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APPROXIMATION OF UPPER LYAPUNOV EXPONENTS OF BILINEAR 

STOCHASTIC DIFFERENTIAL SYSTEMS* 


DENIS TALAYt 

Abstract. A bilinear Stochastic Differential System is considered whose solution starting from x is 
denoted by ( X ( t ,x)); it is supposed that its (upper) Lyapunov exponent A exists. The purpose of the paper 
is to propose an efficient algorithm to approximate A. 

It is shown that, for Markov chains (x,h(x),p E N )  defined by several approximation schemes, the 
Lyapunov exponents h h  are well defined and can be computed; estimates are given in terms of the 
discretization step h of the theoretical error IA -hhl .  

Then these results are applied to an engineering problem: the stability of the motion of helicopter rotor 
blades in a turbulent wind. 

Key words. approximation of stochastic differential equations, Lyapunov exponents 

AMS(M0S) subject classifications. 60H10, 65C20, 93E15, 93E25 

1. Introduction. Let us consider a bilinear stochastic differential system in Rd, 
written in the Stratonovich sense: 

where { Wi(t); 15 i 5 r )  are mutually independent standard Wiener processes. 
The solution starting at x E lRd will be denoted by (X(t ,  x)).  
Below we will state some hypotheses ensuring the following property of the process 

(X( t ) ) :  

1 
3A E R ,  vx E lRd, A = lim -log lX(t, x)( ,  a.s. 

t++m t 

The constant A is called the (upper) Lyapunov exponent of the system (1); the 
system is said to be stable if A is strictly negative: in that case, IX(t, x)l decreases to 
zero exponentially fast. 

In § 5 we will discuss extensively an engineering problem, which has motivated 
this work: a study of stability for the motion of a helicopter rotor blade in turbulent 
winds. The mechanical model is a bilinear stochastic differential equation of dimension 
4, whose coefficients depend on different parameters such as the velocity of the 
helicopter or some geometrical characteristics of the blade. The problem is to determine 
whether the turbu!ent winds may destabilize the system, for each interesting value of 
each parameter. In other terms, we are interested in the behaviour of the Lyapunov 
exponent with respect to the physical parameters of the system and the intensity of 
the noise. 

But, except in some very particular cases, there exists no explicit formula that 
permits us to obtain the exact value of A. 

In the presence of a small noise, and when (X( t ) )  is a two-dimensional process, 
Auslender and Mil'shtein [3] and Pardoux and Wihstutz [22] have given asymptotic 
expansions of A in powers of the intensity of the noise. 

* Received by the editors August 29 1988; accepted for publication (in revised form) August 21, 1990. 
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To treat the general case, we propose to discretize in time the system (I) ,in order 
to get an approximate process that can easily be simulated on a computer, denoted 
by (X:(x)) (h being the discretization step and x the initial value), and to compute 
numerically for some large T: 

Pardoux and Pignol [19] have proposed a discretization scheme and shown the 
convergence towards A of the almost sure limit: 

1
lim -log lX,h,(x)(. 

P-+.oph 

But the convergence rate was not estimated (under our hypotheses, our results 
below show that this method is of order O(h) ) .  

Here we propose discretization methods such that 

1 
(0): A "  = lim -log (X,h,(x)(, a.s. 

p - + a  ph 

and, moreover, 

I A  -h"(  = O(h) or O(h2).  

The organization of the paper is as follows. In 5 2, we review a fundamental 
theorem on the existence of A. In § 3, we present three discretization methods; in § 4, 
we state our main result, which concerns the convergence rate of these schemes. In 
§ 5, we present the engineering problem of the helicopter rotor blades, the application 
of the previous results to solve that problem, and we discuss the obtained numerical 
results. In 3 6, we introduce a class of second-order schemes. 

2. Lyapunov exponents. The purpose of this section is to introduce the material 
necessary for the sequel, essentially two theorems concerning the Lyapunov exponents 
of products of random matrices and of stochastic dynamical systems (we do not present 
them in their most general versions). 

The theory of products of random matrices is presented in Bougerol and Lacroix 
[5] or Ledrappier [13]. 

The main aspects of the theory of Lyapunov exponents of stochastic dynamical 
systems are developed in the contributions to the workshop held in Bremen (1984): 
in particular, those of Arnold, Kliemann, and Oeljeklaus [I], and Arnold, Oeljeklaus, 
and Pardoux [2], which will be referred to often. A review of the theory and of recent 
results can also be found in Pardoux and Talay [21]. 

Let sdP1{XE Ftd; 1x1 = and pdP'be the projective = 1) be the unit sphere of R ~ ,  
space of R ~ ,  i.e., the quotient of sdP1 v if and only if with respect to the'relation u -
U = - V .  

Let G ~ ( [ w ~ )  be the set of invertible real d x d matrices. A given subset Y of C1(Rd) 
is called irreducible if there does not exist a proper linear subspace of Rd, V, such that 

V M E Y ,  M ( V ) = V .  

THEOREM2.1 (Furstenberg). Let (M,) be a sequence of independent random 
matrices in G ~ ( [ W ~ )  with common distribution v, such that (i) E logt (Mil <+aand 
E log+ ( M ; ' I  <+a. 

(ii) The smallest subgroup of C1(Ftd) containing the support of v is irreducible. 
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Then there exists a real number y such that, for any x in [Wd -(01, 

1 
y =  lim - l og lM, , , . . . ,  

n++m n 

and for any v-invariant distribution p on pd- ' ,  

(where iis the class of x in pd- ') .  
For the continuous time case, we will use a result concerning a less general situation. 
Let s ( t )  be the process on pd-' defined as the equivalence class of X(t) / lX(t) l .  
The process s ( t )  is the solution of the following Stratonovich stochastic differential 

equation, describing a diffusion process in pd- ' :  

where 

h(C, s )  := Cs - (Cs, s)s. 

