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Abstract

In this article, we analyse the error induced by the Euler scheme combined with a
symmetry procedure near the boundary for the simulation of diffusion processes with
an oblique reflection on a smooth boundary. This procedure is easy to implement and, in
addition, accurate: indeed, we prove that it yields a weak rate of convergence of order 1
with respect to the time-discretization step.
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1. Introduction

1.1. Applications

In [2], several examples of models involving (possibly controlled) reflected diffusion pro-
cesses can be found. The simulation of such diffusion processes, or in practice of approximate
processes, allow the computation by Monte Carlo methods of statistics of constrained stochastic
dynamics. In addition, the Feynman–Kac formulae in [2, Chapter 2, Section 4] justify the use
of Monte Carlo methods, based upon the simulation of independent trajectories of reflected
diffusion processes, to solve parabolic partial differential equations with general Neumann
boundary conditions.

Let us now describe another example where the simulation of reflected diffusion processes
is suitable. It concerns the identification of electrical and magnetic parameters at the surface
of human brains. The data consist of some measurements obtained from sensors located on
the patient’s head. Faugeras et al. [6] (see also [3], [4], [12]) have developed a nice approach
based on Maxwell equations. The identification of the parameters results is an inverse problem
for these equations; the complex numerical procedure involves a kind of iterative gradient
descent method which, at each step, requires the numerical resolution of a Poisson equation
with conormal Neumann boundary conditions and a source term depending on numerical values
obtained at the preceding step: the algorithm stops when the solution of the Poisson equations
takes values at the locations of the sensors which are close enough to the experimental data.
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A deterministic numerical method for the Poisson equations computes the solutions at all the
points of the domain of integration. Therefore, it seems worth elaborating a stochastic method
allowing us to compute the solution at a few points only, namely the locations of the sensors.
The construction and the error analysis of such a method lead to several technical difficulties.
First, the elliptic operator under consideration is of the form

Lu(x) = div(a(x)∇u(x)) (1)

with conormal Neumann boundary conditions, where a is a discontinuous function; second,
we have to approximate quantities of the form

∫ ∞

0
Ex

[
f (Xt )−

∫
f (ξ)µ(dξ)

]
dt,

where (Xt ) is a Markov process with generator L and invariant measure µ. The boundary
conditions of L imply that (Xt ) needs to be reflected at the boundary (that is, the brain
surface). Currently, whereas the approximation of diffusions in the whole Euclidian space, or of
stopped diffusions, is well understood, many aspects of the approximation of reflected diffusion
processes are still open questions (see our list of references and our comments below). Our
objective here is to address the following aspect: the construction of a reflected Euler scheme
which has a first-order convergence rate for the approximation of Ex(f (XT )) with a fixed
horizon T , even in the case of a nonnormal reflection. We emphasize that we suppose here that
the coefficients of the generator of the diffusion process under consideration are smooth, and
that we do not study the long-time behaviour of our reflected Euler scheme. Thus, our results
apply to the Monte Carlo methods for parabolic equations, but must be seen only as a first step
to developing and analysing stochastic numerical methods for elliptic equations such as (1)
with a discontinuous coefficient a(x). Such questions are being investigated by M. Martinez
(private communication, 2004).

1.2. Background results on discretization schemes

The numerical resolution by deterministic methods of second-order partial differential equa-
tions (PDEs) becomes inefficient in high dimensions. An alternative approach consists in
developing Monte Carlo methods from the probabilistic representations of the solutions as
expectations of functionals of diffusion processes X = (Xt )t≥0. Usually, exact simulations of
X are impossible and time-discretization procedures are needed.

A lot of attention has been paid to PDEs in the whole space. In that case, the process to
simulate is the solution in the whole space of

Xt = x +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dWs,

whereW is a standard multidimensional Brownian motion. Optimal convergence rates are now
well established. For example, consider the Euler scheme with time-step h = T/N (ti = ih

being the discretization times of [0, T ]):
XNti+1

= XNti + b(XNti )h+ σ(XNti )(Wti+1 −Wti ).

