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Abstract

We consider nonlinear stochastic differential systems defined either on a compact orientable
manifold, or on IRd; under our hypotheses, their Lyapunov exponents are deterministic. We
propose an efficient algorithm of numerical computation of these exponents, and we give a
theoretical estimate for the approximation error.

The method is based upon the discretization of the linearized stochastic flows of diffeomor-
phisms generated by the differential systems.

Results of numerical experiments are also presented.

APPROXIMATION DES EXPOSANTS DE LYAPUNOV DE

SYSTEMES DIFFERENTIELS STOCHASTIQUES
NON LINEAIRES

Résumé

Nous considérons des systèmes différentiels stochastiques non linéaires, définis soit sur une variété
compacte orientable, soit sur IRd; sous nos hypothèses, leurs exposants de Lyapounov sont
déterministes. Nous en proposons un algorithme de calcul numérique efficace, dont nous donnons
la vitesse de convergence.

La méthode est fondée sur la discrétisation des flots stochastiques de difféomorphismes
linéarisés engendrés par les systèmes différentiels.

Nous présentons aussi des résultats de tests numériques.

∗To appear in Siam Journal on Applied Math.
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1 Introduction

The Lyapunov exponents of a stochastic dynamical system enable to study its stability.
A survey of this important theory, for linear and nonlinear systems, may be found in [3],
and in Arnold[1] (we will use the notations of this last reference).

From an applied point of view, most often it is necessary to numerically approximate
the Lyapunov exponents. For the linear case, in Talay [21] an algorithm has been proposed
to compute the upper one and its theoretical convergence rate is given; in the same paper,
an industrial application (the stability of the motion of helicopter blades) is described.

In practice, most models are nonlinear, so it seems interesting to provide efficient
numerical tools of studying their stability. This is the aim of this paper. The Lyapunov
exponents are expressed in terms of the linearized flow of diffeomorphisms generated by the
system; for a linear system, the linearized flow and the flow are equal, which simplifies the
numerical analysis issues; some specific difficulties appear for fully nonlinear systems. The
algorithm proposed here is based upon the time discretization of the linearized flow; we
give a convergence rate of the method in terms of the discretization step; we approximate
all the exponents (not only the top one) as well. The Lyapunov exponents can be expressed
in terms of the invariant measure of a system on projective bundles (see Baxendale’s
formula (8) below or [5]). The procedure which we propose here avoids the numerical
solving of stationary Fokker-Planck equations on these projective bundles, which may be
numerically difficult or costly especially when the dimension of the state space is large.

We will limit ourselves to the case where the state space is IRd or a smooth compact
orientable manifold. The reasons for this limitation are multiple: first, we need the ex-
istence of a stochastic flow of diffeomorphisms associated to the stochastic differential
equation; second, the approximation algorithm of the solution of the system has a rea-
sonable complexity in this framework (either one discretizes a system given in euclidian
coordinates, or one just needs to use an exponential atlas satisfying a given property
stated below); third, it is possible to write natural explicit conditions on the coefficients
of the system ensuring the ergodicity of the solution; and, finally, we need to establish
a technical result on the solution of a parabolic P.D.E. on the projective bundle of the
state space, and our method could fail for non compact manifolds without supposing very
stringent conditions on the coefficients of the system.

As we will see, the case of compact manifolds leads to particular developments; first,
we propose an algorithm which takes into account the geometry of the state space, and
is nevertheless realistic from a practical point of view; second, some details of the proof
giving the convergence rate of the method are simpler than in the IRd case.

We have chosen not to separate the two situations in the presentation. Thus, we avoid
a large amount of repetitions, and also it seems easier to distinguish where the compacity
plays a role.

In Section 2, we state the hypotheses under which we will establish the convergence
rate of our algorithm; in Sections 3 and 4, we present the discretization method of the
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linearized system, which will permit us to approximate the upper Lyapunov exponent; in
Section 5, we prove that the Markov chain defined by the discretization admits a Lyapunov
exponent; in Section 6, we prove that our method is a first order approximation; in Section
7, we give the proof of a technical Lemma used in Section 6; in Section 8, we explain how
the method can be extended to get a first order approximation of any exponent of the
spectrum; in Section 9, we present the results of numerical trials, for examples of systems
on IRd and on the circle.

We will use results due to Arnold & San Martin, Baxendale and Caverhill for the
continuous time processes (cf. the papers in [3]), and results due to Bougerol ([7] and [8])
for the discrete time approximating process.

Several statements below look like statements of a same nature in the references [22],
[21], but cannot be obtained as Corollaries. Essentially, here one has to check that some
properties of processes or P.D.E.’s which are true when the state space is the sphere of
IRd or IRd, remain true when the state space is the product of IRd and its projective space.
We will use combinations of ideas of the two mentioned papers, but we think it would be
difficult for a reader not familiar with them to be convinced that the claims of the present
work are true without at least strong indications on what must be done in addition of
the existing proofs: for the sake of clearness and completeness, we have chosen to make a
rather detailed presentation.

2 Basic Hypotheses

2.1 Systems on IRd

We consider a stochastic differential system on IRd defined by the equation

dxt = A(xt)dt+
r∑

j=1

Bj(xt) ◦ dW j
t (1)

x0 = x

with smooth vector fields A and Bj’s; denoting by A′ and B′j the differential maps of A

and Bj, the linearized system is defined on IRd × IRd by

dxt = A(xt)dt+
r∑

j=1

Bj(xt) ◦ dW j
t

dvt = A′(xt)vtdt+
r∑

j=1

B′j(xt)vt ◦ dW j
t (2)

x0 = x , v0 = v

We suppose:
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(H1) the vectors fieldsA andBj (j = 1 . . . r) are of class C∞ and have bounded derivatives
(for all order of derivation); the vector fields Bj (j = 1...r) are bounded.

In order to ensure the existence of the Lyapunov exponents of the continuous time
process and its discretized process, we need to formulate rather technical (but reasonable
for the applications) hypotheses; we had to strengthen these hypotheses to get the rate of
convergence of the approximate Lyapunov exponent in terms of the discretization step.

Let Sd−1 = {x ∈ IRd; |x| = 1} be the unit sphere of IRd, and IPd−1 be the projective
space of IRd, i.e. the quotient of Sd−1 with respect to the relation: u ∼ v iff u = −v. In
the sequel, for any vector v in IRd, [v] will denote the equivalence class of v

|v| in IPd−1, and

IPIRd will denote the space IRd × IPd−1.

We know (cf Arnold and San Martin [2]) that the process (Pxt(x, [v])) on IPIRd defined
by Pxt(x, [v]) = (xt, [vt])(x, [v]) (i.e the process (xt, [vt]) with initial condition (x, [v])) is
solution of the system:

dPxt = PA(Pxt)dt+
r∑

j=1

PBj(Pxt) ◦ dW j
t (3)

Px0 = (x, [v])

with PC((x, [v])) = (Cx,C ′(x)[v]− < C ′(x)[v], [v] > [v]) for C = A or Bj.

We shall assume that the following hypothesis holds :

(H2) (i) The differential operator PA+ 1
2

∑r
j=1(PBj)

2 is strongly elliptic.

(ii) ∃β > 0 , ∃K compact ∈ IRd such that: ∀x ∈ IRd −K , < x,A(x) >≤ −β|x|2

2.2 Systems on compact manifolds

Let us consider a d-dimensional C∞ compact manifold M, and A, Bj (j = 1, . . . , r) vector
fields on M. We also consider a r-dimensional standard Wiener process (Wt).