Let us introduce A = L.A.{h(A, .), h(B, ,.), . . . ,h(B,, .)), i.e., the smallest vector 
space of differential operators containing the operat,ors 

and closed under the bracket operation [P I ,  P,] = P1o P2-P20 PI. 
For s in pd- ' ,  the space A(s) will be the space obtained by considering all the 

elements of A with all the coefficients of the operators frozen at their value in s. 
In Arnold, Oeljeklaus, and Pardoux [2] is proved the following theorem (see also 

Bougerol and Lacroix [5]). 
THEOREM2.2. Let us suppose 

(HI dim A(s) = d - 1 Vs E pd-' 

Then the process ( s ( t ) )  on pd-' has a unique invariant probability measure p, and 
(i) There exists a real number A such that, for any x in [Wd -{O), 

1 
A = lim -log (X(t ,  x)l, 

1-+m t 

(ii) Moreover, A satisjes 

A = Q(s) 4 4 s )  lpd-, 

where 

(4) Q(s)  := (As, s ) + -  
1 C ' [ ( ~ f s ,s ) +  I B ~ S ( ~ - ~ ( B ~ S ,  s)'].
2 i = 1  

3. Discretization schemes. The rates of convergence of several discretization 
schemes have already been established, according to various criteria of convergence, 
including quadratic mean approximation (Clark and Cameron [6], Mil'shtein [14], 
Platen [24], Rumelin [25]), pathwise approximation (Talay [26]), approximation of 
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expectations of the solution (Mil'shtein [15], Mil'shtein [16], Talay [27], Talay [28]), 
asymptotical efficiency for the minimization of the normalized quadratic mean error 
(Clark [7], Newton [17]), and approximation of the invariant probability measure in 
the ergodic case (Talay [29]). 

A review of the main results concerning the first three points can be found in 
Pardoux and Talay [20]. 

In this section, we will consider three particular schemes, applied to the bilinear 
system (1). In § 6 we will explain why these schemes have been chosen, and we will 
study a larger family of schemes. 

3.1. Notation and definitions. 
I will be the d x d identity matrix. 
2 will be the matrix A+;X:=, B:. 
For any matrix a, a, will denote the jth column of u ;  if u (x l ,  . . . ,x,) is a 
matrix-valued application, duj denotes the matrix-valued application whose 
element of the ith row and kth column is 

The discretization schemes below will depend on three families of random vari-
ables: (u;+,), (z:+~), and The hypotheses concerning the family (u;,,) will 
be stated later. Moreover, in all the sequel, the sequence 

will be a family of independent random variables;. the ( ~ 7 , ~ )are independently and 
identically distributed, their common law being defined by 

( 5 )  p ( z "P =I)2 = P ( ~ JP = -;) =;; 

the family ( S F )  is defined by 

3.2. Three discretization schemes. Let us consider the schemes defined by 

Z;,] =M;+,X; 
with 



APPROX~MATION OF LYAPUNOV EXPONENTS 1145 

These schemes will be tested numerically in 5 5.3. The first one will be called the 
Euler scheme, the second one the Mil'shtein scheme. 

Except in Q 6, ( .%i(x) )will denote the Markov chain defined by one of these 
schemes, with initial value x. 

3.3. Example: The one-dimensional case. Let us consider the elementary case 
d = r = l .  

The system is written again under the following form (with a and b scalar 
constants) : 

d X ( t )= a X ( t )  dt +b X ( t )o d W ( t ) .  

The solution is X ( t )=X ( 0 ) exp (at+b  W ( t ) ) ,  thus A = a. 
With the particular choice f i U;,, = W ( ( p +  1 )h )  - W ( p h ) ,denoted by A;+, W,  

the Mil'shtein scheme becomes 

xi+,= ( 1 + bh,h+, W +  ah +$b2(h;+, w ) ~ ) X , ~ .  
The strong law of large numbers implies the existence of hh (defined as in (2 ) ) .  

Moreover, it can easily be checked that for any nonzero initial condition 

so that the sequence ( l l p h log IXi (x) l )is uniformly integrable, and therefore h" satisfies 

1
A h  = lim -E log l.%,h(x)l V x E R - (0) .  

P-+aph 

But, for h small enough, 

E log IX;(x)l -log 1x1 =pE log 1 +bh: +ah +- b 2 ( ~ : ) 2
2 I 

-- 1- log 

1
+P [:a log ( 1  +by&+ ah +- b2y2h)exp (-f)dy
G 2 

=pah + p ~ ( h 2 ) .  

Therefore (and the same holds for the Euler scheme (6 ) ) ,we have 

hh= a + O ( h )= A + O ( h ) .  

An analogous computation for the scheme (8) would lead to 

hh= a + O(h2)= + O(h2) .  

4. Theoretical results. In this section, our aim is to prove that the Euler scheme 
( 6 )  and the Mil'shtein scheme (7) are of first order for the approximation of the 
Lyapunov exponents, whereas the scheme (8) is of second order. 

4.1. Hypotheses. 
Hypothesis (HO). The system (3 )can be viewed as describing a diffusion on sd-'. 

We will suppose the following hypothesis. 
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(HO) The injinitesimal generator 2' of the process ( s ( t ) )  on sd-'is uniformly elliptic, 
i.e., there exists a strictly positive constant CY such that, for any x in sd-'and any vector 
5 in the tangent space TSd-l(x) ,  

r 

C (h(Bi, 5122 a15I2. 
i = l  

This condition is more restrictive than (H).  But, if (H) is sufficient to ensure the 
existence of the Lyapunov exponents Ah of the Markov chains defined by the considered 
schemes (see below), it seems difficult not to use (HO) to get estimations of the 
approximation error A - A h .  Let us show a very simple example of a situation where 
(HO) is fulfilled: r = 1 and 

Hypothesis (HU). For our proofs, we need a technical hypothesis on the random 
variables U;+!'s involved by the discretization schemes, which is not limitative from 
a practical point of view; (ii) was unnecessary for the theoretical results concerning 
the approximation of the law of diffusion processes (cf. the Appendix ( 5  6)). 