The weak error E(f (XT )) − E(f (XNT )) can be expanded in terms of powers of h, given
some regularity conditions on f (see [25]) or some nondegeneracy condition on the process X
(i.e. hypo-ellipticity; see [1]).
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If the PDE has a Dirichlet condition on the boundary ∂D of a domain D, then the diffusion
process X needs to be killed or stopped when it hits ∂D. In that situation, if we naively kill
or stop the Euler scheme, then the weak convergence rate is of order 1

2 . However, an efficient
killing [8], [10] or stopping [19] procedure can be developed leading to a convergence rate of
order 1.

For PDEs with Neumann boundary condition on ∂D,X needs to be a diffusion process with
reflection on ∂D in some oblique direction γ , i.e. a solution of

Xt = x +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dWs +

∫ t

0
γ (Xs) dks,

where the so-called local time kt is increasing only when Xt is on ∂D. In this article, we focus
in the evaluation of quantities like E(f (XT )) for a fixed time T .

From the numerical point of view, using a regular mesh of the interval [0, T ] with time-
step h, we can use an Euler scheme with projection, for which the weak error is of order 1

2
as established in [5] for normal reflections γ = n (see also [24], [20]). We can also use a
penalty method: the convergence has been studied only in the Lp sense (see e.g. [18], [21],
[11]). For a more complete presentation of these methods, see [10]. More recently, in [10]
the second author combined Lépingle’s procedure [14], [15] (which is exact when D is a half-
space and the coefficients are constant) and a certain local half-space approximation to construct
implementable procedures which are of order 1 under the condition that γ lies in the conormal
direction: γ (s) is parallel to σσ�(s)n(s) for any s ∈ ∂D, where n(s) is the unit inward normal
vector at s.

Hence, so far, the question of getting an easily implementable procedure providing a first-
order convergence is still open for general oblique reflection problems. Our so-called sym-
metrized Euler scheme below solves this issue. Results in this article were presented at the
conference on Monte Carlo and probabilistic methods for partial differential equations held at
Monte Carlo, Monaco, in July 2000 and announced in [9]. This symmetrized scheme has been
recently studied in [17], where the convergence is not analysed in detail.

1.3. Outline of the paper and notation

In Section 2, we set some preliminary geometry notation, state our assumptions and define the
symmetrized Euler scheme. Then we state our main convergence result, Theorem 1. Section 3
is devoted to the proof of this result. In Section 4, a numerical example is considered which
illustrates the efficiency of our algorithm.

We adopt the following usual convention on gradients: if ψ : R
p2 → R

p1 is a differentiable
function, then its gradient

∇ψ(x) = (∂x1ψ(x), . . . , ∂xp2
ψ(x))

takes values in R
p1 ⊗ R

p2 . In particular, the gradient of a linear function ψ is a row vector. Its
Hessian matrix is denoted by Hψ . Usually, the gradient is computed with respect to the space
variables only. We denote the d × d identity matrix by IRd⊗Rd , and the trace of a matrix A by
Tr(A).

We use the generic notation K(T ) for all finite, nonnegative and nondecreasing functions:
they are independent of x, the function f and the discretization step h, but they may depend on
the coefficients b, σ , γ and on the domain D.

A quantity R is said to be equal to Oexp(h) if |R| ≤ K(T ) exp(−c/h) for some constants
K(T ) and c > 0.

The conditional expectation E(Z | Fti ) is denoted by EFti (Z).
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2. Assumptions and the main result

2.1. Assumptions

In the sequel, we consider a domain D ⊂ R
d with the following smoothness property.

Assumption 1. The boundary ∂D is bounded and of class C5.

For R > 0, the set of points in the R-neighbourhood of ∂D is denoted by V∂D(R) = {x :
d(x, ∂D) ≤ R}. The vector field defining the reflection direction is uniformly nontangent to
the boundary.

Assumption 2. The unit vector field γ is of class C4 and there exists a ρ0 > 0 such that
γ (s) · n(s) ≥ ρ0 for all s ∈ ∂D.

We recall some classical results concerning the distance to the boundary in the γ direction
(see the appendix in [10]).