In this framework, we reformulate (H1) as follows:

(H1) The vectors fields A and Bj (j = 1 . . . r) are of class C∞.

We will deal with the stochastic differential system in the Stratonovich sense on M:

dxt = A(xt)dt+
r∑

j=1

Bj(xt) ◦ dW j
t (4)

This system defines a stochastic flow of diffeomorphisms (xt(x)) (cf. Ikeda & Watan-
abe [13] e.g.); if Txt(x) : TxM→ Txt(x)M is the linear part of xt at x, and if the vector
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fields TA, TBj are the linearizations of A,Bj, then the mapping Txt from TM to TM
defined by (x, v) → (xt(x), Txt(x)v) is a flow on the tangent bundle TM, generated by
the system

dTxt = TA(Txt)dt+
r∑

j=1

TBj(Txt) ◦ dW j
t (5)

For x ∈M, let IPxM be the projective fibre over x, and IPM = ∪x∈M{x}× IPxM be
the projective bundle over M. For v in TxM, [v] will denote the equivalence class of v

|v|
in IPxM.

Let Pxt(x, [v]) be the equivalence class of
(
xt(x),

Txt(x)v
|Txt(x)v|

)
in IPM; this process on

IPM solves a stochastic differential system (cf Arnold & San Martin [2] or Carverhill [9]):

dPxt = PA(Pxt)dt+
r∑

j=1

PBj(Pxt) ◦ dW j
t (6)

Px0 = (x, [v])

In this framework, our hypothesis (H2) is:

(H2) the differential operator PA+ 1
2

∑r
j=1(PBj)

2 is strongly elliptic.

2.3 Existence of the Lyapunov exponent for the continuous time
processes

A first consequence of the above hypotheses is the following proposition.

Proposition 2.1 Under (H1) and (H2), the process (Pxt) on the tangent bundle IPM
has a unique invariant probability law (henceafter denoted by ν), which has a strictly
positive smooth density w.r.t. dτ .

Proof First, (Pxt) is a strong Feller process on a metric space; second, either M is
a compact manifold, and then (Pxt) is a Feller process on the compact manifold PM,
or M is Rd and then there exists a strictly positive constant C such that: IE|Pxt|2 < C
(this can be checked by using the Ito formula and (H2-ii)); in both cases, there exists at
least one invariant probability measure (cf. Ethier & Kurtz [12] e.g.).

The conclusion of the Proposition comes from the fact that, under (H1) and (H2), for
any deterministic initial condition, the law of (Pxt) (t > 0) has a smooth and strictly
positive density with respect to dτ (again, cf. Ikeda & Watanabe [13] e.g.).

This ensures that the process (Pxt) is an ergodic process.

2
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In particular, of course this implies that the process (xt) itself is ergodic.

As a result of the previous proposition, our hypotheses imply that there exists a real
number λ such that, for any (x, v) in TM:

λ = lim
t→+∞

1

t
log |Txt(x)v| , a.s., (7)

(cf Arnold & San Martin [2] for even weaker assumptions).

The number λ is called the top Lyapunov exponent of the system (2).

Remark 2.2 Remember that ν denotes the unique invariant probability law of (xt, [vt]);
Baxendale [5] gives the following expression for λ:

λ =
∫
IPM

ψ(θ)ν(dθ) (8)

where, ∇ (resp. R) denoting the Riemannian covariant derivative (resp. the Riemannian
curvature tensor) on M, for x in M and v in IPxM,

ψ(x, v) = < v,∇(A(x) +
1

2

r∑
j=1

∇Bj(x)Bj(x))v > (9)

+
1

2

r∑
j=1

[
|∇Bj(x)v|2 − 2 < v,∇Bj(x)v >

2 + < R(Bj(x), v)Bj(x), v >
]

The numerical scheme is not based upon this representation of λ: first, most often
the numerical cost corresponding to the evaluation of ψ is too high; second, the invariant
measure ν is unknown and, as we already have stressed in the Introduction, may be dif-
ficult to approximate numerically. Therefore we prefer to derive the algorithm from the
formula (7); nevertheless, the convergence rate analysis uses (8) (see Lemma 6.2).

3 Discretization of systems on IRd

We are going to define a Markov chain (xh
p , v

h
p), which can be easily simulated on a

computer, and approximates the solution of the system (2).

3.1 Discretization scheme

We begin by the following remark: under (H1), for any random variable U with a compact
supported law IPU , there exists h0(IPU) > 0 satisfying: for any h ≤ h0(IPU), if

Ã(x) = A(x) +
1

2

r∑
j=1

B′j(x)Bj(x)
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and if (U j, 1 ≤ j ≤ r) are independent copies of U , then:

||Ã′(x)h+
√
h

r∑
j=1

B′j(x)U
j|| ≤ 1

2
, a.s.

Then we take an h in IR∗+ and a family (U j
p+1) of random variables which will be

supposed to satisfy the following requirement:

(HU) (i) the (U j
p+1)’s are i.i.d., and the following conditions on the moments are fulfilled:

IE[U j
p+1] = IE[U j

p+1]
3 = 0, IE[U j

p+1]
2 = 1;

(ii) the common law IPU of the (U j
p+1)’s has a continuous density w.r.t. the Lebesgue

measure, whose support contains an open interval including 0 and is compact;

(iii) the step-size h is less than h0(IPU).

Let take a deterministic initial value (x0, v0) in IRd × IRd and set:

xh
p+1 = xh

p + Ã(xh
p)h+

r∑
j=1

Bj(x
h
p)U

j
p+1

√
h

M
h
p+1 = Id+ Ã′(xh

p)h+
r∑

j=1

B′j(x
h
p)U

j
p+1

√
h (10)

vh
p+1 = M

h

p+1v
h
p

This system describes the passage from (xh
p , v

h
p) to the process (xh

p+1, v
h
p+1) in IRd× IRd

obtained by discretizing the differential system (2) written in the Ito sense.

3.2 Remark

The condition (HU) does not allow the simulation of a gaussian law, whereas one could
expect that U j

p+1

√
h would be W j

(p+1)h −W j
ph.

This is not a limitation, neither numerically (the computers prefer to simulate compact-
supported laws !), nor theoretically: the rate of convergence of the algorithm would not
be better if the exact gaussian law would be simulated (cf. also the approximation of the
law of a diffusion process (Talay [20]).

3.3 About the choice of the scheme

Consider the stochastic differential equation (1) in IRd, and the scheme

xh
p+1 = xh

p + Ã(xh
p)h+

r∑
j=1

Bj(x
h
p)(W

j
(p+1)h −W j

ph) .
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This is the usual Euler scheme for the system (1) written in the Itô sense. This scheme
has a rather low convergence rate for the mean-square approximation on a finite time
interval [0, T ]. Indeed, suppose that the coefficients A and Bj are smooth enough; then,
for any T > 0, there exists a constant CEuler(T ) such that, for any h of the form h = T

M

for some integer M , one has√
IE|xT − x̄h

M |2 ≤ CEuler(T )
√
h .