(HU)(i) The ( U;+,)'s are independently and identically distributed, and the following 
conditions on the moments are fulfilled: 

E[u;+,]= E[U;+,I3 = E [ u ; + ~ ] ~=0, 

(ii) The common law of the (U;+,)'S has a continuous density with respect to the 
Lebesgue measure; the support of this density contains an open interval including zero 
and is compact. 

4.2. Existence of the Lyapunov exponent. Let us begin by showing the existence 
of the upper Lyapunov exponent for the Markov chains defined by the discretization 
schemes. 

PROPOSITION4.1. Let us  suppose that the system (3) satisjes (H). 
Let ( X i ,  p E N) be dejined by the Euler scheme (6), the Mil'shtein scheme (7), or 

scheme ( 8 ) .  
Then, under (HU)(i), (i) for any h small enough, there exists a real number A h  

satisfying 

1 
vx  E [Wd -{O): A h  = lim -log Iffi(x)l, a.s. 

p - + a  ph 

(ii) Moreover, 

V x  E [Wd -{O): Ah = lim -
1 

E log IXi(x)l. 
P++W ph 

Proof of Proposition 4.1. Let us prove (i). 
Our aim is to apply the Furstenberg Theorem 2.1. 
Let us suppose the existence of a stepsize h such that the smallest semigroup of 

G ~ ( R ~ )containing the support of the law of M: is not irreducible. Then, there would 
exist a proper linear subspace of [Wd, vh,such that 

M : ( v ~ )= vh, a.s. 
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Let x any vector of v". Then, for all j, E[U{M:X] and E[M:X] would belong 
to v"; therefore we would have B,(vh)  c vhand A(v")  c v". 

In that case, system (3) with an initial condition x belonging to V" can be viewed 
as a system on v", and for any time t, X(t ,  x )  would belong to vh .  

This assertion cannot be true under Hypothesis (H), since in that case (see Q 1 of 
[ 2 ] ) the semigroup of ( s ( t ) )  leaves no submanifold of dimension less than d - 1 in 
P " ~ 'invariant. 

Finally, all the hypotheses of Theorem 2.1 are fulfilled, and (i) is proved for the 
Mil'shtein scheme. 

Now, let us consider scheme (8). 
Let us suppose that, for all stepsize h,, there exists h <h, such that the smallest 

semigroup of G I ( R ~ )  containing the support of the law of M: is not irreducible, and 
let us prove that, in that case, there would exist a proper linear subspace V such that 

(10) A ( V ) c  V and B, (V)c  V ( j = l ; .  . , r) 

(as mentioned, this property contradicts our hypotheses). 
Thus, for any integer n, let us choose h, < l l n  and Vn a proper linear subspace 

satisfying 

Let x any vector of Vn. Then, for all j, E[(u{)~M:,Jx], E[(u~)M:,~x] and E[M :lix] 
would belong to Vn; therefore we would have 

Let us define 

I = lim inf dim (V,) 
n 


and (m,,) is I-dimensional. the subsequence of indices such that V,,, 
For each V,,,, we choose a basis of unit-normed and orthogonal vectors (e:,,, 

k = l , . .  . 2 1). 
We can choose a new subsequence (again denoted (m , ) ) such that ((ek,, ,  k =  

1, . . . ,I ) ,  n EN)  converges for the strong topology on R1; let (u k, k = 1, . . . ,I )  be the 
limit. 

Let us fix k in (1 , .  . . ,I); we may write (as a consequence of (11)) 

Now, for each j = 1, . . . ,1, the previous equality implies 

( ( ~ + $ A ~ h , , , ) e k , , ,el,,,)= aL,,(k), 

so that the sequence ( a i , , ( k ) ,  n E N) converges to (Auk, ui), and therefore 

V being the subspace generated by (uk ,  k = 1 , .  . . , I), we have just proved (10) 
for A; but similar arguments and (11) permit us to obtain the whole result for scheme 
(8). Similar arguments can be used for the Euler scheme. 
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To prove (ii), it just remains to check that the sequence ( l l p h  log IX,h(x)l,p E N )  
is uniformly integrable. 

Actually, using the inequality ( a ,+ . . .+ aPl2s p ( a : + .  . .+ a;) ,  we obtain 

2 2 
5 j;i E (log 1 M:'()' +-(log 1x1)'.

p2h2 

This ends the proof. 

4.3. Convergence rates. Let us give estimates for ( A-hhI. 
THEOREM4.2. Let us suppose that system (3 )  satisfies Hypothesis ( H O ) .  
Let ( X i ,  p E N )  be defined by either the Euler scheme ( 6 ) ,  the Mil'shtein scheme 

(7), or scheme (8 ) ,and let us suppose ( H U ) .  
Then, i f h  is the upper Lyapunov exponent of ( 1 ) :  (i) for (2;)defined by the Euler 

or Mil'shtein scheme, IA -hhI = O ( h ) ;  
( i i )  for (x;)dejined by scheme (8 ) ,( A-h h )= O ( h 2 ) .  

