorem 3 Suppose that the hypotheses (H1), (H2), (H3) hold.
Let ¢(8,z) be a function of the class F, and v(6;t,2) = Ef(8, Xto‘x).
Then, for any multi-index I indexing a time and space differentiation,
there exist an integer sy and strictly positive constants I'r, X and v; such
that the derivative Orv(8;t,z) satisfies :

|0rv(8;t, )| < Tr(1 + Jaf')e ™t

3.2 Main result

As well as in the computation of Ef(X,) in finite time, the discretization
error can be expanded in terms of h.

Theorem 4 Suppose that the hypotheses (H1), (H2), (H3) hold, and let f
be a function of the class F. Let :

13 ,
d(t,z) = iz (z)b (z)0;;u(t, )

L\'H'—ﬂ

Z b (2)al(z)nu(t, z)
1,7,k=1

1 & H?

3 a;(m)af(m)aijklzt(t,x) 25 su(t, )
ijkl 1

~Zbl 881111’)——;—2&( )= G,JzL(t z) (19)
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Let A, be defined by -

A= [ [ bt ymiay)a

Then the Euler scheme error satisfies : for any deterministic initial
condition { = X

/f uldy) - a.s. Jim ——ZfX(f) XA+ O(RY) (20)

For the Milshtein scheme, an analogous result can be written, substitui-
ing

. fow /md oty dy)dt

to Ae, where

¢m(tvm) = ¢e(tvz)+'éli' Z a‘z(m)alaj‘l("r)aka?( lﬂzu(f T)

iy iz g kel
+ 2o 75 (£)0e0 (2)0i ity ®)  (21)
'Ll "Zﬂi}
Jugz ik
Proof. ]
We will only consider the Euler scheme. Let ¢ = X, be the initial

condition. We will write 7(_:: instead of Yg(ﬁ)
Let v(t,z) = Ef(X}"). Tt solves :

i

Ov
E—t—(t,m) Lo(t,z)
v(0,2) = f(z) (22)

Using (22), Theorem (2)(i7) and (18), one may write the following ex-

pansion :
P
Ef(X,) = Ev(0,X}) = v(ph,£) + B* Y By (jh, Xo_,) + B°RE  (23)
Ji=1

with a remainder term R}, satisfying : there exists a constant €' independent
of h and p (but depending on £) such that

R < (24)
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Summing (23) from 1 to NV, and reordering the sum, we get :

1 N —h 1 N 1 N;NAJ ~=rh
MZE]'(XP) = —NZ’U(ph &)+ h Ev.{jh, X,)
p=1 p=1 ] 1 p=0
+ h31 iRI
N =

In order to prove (20}, we are going to make N tend to infinity in the

previous equahtv
Let 7i" denote the invariant law of

( X' ) : this law integrates the poly-

nomsial functions (Theorem (2)(:7)), and thelefoxe the function f, so that,

as N goes to infinity, almost surely 2 ¥ o
Besides, Theorem (2)(727) shows the

: EI—L

MR ") tends to [ f(y)E"(dy).

ex1stence of a constant ' such that :

X <c

. ~esh
Therefore, the sequence (%f 21],\21 Ef(X,)) converges when N goes to

infinity, and :

il

N%??,o N st “p

In the same way, we can show :

hm — Z v{ph, &

/f('y)ﬁ”(dy)

i 1 f—\;-h
a.s. lel};o—](/:; (/ o)

/f(y)u(dy)

Now, we remark that (24) implies :

h3 1 iRh
N P

p=1

Thus, it just remains to prove :

hm h——}: Z Eqb, ]h,X

le()

= O(h?)

/ / (1, y)p(dy)dt
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Let us define, for each j, the sequence (p% (7)) by :
hy- 1 1\—,\ .1 <=h
Phi) = 7 S B GKT)
; ; p=

and the function p(t) by

p(t)~/ belt, )" (dy)

With similar arguments as those used above, using the inequality (18)
and Theorem (2), we can show that, as N goes to infinity, (p%(7)) tends to
P (5h).

Moreover, there exist strictly positive constants Cy, (5 such that :

1 N N ., ~wh Cl N - jC9h
¥ 2 (B (h Xl < <3 ge

J=1p=N—j+1 =1

and therefore the left side of the previous inequality tends to 0 as N goes
to infinity.
We conclude :

Let us define :

p(t) = /m« Pe(t, y)u(dy)

Theorem (2)(iii) implies that, for any ¢ :
lo"(t) = p(t)] < Ce™h

As there exist positive constants C' and A such that
o]+ o) < e

we may write (as a consequence of the Lebesgue Dominated Convergence
Theorem) :

z/ pelibwutdy) = 7 [ [l yintdn) + o)

That ends the proof. O
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3.3 Numerical tests ER00:2 rue 2000 b IOOOMILSHTEIN
We consider the example of Section (2.5), with { = 0. .
‘The invariant law p is normal, of zero mean and covariance matrix (15). s
Again, we choose f(z) = |z'|?, so that [ f(y)u(dy) = 1.
Again, we may observe that, in this example, the Euler scheme gives 17 H
better results than the Milshtein scheme.
Indeed, explicit computations of the functions ¢, and ¢,, show that, for b
the Euler scheme, the error is equal to
1.6
1 2
—Zh + O(h, ) 155
whereas, for the Milshtein scheme, this error is equal to 13
1 3 2 2 1.45 N L . s
~(Z+-2-y Yh + O(R*) 0 700 06 506 500 000

A Romberg interpolation based upon these catastrophic results gives a
This result also permits to understand the unaccuracy of the Milshtein satisfying accuracy.

scheme for v = 2, when the Milshtein scheme is run with A = 0.1 and

h = 0.05. The errors are, respectively, about 0.3 and 0.65, as shown by the

two following figures.

ERGO:2 fnu= 2.0000_tr= 0.0300/MILSHTEINZ

ERGO:2 /nu= 2.0000_h= 0.0300/MILSHTEIN

14 |

04

5 = e = o
1 *10

Let us also underline that, in any situation, the result of Theorem (4)
09 helps in the numerical choice of N (which is a crucial difficulty) : at least,
706 w0 50 o To00 we must observe that, for several N large enough, the quantity :

1 & o, 1
rosl DONIB SR BF C o)

is independent from N.
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Finally, similar results can be obtained for the approximation of Lya- (6] D.Talay Second Order Discretization Schemes of Stochastic Differen-
punov exponents of bilinear systems (cf Talay [7]) : the theoretical and tial Systems for the computation of the invariant law, INRIA Report
numerical details are relevant from what has been done in that Section. 753, 1987 (to appear in Stochastics).

. [7] D.Talay Approximation of upper Lyapunov exponents of bilinear
4 Conclusion stochastic differential systems, (submitted for publication), INRIA Re-

‘ t 965, 1989,
We have shown that the approximation error of Ef( X,), as well as [ Fy)e(dy), bor

can be expanded in terms of the discretization step h, in particular when
the approximating process is defined by the Euler scheme. This expansion
Justifies a Romberg extrapolation of the computed values corresponding to
two different choices of the step-size.

This procedure has an accuracy of order 2, as well as the second or-
der schemes, for example the MCRK scheme (obtained by a different use
of Romberg extrapolation, based on the process defined by the Milshtein
scheme), but is much simpler to implement and requires less C.P.U. time.
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