This has lead to the construction of various other schemes, among them the Milshtein
scheme

xh
p+1 = xh

p+Ã(xh
p)h+

r∑
j=1

Bj(x
h
p)(W

j
(p+1)h−W

j
ph)+

r∑
i,j=1

∂Bj(x
h
p)Bi(x

h
p)
∫ (p+1)h

ph
(W i

s−W i
ph)dW

j
s ,

which, under appropriate assumptions (see Milshtein [16]), satisfies√
IE|xT − x̄h

M |2 ≤ CMilshtein(T )h .

The constant CMilshtein(T ) is not optimal for the family of the first-order schemes, so that
Clark [11], Newton ([17], [18] and [19]), Castell & Gaines [10] have proposed asymptoti-
cally efficient schemes much more complex than the Milshtein scheme.

For the present problem (approximation of Lyapunov exponents), these schemes and
the L2-estimates are not satisfying, for the following reasons.

• First, the usual L2-estimates are irrelevant: since in these works the process (xt)
is not supposed ergodic, the given constants CEuler(T ) and CMilshtein(T ) grow ex-
ponentially fast when T goes to infinity; non trivial refinements based upon the
ergodicity of the exact process (xt) are necessary to prove that all the multiplica-
tive constants of h appearing in the error term can be bounded uniformly in T .
Moreover, the Lyapunov exponents depend on the law of the process, not on its
individual trajectories; for this type of problems, it usually appears that the Euler
and the Milshtein scheme have the same order of convergence (see Talay: [20] for
the approximation of IEf(XT ), f(·) and T fixed, [21] for the approximation of the
upper Lyapunov exponent of linear systems, [22] for the approximation of invari-
ant measures of ergodic diffusions); consequently, one has no reason not to use the
simplest scheme.

• The preceding remark is particularly important for systems on a compact manifold,
since the algorithm involves the expression in local coordinates of the coefficients of
the linearized system (see the next section), whose successive derivatives may have
so complex analytical expressions that the numerical efficiency may drastically be
decreased.

• Besides, a statistical error is added to the discretization error, and this statistical
error is of order 1√

N
where N is the number of steps (see the discussion in [21]); thus

to see the gain of accuracy due to a high order scheme, one may have to considerably
lengthen the simulation time.
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Anyhow, there exists a simple procedure to accelerate the convergence rate of the Euler
scheme. In Talay & Tubaro [24] and in Bally & Talay [4], the structure of the Euler scheme
error for the approximation of IEf(XT ) and of invariant measures of ergodic diffusions is
analyzed: the error can be expanded with respect to h; this result permits to construct
efficient Romberg extrapolation procedures which accelerate the convergence rate; for
example, under some appropriate assumptions, if µ denotes the invariant measure of (xt)
and µ̄h denotes the invariant mesure of the Markov chain (xh

p), then, for any smooth
enough function f(·), it holds that∫

IRd
f(θ)dµ(θ)−

∫
IRd
f(θ)dµ̄h(θ) = C1h+O(h2) ,

so that the formula
1

N

2N∑
p=1

f(x̄h/2
p )− 1

N

N∑
p=1

f(xh
p)

gives an approximation of
∫
IRd f(θ)dµ(θ) which, when N goes to infinity, is of order h2:

one has exponentially increased the accuracy by multiplying the computational effort by
a factor 3 (this factor can even be reduced by a good implementation); we think that
such an expansion also holds for our algorithm, but the proof would require additional
developments. Numerical tests show that this extrapolation gives better results than the
basic Euler scheme, whereas an extrapolation of rate h3 seems useless because of the
statistical error.

4 Discretization of systems on a compact manifold

For a system on a compact manifold, we can write a version of the previous algorithm.
This version is easy to implement if one can define explicit coordinate maps satisfying a
“goodness” property that we now define.

4.1 Preliminary

The construction of the approximate process requires the choice of local coordinates. Our
error analysis needs that the chosen system of coordinates satisfies some properties (for
example, the approximate process is needed to be a Feller process; see also the next
proposition, e.g.), which lead to the following definition:

Definition 4.1 An atlas {(φx, Dom(φx)), x ∈ M} of C∞ charts will be called a good
atlas if it satisfies the conditions:

(a) for all x ∈M, φx(x) = 0; there exists a real number R > 0 such that, for all x ∈M,
V al(φx) ⊃ B(0, R) and:
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(b) for any sequence (xn) in M converging to some x (φ−1
xn

(y)) converges to (φ−1
x (y))

uniformly in y in B(0, R);

(c) for any smooth vector field V on M, for any x in M, if ν denotes the expression in
local coordinates around x of V , then, for any non void multi-index I, the derivative
∂Iν is bounded on V al(φx) by a constant depending only on I (not on x).

A chart of a good atlas will be called a good chart.

In the last subsection of this section, we will give an example of a good atlas. The next
proposition is an immediate application of this notion. For any vector-valued function γ,
∂γ denotes the matrix [∂kγ

i]i,k.

Proposition 4.2 For any random variable U with a compact supported law IPU , there
exists h0(IPU) > 0 satisfying, for any h ≤ h0(IPU): ∀x ∈M, if α, βj denote the expressions
of the vector fields A, Bj in a good chart around x, and if

α̃ := α+
1

2

r∑
j=1

(∂βj)βj

then, (U j, 1 ≤ j ≤ r) being independent copies of U :

α̃(0)h+
√
h

r∑
j=1

βj(0)U
j ∈ B(0, R) ⊂ V al(φx) , a.s.

and

||∂α̃(0)h+
√
h

r∑
j=1

∂βj(0)U
j|| ≤ 1

2
, a.s. (11)

4.2 Discretization scheme

The initial value is any deterministic pair (x0, v0) in TM; let us describe the passage from
(xh

p , v
h
p) to (xh

p+1, v
h
p+1): let (φp, Dom(φp)) be the good chart around xh

p , and let αp (resp.
βj,p) be the representation of the vector field A (resp. Bj) in local coordinates; we set:

α̃p := αp +
1

2

r∑
j=1

(∂βj,p)βj,p

The map φp induce a basis εp in Txh
p
M given by: εjpf = ∂j(f ◦ φ−1

p )(0) for any smooth

function f on M and 1 ≤ j ≤ d. Let V
h
p denote the vector of IRd whose coordinates in

the canonical basis are those of vh
p in εp.
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Then xh
p+1 is computed according to the formula:

xh
p+1 = φ−1

p

α̃p(0)h+
r∑

j=1

βj,p(0)U
j
p+1

√
h



Let h and the random variables U j
p+1 be supposed to satisfy the requirement (HU) of

the previous section, h0(IPU) being now defined in the sense of the proposition (4.2); then
vh

p+1 will be the vector of Txh
p+1
M whose coordinates in the basis εp+1 are the coordinates

in the canonical basis of IRd of
V

h
p+1 = M

h
p+1V

h
p

where

M
h
p+1 = Id+ ∂α̃p(0)h+

r∑
j=1

∂βj,p(0)U
j
p+1

√
h.

4.3 Remark

In that case, the restriction to compact-supported laws in the hypothesis (HU) also ensures

that for h small enough V
h

p ∈ B(0, R). For technical reasons appearing in the proof of the
convergence, it is very important that it is obtained with the chart (φp, Dom(φp)), which

is measurable w.r.t. the σ-field generated by (U
j

k , 0 ≤ k ≤ p , 1 ≤ j ≤ r).

4.4 An example of a good atlas

In the sequel, we will not use a particular good atlas, thus the aim of this subsection is
just to check that the definition is nonvoid.