4.3.1. Remark. Under ( H U ) ,the process (s:) defined on sdP'by 

is ergodic; let p" be its unique invariant probability measure; if the function 0" is 
defined by 

1 
O h ( s )=- E log 1X!(s)l ,

h 

we can write (cf. § 4.3.3 and the Furstenberg Theorem 2.1) 

hh = Isdl~ " ( s )d p h ( s ) ,  

so that 

A - = Q ( s ) ( d ~ ( s )-dP1'(s))+ I ( Q ( s )- 0 " s ) )  dpl ' (s) .
d - 1  

We will see below that, for any smooth function on sdP1,scheme ( 8 )  satisfies 

f ( s ) ( d p ( s )- d f i h ( s ) )= O(h2) .  

But 

Q ( s )-O h ( s )= O ( h ) .  

Therefore, more accurate estimations are needed. In fact, the result to be proved 
below shows that 

4.3.2. Two lemmas. Let n EN* and x E sd-'be fixed. The antipodal point of x is 
denoted by x*. 
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Let U, be the set of points of sd-'whose geodesic distance from x is less than 
47713 (277 is the maximal geodesic distance on sd- ' ) .  

Let y E U, + +,(y) the stereographic projection of pole x*. 
LEMMA4.3. Let us suppose that Hypothesis (HO) is satisjied. 
Let ( s ( t ,  . ) )  dejine the stochasticj7ow of equation (3 ) .  
Let f be a real C" function on sd- ' ,  and let us dejine the function u ( t ,  y )  on R+x sd-' 

by 

Let p be the unique invariant probability measure of the process ( ~ ( t ) ) .  Then there 
exist strictly positive constants and y such that 

a x e  sd - l :  U ( t ,  x ) -  l s d - l f ( ~ )  I d p ( S ) js r  exp ( - y t )  

and, for any multi-index I, there exist strictly positive constants TIand y, such that, for 
satisjies 

Proof of Lemma 4.3. In Talay [29] ,a result similar to (13)was established for a 
diffusion process in the whole space, under some suitable conditions on the coefficients 
of the system; here, instead of these conditions, we will use the fact that sd-'is a 
compact manifold. 

We begin by proving (12) .The condition (HO)implies the existence of a continuous 
and strictly positive density for the transition probability of the process ( ~ ( t ) ) ;therefore, 
since sd-'is compact, ( s ( t ) )satisfies the so-called Doeblin condition: there exist 6 >0 ,  
E >0,  t >0 ,  such that, for all open set E of sd-'with Lebesgue measure less than 
6: P ( t ,  y, E )  S 1 - E, uniformly in y. Consequently, the inequality (12)  is satisfied (see 
Doob [8, p. 1931, e.g.). 

Now, let us prove the second part of the lemma. 
Let us introduce the differential operators on sd-'defined by 

and let 2 be the infinitesimal generator of the process ( s ( t ) )solution of ( 3 )  on sd- ' .  
It is well known that 

so that we deduce that 

We multiply the previous equality by eso', we integrate with respect to p,  and then 
we integrate from zero to T ( T  being an arbitrarily large time). Using Z * p  =0 ,  we 
deduce that, for any 0 < 6, < y, 

(a similar computation is performed in Talay [29, § 6.1.21). 
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We may also check that there exist strictly positive constants C ,  and C2 such that 

Proceeding as just above, we obtain for any strictly positive 6 ,  <6 ,  

Let d~ be the Riemannian measure on sd-' induced by the tensor field (av ) - ' ,  
where a is the matrix uu*,with u ( s )=IS=,h(B,, s ) .  

Hypothesis (HO) implies that p,  the invariant probability measure of the process 
( ~ ( t ) ) ,has a smooth density p ( . )  with respect to dr, which solves 2 * p  =0,  and is 
strictly positive (cf. Ikeda and Watanabe [ l o ,  Chap. V]); therefore, we can bound it 
from below on sd-'by a strictly positive constant. 

From this remark, we deduce from the previous inequality the existence of strictly 
positive constants C,  a, independent on x, such that 

I IVu(t, + , ' ( 0 ) ) 1 ~  d0 5 C ePa'. 
$JX(UX) 

By the same procedure, it may be shown that, for any sequence J = ( k , ,  . . . ,k,) 
of integers in 1, . . . , r, there exist strictly positive constants C, and a, such that 

( I 9  jsd-l1 2 k l  ' ' ' 2 k , , ~ ( ~ ,y)I2 d ~ sCJ exP 

Note the existence of a constant C,, independent on x, such that ( 6  and 6 being 
the coefficients of 2 in the local coordinates 0 )  

and for all multi-index I of length less than n, 

We deduce that for any multi-index J (referring to derivatives with respect to the 
coordinates O , ,  . . . , O d - ] ) ,  there exist strictly positive constants CJ and a,, independent 
on x, such that 

I Id,u(t, 4; '(0))12 d0 s CJexp (-a,(). 
+x(ux) 

We conclude by applying the Sobolev Imbedding Theorem. 
LEMMA4.4. Let us suppose that Hypothesis ( H O )  is satisjied, and let p be the unique 

invariant probability measure of ( s (t ) ) .  
Let us dejine the Markov chain (s;)on sd-'by 

-7h 
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where (Xi)is dejned by the Euler scheme ( 6 )  or the Mil'shtein scheme (7 ) ,  under 
condition (HU). 

Then, for any x in R~ - {O ) ,  for any smooth function f :  sdP1+R, 

The above approximation error is of order 0 ( h 2 )for scheme (8) .  
Proof of Lemma 4.4. We will follow Talay [29, § 7.21, and only consider scheme 

(8 ) ,the other case being simpler. 
First, we define the symbol : we will write X Y instead of E ( X )= E ( Y ) .We 

will also write 2 for xllxl. 
Under (HU), for any h small enough, almost surely i,h+,(X")takes its value in Us;(;). 
With computations analogous to those of Talay [28], and performing a Taylor 

expansion up to order 6 of the function e+ u( t ,4;$(;)(8)),we may check that 

with the remainder term r:,+, expressed as a sum of terms, each one being of the 
following form: 

Constant x E[cClr(~)dru(jh,+2'(;)(6))1 

where 

$I is a continuous function of the coordinates 8,,  . . . ,ed-, ,  then is bounded 
in 4$(<)(us;(;)), 
S and y are in +s;ci,(U,;(;,). 