Proposition 1. Let Assumptions 1 and 2 hold. There exists a constant R > 0 such that:

(i) For any x ∈ V∂D(R), there exist a unique s = π
γ

∂D(x) ∈ ∂D and a unique Fγ (x) ∈ R

such that
x = π

γ

∂D(x)+ Fγ (x)γ (π
γ

∂D(x)).

(ii) The projection of x onto ∂D parallel to γ , that is, the function x �→ π
γ

∂D(x), is of class
C4 on V∂D(R).

(iii) The algebraic distance of x to ∂D parallel to γ , that is, the function x �→ Fγ (x), is of
class C4 on V∂D(R). We have Fγ > 0 on V∂D(R) ∩D, Fγ < 0 on V∂D(R) ∩ D̄c and
Fγ = 0 on ∂D: we can extend Fγ to a C4

b(R
d ,R) function, with the conditions Fγ > 0

on D and Fγ < 0 on D̄c.

(iv) The above extensions for Fγ and Fn can be performed in a way such that the functions
Fγ and Fn are equivalent in the sense that

1

c1
|Fn(x)| ≤ |Fγ (x)| ≤ c1|Fn(x)| for all x ∈ R

d

for some constant c1 > 1.

(v) For x ∈ ∂D,

∇Fγ (x) = n�

n · γ (x).

We sometimes use the notation n(x) or γ (x) even if x /∈ ∂D: for x ∈ V∂D(R), we set
n(x) = n(π

γ

∂D(x)) and γ (x) = γ (π
γ

∂D(x)) and, for x /∈ V∂D(R), arbitrary values are given.
The coefficients of the equation (2) are supposed to satisfy the following assumption.

Assumption 3. The functions b and σ are C4
b(D̄,R

d) and C4
b(D̄,R

d ⊗ R
d) functions.

Given a d-dimensional Brownian motion (Wt )t≥0 defined on a filtered probability space
(�,F , (Ft )t≥0,P) (satisfying the usual conditions), it is known (see [23], [16]) that under
Assumptions 1, 2 and 3 there is an unique strong solution to

Xt = x +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dWs +

∫ t

0
γ (Xs) dks, (2)
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Yti+1
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Figure 1: Description of the algorithm when YN,iti+1
is outside D.

where kt is a process increasing only when Xt is on ∂D: kt = ∫ t
0 1{Xs∈∂D} dks . The initial

value x ∈ D is fixed in the sequel.
We also need the following nondegeneracy assumption.

Assumption 4. The matrix σσ� is uniformly elliptic: for all x ∈ D̄,

σσ�(x) ≥ σ 2
0 IRd⊗Rd for some σ0 > 0.

2.2. The algorithm

We start with XN0 = x and assume that we have obtained XNti ∈ D̄.

(a) For t ∈ [ti , ti+1], we set

Y
N,i
t := XNti + b(XNti )(t − ti )+ σ(XNti )(Wt −Wti ).

Observe that YN,iti+1
is simulated by simply drawing d independent Gaussian variables.

(b) Then,

(i) if YN,iti+1
/∈ D̄ (i.e. if Fγ (YN,iti+1

) < 0), we set

XNti+1
= π

γ

∂D(Y
N,i
ti+1
)− Fγ (Y

N,i
ti+1
)γ (Y

N,i
ti+1
)

which coincides with the symmetric point of YN,iti+1
with respect to πγ∂D(Y

N,i
ti+1
) (see

Figure 1);

(ii) if YN,iti+1
∈ D̄ (i.e. if Fγ (YN,iti+1

) ≥ 0), we simply set

XNti+1
= Y

N,i
ti+1
.

To sum up (i) and (ii), we have

XNti+1
= Y

N,i
ti+1

+ 2[Fγ (YN,iti+1
)]−γ (YN,iti+1

).

(c) It is possible that YN,iti+1
/∈ D ∪ V∂D(R), that is, a huge increment has occurred: this event

has a probability exponentially small with respect to h (see below) and, in that case,
we suggest the simulation of YN,iti+1

be restarted.