Below, we will give a Riemannian structure to M; with this structure and its torsion-
free connexion, the compact manifold M is complete (we can extend the geodesics up to
infinity). Denote by Exp the mapping (x, v) → Expxv from TM to M, where, for each
(x, v) ∈ TM, Expxv is the point in M on the geodesic initiating at x in the direction v
at time 1. For each x ∈M, Expx is a local diffeomorphism from TxM to a neighborhood
of x in M; so using Exp−1

x , choosing some basis in each TxM and then identifying TxM
to IRd, we can define, for each x in M, a chart (that we will call “exponential”) φx from
a neighborhood Dom(φx) of x in M to IRd. The Exponential Atlas Exp will be the set
{(φx, Dom(φx), x ∈M} of exponential charts.

Let us recall known properties of Exp (cf. Kobayashi-Nomizu [14], section III, Bishop [6],
chapter 8):
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Properties of Exp

(a) for each (x, v) ∈ TM, the mapping (x, v) → Expxv from TM to M is C∞;

(b) there exists a number R > 0 such that Dom(φx) ⊃ B(x,R) (the metric here is the
Riemannian metric parallel to the connexion: see the lemma 8.2.3 in [6]);

(c) for each tensor K on M, for each x ∈ M and for the canonical coordinate system

{ei, i = 1, · · · , d} associated with φx, the image of ∇ei
K through Exp is ∂K̃

∂xi
, where

K̃ is the image through Exp of K (see the corollary III.8.5 in [14]).

Using these properties of Exp, we define a new atlas, again denoted by Exp, for which,
for each x ∈M, V al(φx) is equal to the ball B(0, R) in IRd. The charts of this atlas will
still be called exponential charts.

Proposition 4.3 Let V be a smooth vector field on M, and, for each x ∈ M, let ν the
expression in exponential coordinates around x of the vector field V ; then, for any non
void multi-index I, the derivative ∂Iν is bounded on V al(φx) by a constant depending only
on I (not on x).

Proof The vector field V being C∞ on M, is globally bounded. Any covariant
derivative is also bounded. Then the values at 0 of the images through Exp of the
covariant derivatives of V , which are the successive derivatives of ν (as a consequence of
the property (c) of the Exponential atlas) are globally bounded by a constant depending
only on the order of derivation. The usual Taylor formula in V al(φx) applied to ν permits
to get the desired result. 2

5 Existence of the upper Lyapunov exponent for the

discretized system

In all the sequel, if there is no precision, M will denote either IRd or a C∞ compact
manifold. In order to avoid repetitions, we will adopt the notations corresponding to the
second case. If the reader is interested in the IRd case only, he should substitute IRd to
each tangent space, and vt to Txt(x)v.

Under (H1) and (H2) (cf. Ikeda & Watanabe [13], chapter 5, e.g.), we can define on
IPM a Riemannian measure dτ associated to the differential operator

PA+
1

2

r∑
j=1

(PBj)
2.

From now on, we consider IPM equipped with this Riemannian structure.
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Once for all, we give ourselves an atlas AIPM on the projective bundle. When M is
compact, we just choose a good atlas (in the sense of Definition (4.1)) on the compact
manifold IPM. When M = IRd, we choose a good atlas on IPd−1 considered as a compact
manifold in IRD (for some D whose existence is implied by the Whitney Theorem); the
set {(Id×φx, IR

d×Dom(φx)), x ∈ IPd−1} is a good atlas on IPIRd, still denoted by AIPM.

5.1 Ergodicity of the process (Pxh
p)

Let Pxh
p be the equivalence class of (xh

p ,
vh

p

|vh
p |

) in IPM. We now adapt a proposition in [22].

Proposition 5.1 Under (H1), (H2) and (HU), for all h small enough, the process (Pxh
p)

is an ergodic process on IPM. The unique invariant probability law νh of the process
(Pxh

p) has a support equal to IPM.

Proof WhenM is IRd, we consider the measure 1K(z)dz⊗dρ, where dz is the Lebesgue
measure on IRd, dρ is the trace of dτ on IPd−1, and K is the compact set of (H2-ii).

Denote by O(h) any random matrix or random vector (respectively real random vari-
able) whose norm (respectively absolute value) can be upper bounded almost surely by
C · h, C deterministic and independent of h; denote also

sh
p :=

V
h
p

|V h

p |
;

using the compactness of the support of the U j
p ’s (see (HU-ii)), for any h small enough

one has:

s̄h
p+1 =

V̄ h
p+1

|V̄ h
p+1|

=
V̄ h

p +
√
h
∑r

j=1 U
j
p+1B

′
j(x

h
p)V̄

h
p +O(h)V̄ h

p

|V̄ h
p |{1 + 2

√
h
∑r

j=1 U
j
p+1 < B′j(x

h
p)s̄

h
p , s̄

h
p > +O(h)}1/2

= (1−
√
h

r∑
j=1

U j
p+1 < B′j(x

h
p)s̄

h
p , s̄

h
p > +O(h))

(sh
p +

√
h

r∑
j=1

U j
p+1B

′
j(x

h
p)s

h
p +O(h)) ,

from which (see (3)) one gets

Px̄h
p+1 = Px̄h

p +
√
h

r∑
j=1

PBj(Px̄
h
p)U

j
p+1 +O(h). (12)

Using that expansion, we now show that (Pxh
p) reaches any open set of strictly positive

1K(z)dz⊗dρ measure in finite time with a strictly positive probability. Indeed, we deduce
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from (H1) and (H2-ii) that, for any starting point x, the process (xh
p) reaches the compact

set K in finite time with a strictly positive probability; let x̃ be the reached point in
K, and let K0 be an arbitrary compact subset of K × IP d−1; as the law of the U j

p+1’s
is absolutely continuous w.r.t. the Lebesgue measure, one deduces from (12) that under
(H2-i), there exists h0 independent of x̃ and K0 such that, for any h < h0, for any v, (Px̄h

p)
reaches K0 from (x̃, v) in a finite number of steps with a strictly positive probability.

As moreover, (H2-ii) implies that, for all small enough h, there exists ε strictly positive,
such that for all x outside K:

IE|xh
1(x)|2 ≤ |x|2 − ε,

a result of Tweedie [25] implies the ergodicity of the process (Pxh
p). From the proof it is

clear that the unique invariant measure has a support equal to IP IRd.

WhenM is compact, the definitions of xh
p+1 and of a good atlas insure that the process

(Pxh
p) is a Feller process on a compact metric space, so there exists at least one invariant

probability law; the uniqueness and the identification of the support come from the fact
that, from any starting point on M, the process can reach any compact set of IPM in
finite time with a strictly positive probability (as above, this follows from (H2) and the
construction of the scheme).

2

5.2 Existence of the Lyapunov exponent for the discrete time
processes

In either the case IRd or the case of a compact manifold, the process (xh
p ,M

h

p) in

M× Gl(IRd) is a multiplicative Markov process in the sense of Bougerol [7]: indeed, if
R̄h

p is its transition operator, for any Borel sets E1 in M and E2 in Gl(IRd):

R̄h
p((x0,M) ; E1×E2M) = R̄h

p((x0, Id) ; E1×E2) , ∀p ∈ IN , x0 ∈M , M ∈ Gl(IRd)

where: E2M = {NM ∈ Gl(IRd) ; N ∈ E2}.