Thus, by using (13) ,it can be checked that the above remainder term satisfies for 
some strictly positive constants Co, C, and y: 

Now we use equation (14) to write 

with a remainder term ;1,+, which can be expressed in the same manner as r:,+, . 
Therefore, if we define R:,+, by 

~ ; , + l  = rIp+l-;;,I+,, 

R!,+, satisfies, for some positive constant C,,  

Moreover, 

(17) u( jh, f , h + , ( X " ) )  2 u ( ( j +l ) h ,i ,h(z) ) fR;p+1h3 

Remarking that 
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with successive uses of (17) we obtain 

However, we note the following. 
Under Hypothesis (HO),the process ( s ( t ) )is ergodic and u(t ,2 )  satisfies 

u ( t , 2 ) =Ef(s ( t ,2 ) ) .  

Thus 

1
lim - C u(ph,2 )= 
N+a N ,=I 

The estimation (16) implies 

Because the process ( F i )  is ergodic, 

1 1 
lim E- C f(Fph(2))= f ( s )  d f ih(s )=a.s. lim - C f(Fph(2)). 
N+== N p = l  N+W N ,=I 

This ends the proof. 
Proof of Theorem 4.2. Again, we only treat scheme (8). 
We have previously shown that 

1 
hh = lim -E log IXh,l 

N+a Nh 

and therefore 

Ah = lim 1 E log I M ~ + ~ s ~ I . 
N+==Nh ,=I 

Elementary (but long!) computations show that the scheme (2;)satisfies, for any 
smooth function f :  

Ef (Xph,,) = Ef (Xph)+ EL^(Xph)h E EL>^(Xph)h2+E$(Xph + 8(Xphtl - X i ) )  h3 

where $ is a function which can be expressed as a sum whose each term is a product 
of polynomial functions (with respect to the Euclidian coordinates) and of derivatives 
of the function J; and 0 is in 10, l [ .  

Under (HU), for any integer n, there exists a strictly positive constant C,, such that 

I X + e ( M :  - I ) x ~ "5 C,, 

uniformly in h small enough, in 8 in [0, 11 and in x in sd-I. 
Therefore, applying the previous remark to f ( x )  =log 1x1, if Q is the function 

defined in (4 ) ,we obtain 

E log I~ph+,~phl=E Q ( s ~ ) ~+;E2'Q(fph)h2+R;+lh3 

with R;+, uniformly bounded in p ENand in h small enough. 
We deduce 
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Using the result of the previous lemma, we deduce 

But, by the definition of p ,  

jsd-,z Q ( s )  4 4 s )  =0. 

This ends the proof. 

5. Application to an engineering stability problem. Our objective is to study the 
stability of the motion of a helicopter blade in terms of various physical parameters, 
such as the velocity of the helicopter, some geometric characteristics of the blade, the 
intensity or the coloration of the process modeling the turbulence around the blade 
(this problem was given to us by the French Company ACrospatiale). 

5.1. Introduction. In the first approximation, the stability of the movement of a 
rotor blade with two degrees of freedom is equivalent to the stability of the solution 
of a linearized ordinary differential equation in LQ4 

where the matrix-valued function A(t)  and the vector-valued function F ( t )  are periodic 
of the same period (the period of rotation of the blade). 

When the turbulent flow around the blade is taken into account, we may consider 
the following linearized model: 

where B(t) (respectively, G( t ) )  has the same property as A(t) (respectively, F( t ) ) ,  
and (("(t)) is a one-dimensional noise. The intensity of the noise u ( t )  is also a periodic 
function of the azimuth angle Rt, where R is the angular velocity of the blade. 

All the coefficients A(t), B(t), F( t) ,  G( t )  are explicitly known in terms of different 
physical parameters of the blade. 

Here the "stability" we are interested in is the following: the system is stable when 
it admits a unique periodic in law solution { Y(t)} and when, for each initial determinis-
tic condition, the corresponding process {X(t)}satisfies 

(19) lim I Y(t) -X(t)l  = O a.s. 
1 - t o o  

First we will consider the white-noise case. 
The system (18) beomes 

where ( W(t)) is a standard one-dimensional Wiener process. 
Let us introduce the system 

The following theorem can be shown (cf. Pignol [23]). 
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THEOREM5.1. Let us suppose there exists A <0 such that the solution of (21) with 
any deterministic initial condition satisfies 

1 
(22) lim sup - log IX( t ) lS  A a.s. 

t++m t 

Then system (20) is stable in the sense of (19). 
Of course, it remains to give conditions ensuring the existence of the Lyapunov 

exponent (22) and to check that the blade system satisfies these conditions. For these 
points (and the wide-band noise case) we refer to Pignol's thesis [23]. 

Now let us discuss the numerical computation of the Lyapunov exponent. 
We have worked on a set of systems corresponding to different values of some 

parameters, namely, the distance between the gravity center and the torsion center, 
the velocity of the helicopter, and the rotation angular velocity. 

The numerical values given below correspond to one particular case, but the 
conclusions are valid for all the situations we have considered. 

5.2. The deterministic case. In the deterministic case (corresponding to a ( t )--= 0), 
only the Runge-Kutta methods of order larger than 4 give good results (because of 
the numerical instability of the system, due to the large coefficients of the matrix A ( t )  
and their very short period). 