882 M. BOSSY ET AL.

This way to proceed using a symmetry is actually very natural: indeed, in dimension 1, we
know by Lévy’s identity (see Section VI.2 of [22]) that the Brownian motion reflected on the
positive axis has the same law as the absolute value of the standard Brownian motion. In more
general situations, an analogous procedure is used by Freidlin [7] to prove the existence of a
solution to (2).

2.3. Rate of convergence

We denote by L the infinitesimal generator of (Xt )t≥0, that is,

Lu = ∇ub + 1
2 Tr(Hua)

(with a = σσ�).
We suppose that the class of test functions f used to describe the error’s scheme, in relation

to the partial differential equation (3) below, satisfies the following assumption.

Assumption 5. The function f is of class C5
b(D̄,R) and satisfies the compatibility condition

on ∂D: for all z ∈ ∂D, [∇f γ ](z) = [∇(Lf )γ ](z) = 0.

For f ∈ C5
b(D̄,R), we set

‖f ‖(5) =
∑

α:|α|≤5

‖∂αx f ‖∞.

Our main result is the following.

Theorem 1. Under Assumptions 1–5,

| E(f (XNT ))− E(f (XT ))| ≤ K(T )‖f ‖(5)h
for some constant K(T ) uniform in x and f .

The rest of the paper is devoted to the proof of this theorem.

3. Proofs

We follow the usual trick consisting of decomposing the error into a sum of local errors
using an appropriate PDE. For this, we consider a smooth solution of the following PDE (see
[13, Theorem 5.3, p. 320]), with Neumann boundary condition:

(∂tu+ Lu)(t, x) = 0 for (t, x) ∈ [0, T ] × D̄,

∇u(t, x)γ (x) = 0 for (t, x) ∈ [0, T ] × ∂D, (3)

u(T , x) = f (x) for x ∈ D.
Under the assumptions of Theorem 1, the solution u is at least of class C2,4([0, T ] × D̄) with
uniformly bounded derivatives (the compatibility condition Assumption 5 is crucial for this):
namely, for 2p + |α| ≤ 4,

|∂pt ∂αx u(t, x)| ≤ K(T )‖f ‖(5) for all (t, x)| ∈ [0, T ] × D̄ (4)

(see [13, Theorem 5.3, p. 320]). Then we can easily show that u(t, x) = E[f (XT−t ) | X0 = x].
We extend u to a C2,4([0, T ] × R

d) function (see [13]) which still satisfies the estimates (4).
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We introduce a continuous-time version of the symmetrized Euler scheme by setting XNt =
Y
N,i
t + 2[Fγ (YN,it )]−γ (YN,it ) for t ∈ [ti , ti+1[. Define

τ = inf{t ≥ 0 : YN,it /∈ D ∪ V∂D(R) with ti ≤ t ≤ ti+1}.
On the event {τ > T }, (XNt )0≤t≤T lives in D. In addition,

P[τ ≤ T ] = Oexp(h), (5)

which is a straightforward consequence of the following standard lemma.

Lemma 1. Consider an Itô process with uniformly bounded coefficients: dUt = bt dt+σt dWt .
There exist some constants c > 0 and K(T ) (depending on p ≥ 1) such that, for any stopping
times S and S′ (with 0 ≤ S ≤ S′ ≤ δ ≤ T ) and any η ≥ 0,

P
[

sup
t∈[S,S′]

‖Ut − US‖ ≥ η
]

≤K(T ) exp

(
−cη

2

δ

)
, (6)

E
[

sup
t∈[S,S′]

‖Ut − US‖p
]

≤K(T )δp/2. (7)

The first estimate is based on Bernstein’s inequality for martingales (see e.g. Lemma 4.1 of
[8]), and the second follows from the Burkholder–Davis–Gundy inequalities.

Now, set
Ei := E(u(ti+1 ∧ τ,XNti+1∧τ )− u(ti ∧ τ,XNti∧τ ))

= E(1{ti<τ } EFti [u(ti+1 ∧ τ,XNti+1∧τ )− u(ti , X
N
ti
)]).