The next statement gives important properties of this multiplicative process. We
denote by IPx(A) the probability of A conditioned by x̄h

0 = x (note that, by construction,
M̄h

0 = Id); if ρ is a probability law on IRd, we denote by IPρ the probability defined by
IPρ(A) =

∫
IRd IPx(A)dρ(x) and IEρ the corresponding expectation.

Proposition 5.2 Under the hypotheses (H1), (H2), (HU), for any h small enough:

(i) the process (xh
p) is ergodic;

14



(ii) let µh be its unique invariant probability law; then

sup
p≤ 1

h

IEµh(Log||Mh
p ||+ Log||(Mh

p)
−1||) <∞

(iii) the system (xh
p ,M

h
p) is irreducible, in the sense that there does not exist a measurable

family {V h(x), x ∈M} of proper subspaces of IRd such that, for any p:

M̄h
p . . . M̄

h
1 V

h(x0) = V h(xh
p) , IPµ̄h − a.s.

Proof We showed in the Proposition 5.1 that the process (Pxh
p) is an ergodic process

on IPM, therefore (xh
p) is an ergodic process.

The statement (ii) is satisfied whenever h is smaller than h0(IPU).

Let us know prove that, for any h small enough, the irreductibility holds. If the system
were not irreducible, the ergodic theorem would imply:

1 =
1

N

N∑
p=0

ll [v̄h
p∈V h(x̄h

p )] =
∫

IPM
ll [v∈V h(x)]dν

h(x, v).

As the support of νh is IPM, this contradicts the fact that {V h(x)} is a family of proper
subspaces. 2

A Corollary of Proposition 5.2 (cf. Bougerol [8], Section 2) is:

Theorem 5.3 Under the hypotheses (H1), (H2), (HU), for any h small enough, there

exists λ
h ∈ IR such that, for any x0 in M, for any v0 in Tx0M−{0}:

lim
N→∞

1

Nh
log |vh

N(v0)| = λ
h
, a.s.

Remark 5.4 The limit of { 1
Nh
log|vh

N(v0)|, N →∞} holds also in L1 because the sequence
{ 1

N
log|vh

N(v0)|, N ∈ IN} is uniformly integrable (cf. Proposition 4.1 in Talay [21]).

The number λ
h

is called the top Lyapunov exponent of the Markov process (xh
p , v

h
p).

Numerically, we will compute, for N large enough, the quantity:

1

Nh
log |vh

N(v0)| (13)
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6 Approximation error

The theoretical approximation error is given by the

Theorem 6.1 Under the hypotheses (H1), (H2), (HU): |λ− λ
h| = O(h).

Now, let us again denote:

sh
p :=

V
h

p

|V h
p |

Using the Remark (5.4), and the definition of V
h

p , we can write:

λ
h

= lim
N→∞

1

Nh

N∑
p=1

IE log |Mh

p+1s
h
p |

The proof of Theorem (6.1) will be a succession of lemmas.

Lemma 6.2
IE log |Mh

p+1s
h
p | = IEψ(Pxh

p)h+ rh
ph

2 (14)

with: ψ defined in (9), |rh
p | ≤ C (for some constant C independent from p, h).

Proof For any Stochastic Differential Equation in IRd whose coefficients are smooth
with bounded derivatives of any order:

dyt = a(yt)dt+
r∑

j=1

bj(yt) ◦ dW j
t

and for any smooth bounded function f with bounded derivatives on the set of values
taken by yh

p , one can check that the Euler scheme

yh
p+1 = yh

p + (a(yh
p) +

1

2

r∑
j=1

∂bj(y
h
p)bj(y

h
p))h+

r∑
j=1

bj(y
h
p)U

j
p+1

√
h

satisfies:
IEf(yh

p+1) = IEf(yh
p) + IELf(yh

p)h+ zh
p+1h

2

where L is the infinitesimal generator of (yt), and |zh
p+1| ≤ C (C independent of p, h).

Besides, we know (Baxendale [5]) that, for any initial condition (x0, v0) of the sys-
tem (5), if (Pxt) is the solution of (6), then:

d

dt
IE log |Txt(x0)v0| = IEψ(Pxt(x0, [v0]))
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In other words, if we define φ(x, v) = log |v|, then ψ ◦π = Lφ, where L is the infinitesimal
generator of the process (Txt) and π is the application from TM to IPM defined by:
π(x, v) = (x, [v]).

Now consider the function ψ defined by (9). In the case M = IRd, the covariant
derivative is just the ordinary derivative, and R = 0. Thus, under (H1), ψ is a C∞
bounded function. If M is a compact manifold, applying Proposition (4.3), we remark
that, for each multi-index I, there exists a positive constant CI such that, for any chart
(φ,Dom(φ)) of the atlas AIPM on IPM, the partial derivative ∂Iψ of the function ψ
expressed in local coordinates satisfies:

|∂I(ψ ◦ φ−1)(y)| < CI , ∀y ∈ V al(φ) .

Therefore, to get (14) in the IRd case, we simply choose yt = (xt, vt) and f(x, v) =

log |v|, remarking that the inequality (11) ensures that the process (M
h
p+1s

h
p) lives in a

compact manifold which does not include 0, on which f and its derivatives are smooth.
In the compact case, we express (xt(x), Txt(x)v) and log |v| in the local coordinates given

by the atlas AIPM on IPM, and we remark that vh
p = V

h
p .

2

Iterating (14), one gets: IE log |Mh
Ns

h
N−1| =

∑N−1
p=1 IEψ(Pxh

p)h+
∑N−1

p=1 r
h
ph

2.

Let us divide each term of the previous equality by Nh and make N tend to infinity.

Remember that νh denotes the unique invariant probability law of the process (Pxh
p)R;

then the limit

lim
N→+∞

1

N

N∑
p=1

IEψ(Pxh
p)

exists, and is equal to
∫
IPM ψ(θ)νh(dθ).

Therefore, the conclusion of our Theorem will be implied by the following Lemma,
whose hypothesis on f is weaker than necessary here (bounded would be sufficient, but
the boundedness brings no simplification in the proof):

Lemma 6.3 Let f be a smooth function on IPM; when M = IRd, we suppose that for ϕ
being f or any of its partial derivatives of any order with respect to the x-coordinates:

∃C > 0 , ∃n ∈ IN , ∀θ = (x, [v]) ∈ IPIRd : |ϕ(θ)| ≤ C(1 + |x|n)

Then:
|
∫
IPM

f(θ)ν(dθ)−
∫
IPM

f(θ)νh(dθ)| = O(h)

Proof Let L be the infinitesimal generator of the process (Pxt) solution of (6) on
IPM, and, for a given smooth function f on IPM, and θ ∈ IPM, let u(t, θ) := IEθf(Pxt).
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It is well known that

d

dt
u(t, θ) = Lu(t, θ)

u(0, θ) = f(θ) (15)

Let us suppose that we have proved (this will be done in the next Section):

Lemma 6.4 Under (H1), (H2), if M is compact:

(i) there exist strictly positive constants Γ and γ such that

∀θ ∈ IPM : |u(t, θ)−
∫
IPM

f(s)dν(s)| ≤ Γ exp(−γt) (16)