Let us illustrate this remark. 

We have used three algorithms: 

1. Runge-Kutta method of order 2; 
2. Runge-Kutta method of order 4; 
3. Gear's method (implemented in the NAG Library of Fortran subroutines). 
The discretization step chosen by NAG is always smaller than 0.0016; the Lyapunov 

exponent (in that case, the Floquet exponent) computed is -12.767. 
(1) With a discretization step h =0.00015, we obtain the results in Table 1. 
(2) With a discretization step h =0.003, we obtain Table 2. 
(3) With a discretization step h =0.006, the Floquet exponents are as in Table 3. 

Method Floquet exponent 

Runge-Kutta of order 2 -12.717 
Runge-Kutta of order 4 -12.767 

Method Floquet exponent 

Runge-Kutta of order 2 -05.051 

Runge-Kutta of order 4 -12.767 


Method Floquet exponent 

Runge-Kutta of order 2 +20.154 

Runge-Kutta of order 4 -12.767 
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These results show that, in the stochastic case, the discretization step will 
necessarily be chosen smaller than 

We will see another consequence. 

5.3. Numerical algorithm for the stochastic case. First, it is important to note that 
the formula hh- l / N h  log IZhl is of poor interest in practice, because it leads to 
numerical instabilities, the process ( I X ; ~ ) decreasing to zero or increasing to infinity 
exponentially fast. Alternatively, the following may be used, which is also used in the 
proof of Theorem 6.2: 

1
h h  -- C log l ~ ; + l f ; I

Nh  ,=I 

(with N large; the choice of N will be discussed later). 
Now, let us discuss the choice of a convenient discretization algorithm. We have 

tested the Mil'shtein method and the second-order method ( 8 )  on an example due to 
Baxendale for which there exists an explicit formula giving the Lyapunov exponent. 

More precisely, let us consider a one-dimensional Wiener process ( W ( t ) )and the 
following system: 

(23)  d X ( t )= A X ( t )  d t + u B X ( t )  0 d W ( t )  

with 

Then, we obtain 

1 1 5;" cos ( 2 6 )exp ( ( a- b / 2 u 2 )cos ( 2 6 ) )dB
A = - ( a + b ) + - ( a - b )

2  2  5;" exp ( ( a-b / 2 u 2 )cos ( 2 0 ) )d0 

For example, let us choose a = 1, b = -2, u= 10. Then an accurate numerical 
computation gives A = -0.489. 

For a final integration time Nh = 100 and h = the second-order scheme ( 8 )  
gives A = -0.35, but for h = lop4,it gives A = -0.50. 

The Mil'shtein scheme leads to worse results: for the same integration time, and 
h = l o p 3 ,it gives A =3.16, for h = lop4,  it gives A = -0.1; it is necessary to choose 
h = l o p 5to obtain A = -0.51 (in that last case, the computation time is much longer 
than the time due to the second-order scheme with h = l o p 4 ,for the same result). 

Therefore, for our helicopter problem, we have used a second-order scheme. But 
the above study of the deterministic case shows the necessity to improve scheme ( 8 ) ,  
in order that it reduces to the Runge-Kutta scheme of order 4 when the intensity of 
the noise is nought. 

Finally, our algorithm has been the following: 
1. An initial condition is chosen on the unit sphere Y3; 
2. At step ( p  + 1 ) ,  we proceed in two stages: 

The Runge-Kutta method of order 4 is applied to a single step in order to 
integrate the system 

~ ( 0 )=X::, 
~ ( t )= A ( p h + t ) y ( t )  

(the presence of A is due to the discretization of the system written in the Ito sense). 
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Then we calculate 

where we have used the following notation: (A:+, W) := sequence of mutually indepen-
dent Gaussian random variables X(0, f i ) ,B': derivative of the matrix B(t),  and all 
the matrices are calculated at time t = p h .  

3. The new value of A is computed from the previous one by 

4. X,h+,is projected on the unit sphere. 
Just by applying the methods of the previous section, it is easy to check that this 

algorithm is of order 2 (under hypotheses analogous to that of Theorem 4.2). 
Our system of automatic generation of FORTRAN programs of simulation of 

solutions of Stochastic Differential Systems (see Leblond and Talay [12] for a presenta-
tion) can generate the FORTRAN program corresponding to this algorithm, for each 
bilinear system entered. 

5.4. Numerical results. For the given models of blades, the deterministic system 
was extremely stable for admissible velocities, as shown in Fig. 1, corresponding to 
one particlar model but typical anyway. 

-0.164E+02 

-0.233E +02 g g s s e s a g ~ g  
0O O g s % z w -4 

h ) Q Q \ W O 
m m m m m m m m m m m+ + + + + + + + + + + 
E E E 8 8 8 8 8 8 5 8 

FIG. 1. Variations of the Floquer exponeni in terms of the velocity. 

Let us suppose that u ( t )  is a constant function: u ( t )  =uo (i.e., the effects of the 
turbulence are independent of the azimuth angle). 

For a velocity equal to 100 mls ,  we obtain the corresponding diagram (see Fig. 2). 
The destabilization of the system could occur only for intensities of the noise 

larger than 0.3; such intensities are not realistic for the turbulent winds around the blade. 
Moreover, let us consider a more precise modelization of the noise. We suppose 

that its intensity is a periodic function of the azimuth angle 9= a t ,  reaching its 
maximum for 9= 3 ~ / 4 ,and defined by the following function: 

a,,exp (6(cos ( 0 . 7 5 ~- 0 . 5 ~ t ) ~ -1)). 