In view of (3) and (5), the weak error can be decomposed as follows:

E(f (XNT ))− E(f (XT )) = E
(
u(T ,XNT )− u(T ∧ τ,XNT∧τ )+ u(T ∧ τ,XNT∧τ )− u(0, XN0 )

)

= ‖f ‖∞Oexp(h)+
N−1∑
i=0

Ei .

We then need the following two crucial results, which we prove later.

Lemma 2. Under Assumptions 1–4, for all c > 0,

hE

(N−1∑
i=0

1{ti<τ } exp

(
−cd

2(XNti , ∂D)

h

))
≤ K(T )

√
h.

Lemma 3. Under Assumptions 1–5, for all x ∈ ∂D,

Cu(x) :=
(

−∇u∇γ a n

n · γ + γ�Huγ
n�an
(n · γ )2 − n�aHuγ

n · γ
)
(x) = 0.

In view of Tanaka’s formula [22], (XNt )0≤t≤T , defined as in the step (b) of the algorithm, is
a continuous semimartingale for t ∈ [ti , ti+1[. Easy computations lead to

dXNt = dYN,it + γ (Y
N,i
t ) dL0

t (F
γ (YN,i· ))

+ [Fγ (YN,it )]−{2∇γ (YN,it ) dYN,it + Tr[Hγ (Y
N,i
t )a(XNti )] dt}

− 1{YN,it /∈D}
{
2∇γ (YN,it )a(XNti )[∇F(YN,it )]� dt + 2γ (YN,it )∇Fγ (YN,it ) dYN,it

+ γ (Y
N,i
t )Tr[HFγ (Y

N,i
t )a(XNti )] dt

}
(8)
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since {Fγ (YN,it ) ≤ 0} = {YN,it /∈ D}; here we have denoted by Tr[Hγ (Y
N,i
t )a(XNti )] the vector

with j th row equal to Tr[Hγj (Y
N,i
t )a(XNti )]. Thus, Itô’s formula yields that

EFti (u(ti+1 ∧ τ,XNti+1∧τ )− u(ti , X
N
ti
)) = A1

i + A2
i ,

where

A1
i := EFti

(∫ ti+1∧τ

ti

[∂tu(t, XNt ) dt + ∇u(t, XNt ) dYN,it + 1
2 Tr(Hu(t, XNt )a(X

N
ti
)) dt]

)
,

A2
i := EFti

(∫ ti+1∧τ

ti

[∇u(t, XNt )(dXNt − dYN,it )

+ 1
2 Tr(Hu(t, XNt )(d〈XN· , XN· 〉t − a(XNti ) dt))

])
.

The termA1
i should not be a surprise for a reader familiar with the approximation of diffusions

in the whole space (remember that d〈YN,i· , YN,i· 〉t = a(XNti ) dt); it is actually related to the
approximation of (Xt )t≥0 inside the domain. The term A2

i comes from the approximation near
the boundary.

Case 1. (The termA1
i .) Using (5), Itô’s formula and simplifications coming from ∂tu+Lu = 0

inside [0, T ] × D̄, we easily find that

A1
i = EFti

(∫ ti+1

ti

dt
∫ t∧τ

ti

[Bu,1
s ds + 1{YN,is /∈D} Bu,2

s ds + Bu,3
s dL0

s (F
γ (YN,i· ))]

)

+ ‖f ‖(5)Oexp(h),

where the processes (Bu,1
s )s, (B

u,2
s )s, (B

u,3
s )s are continuous, adapted and uniformly bounded

byK(T )‖f ‖(5) since they can be expressed as a sum of products of spatial derivatives of u (up
to the order 4) and of coefficients b and σ and their derivatives, each of them being evaluated
at point (s,XNti ) or (s,XNs ). Hence, from Tanaka’s formula,

|A1
i | ≤ K(T )‖f ‖(5)[h2 + hEFti [L0

ti+1∧τ (F
γ (YN,i· ))− L0

ti
(F γ (YN,i· ))] +Oexp(h)]

≤ K(T )‖f ‖(5)(h2 + hEFti [|Fγ (YN,iti+1∧τ )| − |Fγ (YN,iti
)|] +Oexp(h))

and, thus,

∣∣∣∣E
(N−1∑
i=0

1{ti<τ }A1
i

)∣∣∣∣ ≤ K(T )‖f ‖(5)h
(

1 + E

(N−1∑
i=0

|Fγ (YN,iti+1∧τ )| − |Fγ (YN,iti∧τ )|
))
.