(ii) for any multi-index I, there exist strictly positive constants ΓI and γI such that, for
any θ = (x, [v]) in IPM, any z in V al(φθ) (where (φθ, Dom(φθ)) is a good chart around θ
in the sense defined at the beginning of Section (5)), the spatial derivative ∂Iu(t, φ

−1
θ (z))

satisfies:
|∂Iu(t, φ

−1
θ (z))| ≤ ΓI exp(−γIt) (17)

When M is IRd, the inequality (16) becomes the following, where nI is an integer:

∀θ ∈ IPIRd : |u(t, θ)−
∫
IPM

f(s)dν(s)| ≤ Γ exp(−γt)(1 + |x|nI ) (18)

and the inequality (17) becomes:

|∂Iu(t, φ
−1
θ (z))| ≤ ΓI exp(−γIt)(1 + |x|nI ) (19)

Then tedious computations (where the remark in Section (4.3) concerning the mea-
surability of the charts around xh

p , and the Proposition (4.3) play a role) show that our
construction implies:

∀k , ∀p , IEu(kh, Pxh
p+1) = IEu(kh, Pxh

p) + IELu(kh, Pxh
p)h+ rh

k,p+1h
2

where |rh
k,p+1| ≤ C1e

−C2kh (for some strictly positive constants C1, C2 independent from
p, k, h). Then we proceed as in the proof of Lemma 4.4 of Talay [21].

2

7 Proof of Lemma (6.4)

In Talay [21] (Lemma 4.3), a similar result has been obtained for processes on the sphere
Sd−1; the construction of the approximating process was different, but the proof can be
adapted without difficulty for the case where M is compact, just by choosing the atlas
AIPM on the compact manifold IPM.

For the case IRd, the adaptation is more intricate.
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7.1 Preliminary inequalities

Let us state a result concerning the partial derivatives of u. We recall that we work with
the atlas AIPM on IPIRd (in the sense of the Section (5)).

Lemma 7.1 For any t and any multi-index I, there exist strictly positive constants CI(t)
and nI (nI independent of t) such that, for any θ = (x, [v]) in IPIRd, any (x, y) in V al(φθ),
the spatial derivative ∂Iu(t, φ

−1
θ (x, y)) satisfies:

|∂Iu(t, φ
−1
θ (x, y))| ≤ CI(t)(1 + |x|nI ) (20)

Proof Having imbedded IPd−1 in IRD (for some D), we can extend the vector fields
PA and PBj (j = 1, . . . , r) to C∞ vector fields on IRd × IRD with supports of the form
IRd × K, K compact. Let us denote by (Zt) the solution of the corresponding stochastic
differential system. It is well known (cf. Kunita [15] e.g.) that the stochastic flow (Zt(z))
associated to this system satisfies: for any integer i (i = 1, . . . , d), there exists a random
variable Li

t, having moments of all orders, such that

|∂iZt(z)| ≤ Li
t(1 + |z|2)

We also extend the function f to a C∞ function g on IRd × IRD, with a support of the
form IRd × K1, K1 compact. Let us define: ζ(t, z) = IEg(Zt(z)). We then have, for any
multi-index I and some constants nI , CI(t):

|∂Iζ(t, z)| ≤ CI(t)(1 + |z|nI )

The restriction of ζ(t, z) to the cartesian product of IRd and the imbedding of IPd−1 is
u(t, θ); expressing θ in the local coordinates given by the atlas AIPM, we then deduce (20).

2

Remarks

• In the sequel, we will not go on working with the process (Zt), because the associated
differential operator is not strongly elliptic. Thus we cannot avoid working on IPIRd.

• For any integer s, let us now define:

πs(x) =
1

(1 + |x|2)s

The previous Lemma shows that, for any integer n ≥ 0, there exists an integer sn

such that, for any multi-index I of length l(I) smaller than n, for any t ≥ 0:

|∂Iu(t, φ
−1
θ (x, y))|πsn(x) ∈ L2(IRd × V al(φθ)) (21)

This will be often implicitly used in the sequel to justify the existence of integrals
w.r.t. dν (we recall that ν denotes the unique invariant probability law of (xt, [vt])),
or measures of type πs(x)dx.
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Without loss of generality, thereafter we will assume:∫
IPIRd

f(s)dν(s) = 0 (22)

(if it is not the case, we change f in f̃ = f −
∫
IPIRd f(s)dν(s)).

Now, we will adapt for u(t, θ) the method used in [22] to establish some exponential
decay results on the function (t, x) → IEg(xt(x)) and its derivatives.

We begin by an easy Proposition, proved in [22].

Proposition 7.2 (i) For any integer n:

∃Cn > 0 , ∃γn > 0 : IE|xt(x)|n ≤ Cn(1 + |x|n exp(−γnt)) , ∀t , ∀x (23)

(ii) The unique invariant probability measure of (xt), µ, has a smooth density p(x) and
finite moments of any order.

This implies that any function f satisfying the requirements of the Lemma (6.3) be-
longs to L2(IPM; dν).

The plan of the sequel of the proof is the following (in all the inequalities which follow,
the constants must be understood strictly positive):

• we show:
∀t > 0 ,

∫
IPIRd

|u(t, θ)|2dν(θ) ≤ C exp(−κt)

• this inequality permits to show that, for some family of differential operators Lk

defined below, we have:∫
IPIRd

|Lk1 . . . Lkqu(t, θ)|2dν(θ) ≤ Cq exp(−κqt)

• then, dρ([v]) denoting the marginal distribution of dτ(x, [v]) on IPd−1, we use these
estimates to prove that, for s large enough:

∀t > 0 ,
∫
|u(t, x, [v])|2πs(x)dx⊗ dρ([v]) ≤ C exp(−λt)

• the previous inequality will permit to get:∫
IPIRd

L
(
|Lk1 . . . Lkqu(t, x, [v])|2

)
πs(x)dx⊗ dρ([v]) ≤ C ′q exp(−λqt)

• finally, we get:∫
IPIRd

|Lk1 . . . Lkqu(t, x, [v])|2πs(x)dx⊗ dρ([v]) ≤ Dq exp(−γqt)

Expressing this inequality in local coordinates, we use the Sobolev imbedding the-
orem to conclude.
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7.2 Upper bounds in L2(IPIRd; dν(θ))

We now state a result, which is an immediate extension of the Lemma 6.1 of [22] (one just
needs to remark that the hypothesis (H2-i) implies that ν, the unique invariant probability
law of (xt, [vt]), has a strictly positive smooth density).