Figure 3 represents this function for uo= 0.2 and 6 =0.25, 6 = 1.00, 6 =2.00. 
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FIG.2. Variations of the Lyapunov exponent in terms o f a n .  

I I 


I W  150 2W 250 3W 350 403 


F I G .  3 .  Variations of the intensity of the noise in terms of the azimuth angle (in degrees). 

an S Lyapunov exponent 

0.2 0.0 -8.83 
0.2 0.25 -11.83 
0.2 1 .O -16.63 
0.2 2.0 -18.06 
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In that case, we observe a strong dependency of the Lyapunov exponent upon 6, 
and the instability could not appear for realistic intensities (see Tables 4 and 5 ) .  

5.5. Algorithm for the wideband noise case. Let us consider the system 

with a wideband noise of the form 

where ( Z ( t ) )is a stationary K ( 0 , 1 )  Ornstein-Uhlenbeck process. 
The above system is an ordinary differential system, so that the pathwise simulation 

of the solution can be achieved using, for example, the Euler scheme: 

X i , ,  = X ; + ( ~ ( ~ h ) X p h+~ ( ~ h ) ~ ( ~ h ) [ ~ ( ~ h ) ) X ; h .  

It is well known that, when F +0 ,  the solution of ( 2 6 )  converges in law to the 
solution of ( 2 1 ) . Pardoux [ 1 8 ] has shown that, moreover, the Lyapunov exponent of 
( 2 6 ) converges to the Lyapunov exponent of ( 2 1 ) . Kushner [ l l ]  has shown that this 
convergence is a very particular case of a "pathwise uniform" convergence of a sample 
average cost per unit time. 

But it appears that, even for small h, the Lyapunov exponent of that discrete-time 
process defined by the Euler scheme does not converge, when F +O, towards the 
Lyapunov exponent of the system ( 2 1 ) .  

One reason is that the process { [ " ( p h ) )does not converge in law, so that the 
scheme must rather involve the sequence 

which converges in law to the sequence ( A : + , W). 
But it is necessary to be careful: the new scheme 

X i , ,  = X i + ( ~ ( ~ h ) h+ ~ ( p h ) ~ ( ~ h ) ~ ; + , [ ) x , h  

does not converge to a discretization scheme of ( 2 1 )  ( A  # A). 
Finally, we introduce a convenient second-order scheme, similar to ( 2 4 ) .  
First, the Runge-Kutta method of order 4 is applied to a single step in order to 

integrate the system 

6 ao Lyapunov exponent 
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and then 

It is interesting to note that the limit of the above scheme when e +0 is not the 
scheme (24), the difference including only terms of order hh;+ ,  W and h2. We have 
not succeeded in building a second-order scheme of the wideband system converging 
to a second-order scheme of the white noise system. 

Let us describe our simulation of the integrals A:+,( .  
Let (V( t ) )  be a Wiener process independent of (W( t ) )  such that 

Then we have the formula 

Therefore, it is possible to simulate the following vector: 

by the simulation of the Gaussian vector 
( p + l ) h  

( A ~ Y ~ ( v ) , ] ~ ~ ~ + ~ ) ~ ~ ~ ~ V ~ , ] ~ ~, e2 'dVS) .  

For our models, we observed that the coloration of the noise tended to stabilize 
the system (the limit case being the case of very large e, equivalent to the deterministic 
case). 

5.6. Remarks. The models for the blade and the noise were simplified; in par- 
ticular, only physical experiments during a flight could permit to improve the modeliz- 
ation of the noise, and overall a more realistic model should be nonlinear. 

In this simplified context, the conclusion was that the turbulence around the blade 
has small effects on the stability of the blade. 

5.7. 	Choice of the integration time. For the sake of simplicity, we again consider 
the case of matrices 	A and B, independent of t. 

As already mentioned, we approximate ihby 

X h  --1 1 log l ~ ; + l ~ ; l .  

Nh , = I  

The following Central-limit theorem gives an estimate of the distance between A 
and (cf. Theorem 2.2) 

(this theorem is due to Bhattacharya [4]). 
THEOREM5.2. Let us suppose ( H ) .  Let 2 define the infinitesimal generator of the 

Markov process ( ~ ( t ) ) ,  p its unique invariant probability measure, and let the function 
Q be dejined by (4). 

For t ++a, 
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Milshtein scheme 

F I G .  4 .  Variations of the computed value of the Lyapunov exponent. 

where the constant v2 depends only on the coeficients of the system and is given by ((. ,.) 
denoting the inner product in z 2 ( p d - ' ,  p) )  

v 2= -2(Q -A, L-'(Q -A ) ) .  

But it seems extremely difficult to numerically estimate the variance of the limit 
law, since, first, it is necessary to solve a Poisson P.D.E. on sd-',namely, 

Lu = Q - A ,  

and, second, since this P.D.E. depends on the unknown A. 
This important question must be considered in the future. We do not now know 

a good method to stop the algorithm; in practice, the criterion is to observe that 

-
1 C log l ~ , " + ~ f , " l

N h  p=1 

has become almost constant with respect to N and h after a large number of iterations. 
Let us illustrate this point by a figure showing the behaviour of 

-
1 1 log l ~ , " + l f , " I

N h  p = 1  

in terms of N h  for h = (continuous line) and h = l op4 ,for the Baxendale's example 
of § 5.3, with a = 1 ,  b = -2, and u = 10 (see Fig. 4) .  We recall that the true value of A 
is -0.489. 

6. Appendix: second-order schemes. 
6.1. Preliminaries. Let us consider the general stochastic differential equation in 

the Ito sense: 

d X ( t )= b ( X ( t ) )  dt +u ( X ( t ) )  d W ( t ) .  