On {τ ≤ T }, the above sum is Oexp(h). On {τ > T }, |Fγ (YN,iti+1
)| = |Fγ (YN,i+1

ti
)| because

of the symmetry procedure, thus the sum is telescoping: this proves that

∣∣∣∣E
(N−1∑
i=0

1{ti<τ }A1
i

)∣∣∣∣ ≤ K(T )‖f ‖(5)h.

Case 2. (The term A2
i .) When we substitute (8) into the expression for A2

i , the integral with
respect to the local time vanishes because of the Neumann condition (3), while the other
contributions can be gathered into a sum A21

i involving the terms with a factor of [Fγ (YN,it )]−
and a sum A22

i involving the terms with a factor of 1{YN,it /∈D}.
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(i) The term A21
i . We have

A21
i = EFti

(∫ ti+1∧τ

ti

[Fγ (YN,it )]−Bu,4
t dt

)
,

where (Bu,4
t )t has the same properties as (Bu,j

t )t (j ≤ 3). The Cauchy–Schwarz inequality
combined with the estimates (7) and [Fγ (YN,iti

)]− = 0, and (6) with η = d(Y
N,i
ti
, ∂D) =

d(XNti , ∂D) implies that

|A21
i | ≤ K(T )‖f ‖(5)

∫ ti+1

ti

√
EFti ([[Fγ (YN,it )]− − [Fγ (YN,iti

)]−]2)

√
PFti [YN,it /∈ D] dt

≤ K(T )‖f ‖(5)h3/2 exp

(
− c

2

d2(XNti , ∂D)

h

)

for some c > 0 and, thus, we obtain that

∣∣∣∣E
(N−1∑
i=0

1{ti<τ }A21
i

)∣∣∣∣ ≤ K(T )‖f ‖(5)h

using Lemma 2.

(ii) The term A22
i . This term is equal to

A22
i = EFti

(∫ ti+1∧τ

ti

1{YN,it /∈D} Bu,5(t, Y
N,i
ti
, XNt , Y

N,i
t ) dt

)

with

Bu,5(t, xi, x, y)

= ∇u(t, x){−2∇γ (y)a(xi)[∇Fγ (y)]� − 2γ (y)∇Fγ (y)b(xi)− γ (y)Tr[HFγ (y)a(xi)]}
+ 1

2 Tr{Hu(t, x)(−4γ (y)∇Fγ (y)a(xi)+ 4γ (y)∇Fγ (y)a(xi)[∇Fγ (y)]�γ�(y))}.

Now, we notice that the function Bu,5 vanishes when xi = x = y ∈ ∂D and t < T . Indeed, in
view of the Neumann condition in (3), the second and third terms with a factor of ∇u vanish.
In addition, ∇Fγ = n�/n · γ on ∂D (see Proposition 1(v)). Thus, for all z ∈ ∂D,

Bu,5(t, z, z, z)

= −2∇u(t, z)∇γ (z)a(z) n(z)

n(z) · γ (z)
+ 2 Tr

{
Hu(t, z)

[
−γ (z) n�(z)

n(z) · γ (z)a(z)+ γ (z)
n�(z)

n(z) · γ (z)a(z)
n(z)

n(z) · γ (z)γ
�(z)

]}
.

From easy linear algebra (Tr(AB) = Tr(BA), etc.), it follows that Bu,5(t, z, z, z) = 2Cu(z) =
0 in view of Lemma 3.