Lemma 7.3 Under the hypotheses of Theorem (6.1) and (22), there exist strictly positive
constants C and κ such that

∀t > 0 ,
∫
IPIRd

|u(t, θ)|2dν(θ) ≤ C exp(−κt) (24)

Let us define some differential operators on IPIRd by:

Lj = PBj

Now, remembering that L is the differential operator associated to (xt, [vt]), we are
equipped to prove:

Lemma 7.4 Under (H1), (H2) and (22), there exist strictly positive constants C1 and κ1

such that
r∑

k=1

∫
IPIRd

Lk|u(t, θ)|2dν(θ) ≤ C1 exp(−κ1t) (25)

Proof We remark:

d

dt
|u(t, θ)|2 − L|u(t, θ)|2 = −

r∑
k=1

(Lku(t, θ))
2

Let us choose 0 < δ < κ. Multiplying the previous equality by eδt, integrating with
respect to dν, we get, using L∗ν = 0:

eδt d

dt

∫
IPIRd

|u(t, θ)|2dν(θ) + eδt
r∑

k=1

∫
IPIRd

|Lku(t, θ)|2dν(θ) ≤ 0

Now, let us choose an arbitrarily large time T and integrate from 0 to T the previous
inequality; we obtain:

eδT
∫
IPIRd

|u(T, θ)|2dν(θ) +
∫ T

0
eδt

(
r∑

k=1

∫
IPIRd

|Lku(t, θ)|2dν(θ)
)
dt

≤
∫
IPIRd

|f(θ)|2dν(θ) + δ
∫ T

0
eδt
(∫

IPIRd
|u(t, θ)|2dν(θ)

)
dt
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Thus, using (24):

r∑
k=1

∫ +∞

0
eδt
(∫

IPIRd
|Lku(t, θ)|2dν(θ)

)
dt < +∞

Then, we remark that there exist strictly positive constants C2, C3 and C4 such that

d

dt

r∑
k=1

|Lku(t, θ)|2 − L
r∑

k=1

|Lku(t, θ)|2

≤ −C2

r∑
k,l=1

|LkLlu(t, θ)|2 + (C3|x|+ C4)
r∑

k=1

|Lku(t, θ)|2

Let us choose 0 < κ1 < δ. Multiplying the previous equality by eκ1ξ, integrating with
respect to dν(θ), and then with respect to ξ from 0 to t, we obtain, for some strictly
positive constant C1:

r∑
k=1

∫
IPIRd

|Lku(t, θ)|2dν(θ) ≤ C1e
−κ1t

That ends the proof.

2

Corollary 7.5 Under (H1), (H2) and (22), for any integer q, there exist strictly positive
constants Cq and κq such that, for any k1, . . . kq in {1, . . . r}, we have:∫

IPIRd
|Lk1 . . . Lkqu(t, θ)|2dν(θ) ≤ Cq exp(−κqt) (26)

Proof One can proceed by a recurrence over q, and performing the same kind of
integrations as before, starting from the inequality (where CJ and Cq are some strictly
positive constants):

d

dt
|Lk1 . . . Lkqu(t, θ)|2 − L|Lk1 . . . Lkqu(t, θ)|2

≤ −Cq

r∑
j=1

Lj|Lk1 . . . Lkqu(t, θ)|2 +
q∑

m=1

∑
J=(j1...jm)

CJ(|x|+ 1)|Lj1 . . . Ljmu(t, θ)|2

2

We recall that for any integer s, we have defined:

πs(x) =
1

(1 + |x|2)s

and that dρ([v]) denotes the trace of dτ(x, [v]) on IPd−1.
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7.3 Upper bounds in L2(IPIRd; πs(x)dx⊗ dρ([v]))

Lemma 7.6 Under the hypotheses (H1), (H2) and (22), there exist strictly positive con-
stants C and λ such that

∀t > 0 ,
∫
IPIRd

|u(t, x, [v])|2πs(x)dx⊗ dρ([v]) ≤ C exp(−λt) (27)

Proof As, for any multi-index J , we have:

∂Jπs(x) = ψJ(x)πs(x) , ψJ(x) bounded function (28)

we remark that there exist an integer s and functions φ1(x) and φ2(x) such that

• φ1(x) is a bounded function independent of s;

• φ2(x) is a function depending on s, but tending to 0 when |x| −→ +∞;

• the following inequality holds:∫
IPIRd

u(t, x, [v])Lu(t, x, [v])πs(x)dx⊗ dρ([v])

≤
∫
IPIRd

(
φ1(x, [v]) + φ2(x, [v]) + s

< A(x), x >

1 + |x|2

)
|u(t, x, [v])|2πs(x)dx⊗ dρ([v])

− C
r∑

k=1

∫
|Lku(t, x, [v])|2πs(x)dx⊗ dρ([v])

After having possibly increased the value of s, we can choose a ball B = B(0, R0) such
that

∀x ∈ IRd −B , ∀v , φ1(x, [v]) + φ2(x, [v]) + s
< A(x), x >

1 + |x|2
< −1 (29)

We separate the previous integral over IPIRd, in an integral over B plus an integral
over the complementary set of B. The estimation (24) permits to get an upper bound of
the form C exp (−λt) for the integration on B, since ν has a smooth and strictly positive
density.

An easy computation then shows that, for some strictly positive constant C:

1

2

d

dt

∫
IPIRd

|u(t, x, [v])|2πs(x)dx⊗ dρ([v]) ≤ −
∫
|u(t, x[v])|2πs(x)dx⊗ dρ([v]) +C exp(−λt)

That ends the proof.

2

Now, we remark that there exist an integer s and functions ϕ1(x) and ϕ2(x) such that
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• ϕ1(x) is a bounded function independent of s;

• ϕ2(x) is a function depending on s, but tending to 0 when |x| −→ +∞;

• the following equality holds:∫
IPIRd

L|u(t, x, [v])|2πs(x)dx⊗ dρ([v])

=
∫
IPIRd

|u(t, x, [v])|2L∗πs(x)dx⊗ dρ([v])

=
∫
IPIRd

(
ϕ1(x) + ϕ2(x) + 2s

< A(x), x >

1 + |x|2

)
|u(t, x, [v])|2πs(x)dx⊗ dρ([v])

Therefore, similar arguments as those used for the previous Lemma and (27) show
that there exist an integer s and strictly positive constant C1, λ1 satisfying:∫

IPIRd
L|u(t, x, [v])|2πs(x)dx⊗ dρ([v]) ≤ C1 exp(−λ1t) (30)

As well, using also arguments employed in the previous Section, we can prove the
existence of strictly positive constants λq and Cq such that, for any k1, . . . kq in {1, . . . r},
we have: ∫

IPIRd
L
(
|Lk1 . . . Lkqu(t, x, [v])|2

)
πs(x)dx⊗ dρ([v]) ≤ Cq exp(−λqt) (31)

7.4 End of the Proof of Lemma (6.4)

We remark again:
d

dt
|u(t, θ)|2 − L|u(t, θ)|2 = −

r∑
k=1

(Lku(t, θ))
2

Let us choose 0 < δ < λ0. Multiplying the previous equality by eδt, integrating with
respect to πs(x)dx⊗ dρ([v]), we get, using (30):

eδt d

dt

∫
IPIRd

|u(t, x, [v])|2πs(x)dx⊗ dρ([v]) + eδt
r∑

k=1

∫
IPIRd

(Lku(t, x, [v]))
2πs(x)dx⊗ dρ([v])

≤ C0e
−(λ−δ)t

Now, let us choose an arbitrarily large time T and integrate from 0 to T the previous
inequality; we obtain, for some strictly positive constants C1 and s large enough:

eδT
∫
IPIRd

|u(T, x, [v])|2πs(x)dx⊗ dρ([v]) +

+
∫ T

0
eδt

(
r∑

k=1

∫
IPIRd

|(Lku(t, x, [v])|2πs(x)dx⊗ dρ([v])

)
dt

≤
∫
IPIRd

|f(x, [v])|2πs(x)dx⊗ dρ([v])

+ δ
∫ T

0
eδt
(∫

IPIRd
|u(t, x, [v])|2πs(x)dx⊗ dρ([v])

)
dt+ C1
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Thus:
r∑

k=1

∫ +∞

0
eδt
(∫

IPIRd
|Lku(t, x, [v])|2πs(x)dx⊗ dρ([v])