The Euler scheme is defined by 
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The Mil'shtein scheme is defined by 

We define the matrix a and the vectors A, by 

a = uu*, 

Besides, we will denote by L the infinitesimal generator of the process ( X ( t ) ) :  

Now, we define a new scheme by 

Scheme ( 8 ) is a particular application of this scheme. 

6.2. Second-order discretization schemes. In this section, sPwill be the u-algebra 
generated by ( X ; , . . . ,X; ) .  

A discretization scheme will be called of second order if it satisfies (all the right-side 
terms of the equalities being understood evaluated at X,h, and using the usual conven- 
tion for the summation indices) 

E ( ~ i + , x I 9 ~ )= EJ[p+l15b h + ~ ( ~ b ) h ~ + ~ ~ + ~ ,  c h 3 ,  


E ( ( A , ~ + , X ) ~ ~ ( A , " + , X ) ~ ~ ) 
I F p )  
. . 

= uJ~uJ2h+( b i ~ b ' ~ + ~ ~ k l u ~ ~ ~ k 2 u ) u f ~ u f ~ + ~ ~ k b 1 ~ u J ~ u k+idkb'~u!~ukI 

k 1  2+Iu '2 ,ldkU)bk f iU)dkUilbkf~ ~ ~ ~ d ~ ~ U ) f f ~ U f if $ f f ) d k l f f j l f f n f f n ) h  

+[>&, E ~ ( $ $ ~ ) S C ~ ~ ,  

E ( ( ~ , h + ~ X ) ' 1. . . (hi+,X) '3)I sp) 
J +b ' ~ u ! ~ a ' z + ~ a $ ~ k u $ u ~ ~ u ~J= ( b ' 1 ~ ~ 2 ~ $J f bi2u$u~~ J f ~ u $ ~ k u $ u ~ ~ u ~  

+la'?dku{lu>u;+iujldku$u)u; +iu$dku:lu+u:)h2+iujldku;2u)u~ 

+ti$;?, E 1 52$;?l c h 3 ,  

E ((h:+,x)'l I .Fp). . . (h;+,x)'4) 

= ( u : ~ u ) u > u j 4  + 5 ) ~ , ~ 4 ,  ~152+,'415c h 3 ,+u j ~ u j u $ u ~ ) h 2  

E ( (h ;+ ,x ) ' l . . . (h i t lX ) ' 5 )Isp)= 5 & ; ' 5 ,  E 15>+;i51 5 c h 3 ,  

E ( ( ~ ; + , x ) ~ l  I sP)= [ ) ~ , ~ 6 ,  E152+,'61~ch3 .. . . ( A , " + , X ) ~ ~ )  
We have the following theorem (see Talay [27]or [28],Mil'shtein [16]) .  

THEOREM6.1. Let us suppose that b and u are smooth functions with all their 
derivatives bounded, and only (i) of (HU) .  
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Then, for all functions f of class %" such that f and all its derivatives have an at 
most polynomial growth at injinity, the Euler and Mil'shtein schemes with X,h = X ( 0 )  
satisfy, for any h small enough, for any T >  0, and any h = T I N  ( N  E N"), 

v p  = 1 , .  . . ,N :  I E ~ ( x , , )  -~ f ( X ; ) lIc h ,  

whereas scheme (30)  satisjes, as well as any other second-order scheme such that X i  
has all its moments Jinite for all p (under the condition X,h = X ( O ) ) ,  

IE~(x , , )-~ f ( X ; ) l sc h 2 .  

The  same respective orders o f  convergence are conserved (under another set o f  
hypotheses) when the process ( X ( t ) )  has a unique invariant measure p and the criterion 
o f  convergence is 

(see Talay [29] ) .  

6.3. Extension of the main theorem. Following the same procedure as previously, 
we may extend the results o f  Theorem 4.2 to  second-order schemes, under some 
conditions concerning the law o f  the involved random variables. 

T H E O R E M6.2. Let us suppose that system ( 3 )  satisjes Hypothesis (HO). 
Let ( X i ,p E N)  be a discretization scheme of the form 

- h 
= X p .  

W e  suppose that there exists h,> 0 such that the following hypotheses hold. 
( H I )  For any h < h,, ( M i )  is a sequence of independently and identically distributed 
random matrices in G I ( [ W ~), with common distribution vh. 
( H 2 )  For any h < h,, 

E log+IM: l<+m,  E ~ O ~ + I ( M ; ) ~ ' I < + ~ .  

( H 3 )  For any h < h,, the smallest subgroup of G I ( [ w ~ )containing the support of vh  is 
irreducible, and, moreover, the process (X ; / IX ; I )  is ergodic on sdP1. 
( H 4 )  There exists C ( h )  such that, almost surely, the distance between x and M:X can 
be bounded by C ( h )  uniformly in x in sdP1,and C ( h )  +0 with h. 

Let us suppose: (Xi,p E N )  is a second-order scheme in the sense of 5 6.2. 
Then ( i )  There exists a real number hh such that 

1 
{ O ) : i h =  lim - logIX; (x ) l ,  a.s. 

P++K ph 

( i i )  Moreover, i f A  is the upper Lyapunov exponent of ( I ) ,  

7. Conclusion. W e  have built schemes which are o f  second-order for the approxi- 
mation o f  the upper Lyapunov exponents o f  bilinear systems. 

These schemes have been tested numerically and have served to  solve an industrial 
problem o f  stability. 

Some aspects are still t o  be improved, for example, the choice o f  the computation 
time. 

Finally, let us point out that the approximation o f  the Lyapunov spectrum o f  
nonlinear systems o n  compact manifolds is studied in Grorud and Talay [ 9 ] ,  and that 
an extrapolation technique based upon the Euler scheme permits us to  obtain a 
second-order accuracy (Talay and Tubaro [30] ) .  
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