Now, set τi = inf{t ≥ ti : YN,it /∈ D}: on {YN,it /∈ D}, we have τi ≤ t , YN,iτi
∈ ∂D and

Bu,5(t, YN,iτi
, YN,iτi

, YN,iτi
) = 0. Since Bu,5(t, ·) is continuously differentiable with first deriva-
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tives bounded by K(T )‖f ‖(5), we can easily deduce that

|A22
i |

≤ K(T )‖f ‖(5) EFti

(∫ ti+1∧τ

ti

1{YN,it /∈D}(|YN,iti
− YN,iτi

| + |XNt − YN,iτi
| + |YN,it − YN,iτi

|) dt

)

≤ K(T )‖f ‖(5) EFti

(∫ ti+1∧τ

ti

1{YN,it /∈D}(|YN,iti
− YN,iτi

| + [Fγ (YN,it )]− + |YN,it − YN,iτi
|) dt

)

for a constantK(T ) changing from line to line. We now apply arguments already used forA21
i :

thus,

|A22
i | ≤ K(T )‖f ‖(5)h3/2 exp

(
− c

2

d2(XNti , ∂D)

h

)
,

and then | E(
∑N−1
i=0 1{ti<τ }A22

i )| ≤ K(T )‖f ‖(5)h.

The proof of Theorem 1 is complete.

Proof of Lemma 2. Should XNti have a density with respect to the Lebesgue measure on D
and should this density be uniformly bounded in N near ∂D, then we could easily conclude
that Ai := E(1{ti<τ } exp(−cd2(XNti , ∂D)/h)) ≤ K(T )

√
h. But the desired property on the

density of XNti seems difficult to prove, even by using Malliavin calculus tools (because of the
[Fγ ]− terms).

The idea of our proof is to use the occupation times formula. By (iii) and (iv) of Proposition 1,
if d(x, ∂D) ≤ R, then d(x, ∂D) = |Fn(x)| ≥ |Fγ (x)|/c1, and thus

Ai+1 ≤ E

(
1{ti+1<τ } exp

(
−c [F

γ (XNti+1
)]2

c2
1h

))
+Oexp(h).

Set c′ = c/2c2
1 > 0 and g(x) = exp(−2c′x2/h): it is easy to check that |g(x)| + √

h|g′(x)| +
h|g′′(x)| ≤ K(T ) exp(−c′x2/h). Hence, for t ∈ [ti , ti+1], Itô’s formula combined with the
decomposition (8) and the estimate (5) yields that

E

(
1{ti+1<τ } exp

(
−2c′

[Fγ (XNti+1
)]2

h

))

≤ K(T )

[
E

(
1t<τ exp

(
−c′ [F

γ (XNt )]2

h

))

+ 1

h

∫ ti+1

t

E(1s<τ exp

(
−c′ [F

γ (XNs )]2

h

))
ds

]
+Oexp(h);

notice that the local time involved in (8) provides no contribution to the preceding computation
because g′(0) = 0. Integrate this inequality with respect to t over [ti , ti+1] to get

hAi+1 ≤ K(T )

∫ ti+1

ti

E

(
1{s<τ } exp

(
−c′ [F

γ (XNs )]2

h

))
ds +Oexp(h).

Observe that, when |Fγ (y)| ≤ R,

d〈Fγ (XN· ), F γ (XN· )〉s = ∇Fγ (XNs )a(XNti )[Fγ (XNs )]� ds ≥ σ 2
0

4
ds
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using Assumption 4 and |∇Fγ (y)| ≥ 1
2 when |Fγ (y)| ≤ R (we can assume this last property

by decreasing R in Proposition 1 if necessary). It readily follows from the occupation times
formula that

hAi+1 ≤ K(T )

∫ R

−R
dy exp

(
−c′ y

2

h

)
E(Lyti+1∧τ (F

γ (XN· ))− L
y
ti∧τ (F

γ (XN· )))+Oexp(h).

Now,

1
2 E(Lyti+1∧τ (F

γ (XN· ))− L
y
ti∧τ (F

γ (XN· )))

= E((F γ (XNti+1∧τ )− y)+ − (F γ (XNti∧τ )− y)+ −
∫ ti+1∧τ

ti∧τ
1{Fγ (XNs )≥y} d(F γ (XNs )))

≤ E((F γ (XNti+1∧τ )− y)+ − (F γ (XNti∧τ )− y)+)+K(T )h

− E

(∫ ti+1∧τ

ti∧τ
1{Fγ (XNs )≥y} ∇Fγ (XNs )γ (YN,is ) dL0

s (F
γ (YN,i· ))

)
.