)
dt < +∞

If necessary, we increase the value of s, in order to obtain that, for any constants D1

and D2:

r∑
k=1

∫ +∞

0
eδt
(∫

IPIRd
(D1|x|+D2)|Lku(t, x, [v])|2πs(x)dx⊗ dρ([v])

)
dt < +∞ (32)

Then, we remark that there exist strictly positive constants C2, C3 and C4 such that

d

dt
(

r∑
k=1

|Lku(t, x, [v])|2)− L(
r∑

k=1

|Lku(t, x, [v])|2)

≤ −C2

r∑
k,l=1

|LkLlu(t, x, [v])|2 + (C3|x|+ C4)
r∑

k=1

|Lku(t, x, [v])|2

Let us choose 0 < δ1 < δ. Multiplying the previous equality by eδ1ξ, integrating with
respect to πs(x)dx⊗ dρ([v]), and then with respect to ξ from 0 to t, using (31) and (32),
we obtain for some strictly positive constant C5:

r∑
k=1

∫
IPIRd

|Lku(t, x, [v])|2πs(x)dx⊗ dρ([v]) ≤ C5e
−δ1t

From the previous inequality and (H2-i), we deduce the existence of strictly positive
constants C, γ, independent on θ = (x, [v]), such that∫

V al(φθ)
|∇u(t, φ−1

θ (z, y))|2πs(z)dzdy ≤ Ce−γt

By the same procedure, one may show that, for any sequence J = (k1, . . . , kq) of
integers in 1, . . . , r, there exist strictly positive constants CJ and γJ such that∫

IPIRd
|Lk1 . . . Lkqu(t, x, [v])|2πs(x)dx⊗ dρ([v]) ≤ CJ exp(−γJt)

We deduce that for any multi-index J (refering to derivatives w.r.t. the coordinates
(x, y)), there exist strictly positive constants CJ and γJ , independent of θ, such that∫

V al(φθ)
|∂Ju(t, φ

−1
θ (z, y))|2πs(z)dzdy ≤ CJ exp(−γJt)

We already have remarked that for any multi-index J :

∂Jπs(z) = ψJ(z)πs(z) , ψJ(z) bounded
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Therefore we get that, for any multi-index I, any integer M , there exist an integer s
and strictly positive constants C and λ such that

∀m ≤M , ∀t > 0 ,
∫

V al(φθ)
|Dm(u(t, x, y)πs(x))|2dxdy ≤ C exp(−λt)

so that we deduce (20) as a consequence of the Sobolev imbedding Theorem (in (4.3), we
have constrained V al(φθ) to be a convex domain).

8 Approximation of the spectrum

The approximation of all the Lyapunov exponents may be performed in the following way.

For x in M, and any integer k (1 ≤ k ≤ d), let Gk(TxM) be the Grassmann manifold
of all k-dimensional subspaces of the tangent space TxM, and Gk(TM) be the Grassmann
bundle ∪x∈MGk(TxM).

For any K in Gk(TxM), let Kt = Txt(x)K ⊂ Txt(x)M, and Jt(K) = |det(Txt(x)|K)|.
Let us suppose that the above hypothesis (H1) holds and that the infinitesimal gen-

erators of the processes (Kt) are strongly elliptic.

In this context (and under even weaker hypotheses: Baxendale [5]), for any 1 ≤ k ≤ d,
there exist real numbers λ1, . . . , λk and a smooth function ψk on Gk(TM) such that, for
any x in M and K in Gk(TxM), if ν now denotes the unique invariant probability law of
(Kt):

a.s. lim
t→+∞

1

t
log Jt(K) = λ1 + . . .+ λk =

∫
Gk(TM)

ψk(θ)ν(dθ)

To approximate the exponents, we first choose k = 1 and approximate λ1 = λ as
described in the previous Sections; then we choose an orthonormal basis (v1

0, v
2
0) of a

sub-space K of Tx0M for initial value of vh
p , and we compute

1

N
log |det(vh,1

N , vh,2
N )| (33)

Going on up to d, we successively get approximations of all the sums λ1+. . .+λk. This
provides the approximate values of the exponents. With the same technique as above, we
may prove that the approximation error on each of these sums is of order h, and therefore
the error on each λk is also of order h.

9 Numerical tests

In this section, we present numerical results corresponding to two simple examples, our
objective being to show the typical behaviour of the approximation in terms of the inte-
gration time and of the true value of the Lyapunov exponent.
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Note also that, even in the simple second situation, if a more complex scheme than
the Euler scheme is chosen, the complexity of the expressions of several derivatives of the
coefficients in the local coordinates corresponding to the proposed good atlas, drastically
decreases the efficiency of the algorithm.

The Fortran programs corresponding to the two examples below, have been gener-
ated by Presto, a software of automatic generation of programs for the simulation of
S.D.E.’s [23].

9.1 System in IRd

We choose d = r = 1, and consider the following system, in the Ito sense:

dxt = (−axt + F (xt))dt+G(xt)dWt.

Linearizing it, it is easy to see that, for a > 0 and F , G with continuous bounded
derivatives, if G(x) > G0 > 0 for all x, then the upper Lyapunov exponent of the system
exists and is given by:

λ = −a+
∫
IR

(F ′(x)− 1

2
G′2(x))p(x)dx

where p(x) is the density of the unique invariant probability law of (xt).

We then choose: F (x) = arctan(x) and G(x) =
√

1 + x2.

Solving the stationary Fokker-Planck equation, we get the explicit expression of the
unnormalized stationary density. For each value of a, we can compute numerically the
normalization constant (just integrating over IR the unnormalized density). This permits
us to compute the “true” value of λ.

For example, for a = 2, we find λ = −1.3385. The figure 1 below shows the time

evolution of λ
h

p (in the x-axis: ph), for h = 0.01.

9.2 System on the circle

Let us consider the stochastic differential system in the Stratonovich sense on M = S1:

dϕt = sin(ϕt) ◦ dW 1
t + cos(ϕt) ◦ dW 2

t (34)

ϕ0 = ϕ∗

where Wt = (W 1
t ,W

2
t ) is a standard vectorial Brownian Motion. This equation describes

a Brownian Motion on the circle and the upper Lyapunov exponent is λ = −1
2

(cf.
Arnold [1]).
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Figure 1: Variations of the Lyapunov exponent in terms of ph

Considering S1 imbedded in IR2 , let us denote by xt := (cosϕt, sinϕt) the image of the
process in IR2. We choose a good atlas A defined by {(φx, Dom (φx)), x ∈ S1}, where φx

is the stereographic projection of pole (−x) , and Dom(φx) is such that V al(φx) =]−2, 2[
for all x in S1.

Below (figure 2), we show the time evolution of λ
h

p (in the x-axis: ph), for h = 0.0001.

Figure 2: Variations of the Lyapunov exponent in terms of ph

We observe that the discretization step needed to get a good approximation of λ is
much smaller than in the previous example. This is due to the fact that the system is less
stable, since here the Lyapunov exponent is near 0.
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10 Conclusion

We have proposed an algorithm of approximation of the Lyapunov exponents of nonlinear
stochastic differential systems, and given a theoretical estimate of its convergence rate.

From a numerical point of view, as in the linear case [21], the pertinent choice of the
number N of steps in the formula (33) may present important difficulties. Further studies
in that direction are necessary.
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