We have used (8) to get the last inequality. The above integral with respect to the local time is
nonnegative since ∇Fγ γ = 1 on ∂D.

Therefore,
∑N−1
i=0 E(Lyti+1∧τ (F

γ (YN,i· ))− L
y
ti∧τ (F

γ (YN,i· ))) ≤ K(T ) uniformly in |y| ≤
R since the sum is telescoping. We can then conclude that h

∑N−1
i=0 Ai+1 ≤ K(T )

√
h. The

proof of Lemma 2 is complete.

Proof of Lemma 3. In the following, t < T is fixed and we omit it. Since the function ∇uγ
vanishes on ∂D, n[∇(∇uγ )n] = [∇(∇uγ )]�. Taking into account the fact that ∇(∇uγ ) =
γ�Hu + ∇u∇γ , we derive the following identity on the boundary:

Huγ = n(γ�Hun)+ n(∇u∇γ n)− (∇u∇γ )�.
We thus have

Cu(x) = − ∇u∇γ a n

n · γ + (n�an)
(n · γ )2 γ

�[n(γ�Hun)+ n(∇u∇γ n)− (∇u∇γ )�]

− 1

n · γ n
�a[n(γ�Hun)+ n(∇u∇γ n)− (∇u∇γ )�]

= − (n
�an)

(n · γ )2 (∇u∇γ γ )
�.

The right-hand side is equal to 0 on ∂D since ∇γ γ = 0 on ∂D: indeed, it follows from the
facts that γ (x + λγ (x)) = γ (x) for x ∈ ∂D and |λ| ≤ R (see Proposition 1). We are finished.

4. A numerical example

Let X be a three-dimensional Brownian motion normally reflected at the boundary of the
unit ball D = S3(0, 1). We are interested in the evaluation of E(‖X1‖2): to the best of the
authors’ knowledge, the exact value is unknown. To make the experiment more interesting,
we compare the scheme of this paper with two other ones: the usual projected Euler scheme
(see [5]) with order of convergence equal to 1

2 , and the reflected Euler scheme on local half-
space approximations (see [10]) with order of convergence equal to 1 in this example. We also
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Figure 2: Comparison of the weak error for four schemes.

Table 1: Computational time for each scheme when N = 50.

Projected Reflected scheme
Projected scheme with Symmetrized in local half-space
scheme Romberg extrapolation scheme approximation

CPU time 0.92 s 1.37 s 0.92 s 1.52 s

consider the Romberg extrapolation (see [25]) with the projected scheme, assuming that an
expansion of the error at order 1

2 is available: it gives

E

(√
2f (XNT )− f (X

N/2
T )√

2 − 1

)
= E(f (XT ))+ o(

√
h).

The number of simulated paths is M = 10 000: it provides a width of the 95%-confidence
interval essentially equal to 0.03 for each scheme (except for the Romberg extrapolation for
which it is larger, that is 0.035).

The efficiency of each procedure is illustrated by Figure 2. It turns out that procedures
with symmetry, half-space approximation and Romberg extrapolation all behave very well.
However, the computational time is much smaller for the method presented here because of the
simplicity of the symmetry (in fact, as simple as the projection method): see Table 1.

5. Conclusion

We have proved that an Euler scheme with a symmetry procedure yields an accurate approx-
imation of obliquely reflected diffusions at a fixed time. We give three open issues that we have
not been able to handle:

1. How to get an expansion of the error with respect to h? It seems that sharper estimates
on the law of XN near the ∂D are needed.

2. How to adapt the current analysis to the stationary problem where
∫ ∞

0 Ex(φ(Xt ) −∫
φ(ξ)µ(dξ)) dt needs to be evaluated? The use of new ergodic type estimates seems to

be crucial.
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3. While with other approximation methods ([5], [10]) it is possible to simulate the local
time on ∂D (and hence to evaluate expectations of more complex functionals of type
E(

∫ T
0 g(Xt ) dkt )), it is not known how to adapt our algorithm to approximate these

quantities in a satisfactory and accurate way (with a first-order convergence).
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